
Efficient Realization of Strongly Indicating Function Blocks

P. Balasubramanian, D.A. Edwards
School of Computer Science, The University of Manchester,

Oxford Road, Manchester M13 9PL, United Kingdom.
E-mail: (padmanab, doug)@cs.man.ac.uk

Abstract

This paper presents a technique for efficient gate-
level realization of strongly indicating function blocks.
For the function block implementing the desired logic,
the input state space explodes as it expands
exponentially for even a gradual increase in the
number of inputs. In this context, a novel design
methodology for realizing non-regenerative logic as a
function block, under the discipline of quasi-delay-
insensitivity with four-phase handshaking and dual-
rail encoding, which adheres to the strongly indicating
timing regime has been discussed. Approximately 3
times reduction in transistor cost has been achieved by
the proposed method in comparison with a recent
work, based on analysis with benchmarks and widely
used digital circuit functionality; in particular cases
the savings are remarkable.

1. Introduction

Digital logic design has been dominated by
synchronous solutions for the past several decades. The
renewal of interest in and requirement of asynchronous
design is largely motivated by the need to overcome
the problems associated with clocking. Future deep
sub-micron technologies would be characterized by
irregular parameter variations (voltage and temperature
variations, process changes and noise), which could
make asynchronous design an attractive solution. It is
expected that parametric variance of device delay
might reach 35% by 2020 [1]. Since asynchronous
circuits are self-timed, they tend to absorb the
deviations of device characteristics.
 Unlike their synchronous counterparts,
asynchronous circuits dispense with the need for clock
synchronization and so they must operate correctly
independent of any delays in circuit elements. The vast
majority of existing design automation flows target
synchronous circuits. Even when asynchronous designs
leverage existing tool flows, they introduce large area

overheads. Hence asynchronous function block
implementation requires special techniques compared
to the synthesis of non-regenerative (combinational)
logic for synchronous digital circuits.

2. Function block – Description

A function block is the asynchronous equivalent of
a digital combinatorial circuit [2]: it computes one or
more outputs from a set of input signals. Apart from
computing the desired function outputs based on the
function inputs, a function block must also be
transparent to handshaking that is implemented by its
surrounding latches. Function blocks can be strongly
indicating (SI) or weakly indicating (WI). In this work,
we confine ourselves to the SI timing regime. A strong
indication function block waits for all of its inputs to
become valid/empty, before it starts to compute and
produce valid/empty outputs. Besides it should possess
a valid combinatorial structure implying that it should
not have dangling inputs/outputs and feed-back paths.
 Circuits designed following the four-phase protocol
dual-rail (DR) approach are generally quasi-delay-
insensitive (QDI), since the class of delay-insensitive
(DI) circuits is rather small [3]. QDI is as robust as the
DI class to variable operating conditions and transistor
variations [4]. A circuit is QDI if and only if the
production rule set describing it is stable and non-
interfering [5]. It is also an attractive design style
mainly for the simple timing closure and analysis that
it permits. QDI circuit design assumes that both
operators and wires can take an arbitrary time (finite
and positive) to switch, except for certain wires that
form isochronic forks [6] (weakest compromise to
delay insensitivity). The isochronic fork assumption
has been defined by Martin in [6] as: “In an isochronic
fork, when a transition on one output is acknowledged
and thus completed, the transitions on all outputs are
acknowledged and thus completed”.

3. Related work

Various techniques proposed earlier are found to be
suitable for strongly indicating function block design
employing four-phase handshaking with DR encoding
[7] [8] [9] [10] [11] [12]. [7] and [8] require the
generation of all minterms (standard product terms),
which is O[2n] for ‘n’ inputs, resulting in an input
space explosion. For [8], decomposition of the multiple
input C-element is necessitated. This may result in
unacknowledged transitions (orphans) occurring within
the circuit making it QnDI, leading to violation of
speed-independence conditions.
 In [9], a self-timed function block design was
proposed, but decomposition procedures for the
monotonic implementation of the dual-rail
combinatorial network were not considered, without
which gate orphans cannot be avoided. This restricts
the scalability of this approach.
 Five different techniques for implementation of a
function block were discussed in [10]. However, many
of them correspond to the lowest level of design
abstraction (transistor level), though one of them is
suitable for implementation with standard cells. But
without specialized logic optimization techniques,
possibility exists for unacknowledged transitions,
which could pose potential hazards and probably lead
to circuit malfunction.
 A recent work [11] [12] dealing with the synthesis
of QDI circuits (using 2-input C-elements and 2-input
OR gates) described using DR or m-of-n codes,
encompasses a decomposition technique incorporating
elements of both conventional rectangle covering
based multilevel logic synthesis and speed-independent
synthesis. Though it is a versatile method, it also
suffers from the problem of input space explosion as
the entire input space is being covered with no room
for accommodating don’t care function set(s).
However, it has solved the difficulty faced by synthesis
tools such as Petrify [13] in implementing non-
regenerative logic functions by asynchronous style due
to the general purpose nature of the algorithms
employed therein and also owing to the large size and
concurrency inherent in combinational logic designs.

4. SI Function block design

The main issue addressed in this paper is to
efficiently realize any arbitrary combinational logic as
a QDI function block adhering to the SI timing regime
within the discipline of 4-phase handshaking with DR
encoding using standard library cells (including 2-input
and 3-input C-elements), avoiding the possibility of
orphan(s) creation while simultaneously satisfying the

monotonic cover constraint (MCC) [14]. This poses a
significant challenge for asynchronous logic design, as
in general, the area overhead is considerable in
comparison with conventional logic synthesis
solutions.

4.1. Dependency set, D(C) of a Boolean cube C
and Cubes Dependency Intersection set, CDI

The dependency set of a Boolean cube entails
enumeration of all the literals in their actual form that
the cube depends upon for its evaluation to a logic ‘1’.
For a cube C specified by ef’g’h, its D(C) = {e,f’,g’,h}.

The intersection of a cube dependency set with
another is characterized by the literals that are common
to both the cubes and is referred to by an intersection
set, CDI. For example, with D(C1) and D(C2) described
by {abc’d’} and {ab’c’g} respectively, the intersection
of their corresponding dependency sets is,
CDI[D(C1), D(C2)] = {a,c’} and its cardinality is 2.

4.2. Synthesis issues and Decomposition
constraints

• Obtain a two-level minimized solution for all the

multiple outputs (in positive phase). Similarly obtain a
two-level reduced solution for all the multiple outputs
(in negative phase). While the former corresponds to
the expressions for true outputs, the latter corresponds
to the equations for false outputs, after DR encoding.

• Consider the whole functionality as a global
combinatorial network with DR inputs and outputs.

• Transform the cover cubes of both the true and
false function output(s) expressions into disjoint cover
cubes. This is accomplished through redundancy
insertion using identity law and also by recursive
application of absorption and distributive axioms of
Boolean algebra.

• If any |CDI[D(C1), D(C2)]| = 0 and D(C1)/D(C2) is
not singleton; redundancy insertion through identity
axiom is followed by application of distributive and
absorption laws. Additional cube(s) get introduced.

• For k cubes in the network, perform cube
dependency intersection with each of the remaining
(k-1) cubes. Isolate the common literals by an
intermediate node and substitute into its parent nodes.

• However, this is permissible only when
HD(C1, C2) = 1 to preserve speed-independence, where
HD signifies the Hamming distance between the cubes.

• A cube in the transformed Boolean network is to
be chosen only once, also an intermediate node (cube)
resulting from the network should be chosen once,
whether for substitution or for covering.

• The covering cube(s) absorbs the covered cube. If
a cube covers more than one cube in the network, then
priority for a cube to be covered would be based upon
a maximal value of cover extent for the covered cube.

• A covered cube can be the covering cube for
another cube and a covered cube can be substituted
into as many covering cubes as possible apart from its
actual covering cube provided cover extent for other
covering cubes with respect to this cube is maximal.

• Uncovered smaller cubes with small |D(C)| (bound
defined) might exist in the final decomposed network.

• For cases otherwise, the entire input space has to
be explored to facilitate an optimal QDI realization.

5. Results, Discussion and an Illustration

Analysis has been carried out by considering some
IWLS benchmarks and few widely used digital
circuits.

Table 1. Comparison in terms of 2-input

gate count and transistor cost
Circuit and its
specification

Realization
style

2-input
gate count

Device
count

[9] 229 1262
[12] 224 672

c17
(5 I/p, 2 O/p)

Proposed 123 320
[9] 210 1078
[12] 166 660

newcwp
(4 I/p, 5 O/p)

Proposed 175 524
[9] 3750 22590
[12] 466 1396

newtag
(8 I/p, 1 O/p)

Proposed 146 356
[9] 234 1166
[12] 194 828

wim
(4 I/p, 7 O/p)

Proposed 178 542
[9] 149 614
[12] 177 670

newbyte
(5 I/p, 8 O/p)

Proposed 237 706
[9] 1697 10042
[12] 486 1460

con1
(7 I/p, 2 O/p)

Proposed 191 534
[9] 240 1258
[12] 342 1100

newtpla1
(10 I/p, 2 O/p)

Proposed 175 500
[9] 128 502
[12] 139 554

3:8 Decoder with
high Enable
(4 I/p, 8 O/p) Proposed 160 490

[9] 277 1158
[12] 396 1844

4:16 Decoder with
high Enable
(5 I/p, 16 O/p) Proposed 333 1058

[9] 602 2646
[12] 1285 6702

5:32 Decoder with
high Enable
(6 I/p, 32 O/p) Proposed 690 2290

[9] 160 806
[12] 152 576

4-bit Priority
Encoder
(4 I/p, 4 O/p) Proposed 79 228

[9] 4164 24662
[12] 3440 15712

8-bit Priority
Encoder
(8 I/p, 8 O/p) Proposed 184 562

Comparison has been carried out on the basis of
two-input gate equivalent count [9] and transistor cost
[11] [12] for logic realization and they are listed in
Table 1. On the basis of [11], the cost of a 3-input C-
element is equated to 12. However, an n-input OR gate
is decomposed into (n-1) OR2 gates to maintain a
common ground in theoretical estimation. On the
whole, for the circuit functionalities listed in Table 1,
the proposed realization enables reduction in 2-input
gate count and transistor cost in comparison with [9]
by 3.4× and 7.4× respectively; 1.8× and 3× with
respect to [12]. In case of newbyte, the device
reduction for other methods is attributed to a singleton
ON-set for all the function outputs and no sharing,
which is rare. For the 8-bit priority encoder, the
reduction in transistor cost is huge for the proposed
method (43× over [9] and 27× over [12] respectively).
Nevertheless, this excludes shared OR-logic extraction
and substitution.

The QDI implementation of a strong indication 2-
bit by 2-bit unsigned multiplier with inputs (b1, b0),
(a1, a0) and outputs (p3, p2, p1, p0) is portrayed by
figure 1, as an illustration of the proposed method.
Synchronization of the DR encoded inputs is achieved
through Block I1 (shown in figure 1). Decomposed
multi-level realization of the actual logic which strictly
satisfies the MCC is represented by Block I2. Block I3
ensures that the strong indication criterion is satisfied.

Table 2. Comparison of different methods for a

SI 2-bit unsigned multiplier implementation
Realization
style

2-input
gate count

Device
count

Critical path
elements

[9] 124 596 AND4, OR4,
OR3, CE2

[12] 152 576 2 CE2, 4 OR2

Proposed 162 382 CE3, 2 CE2,
OR4, OR2

6. Conclusion and Further work

This paper highlights a novel strategy for SI

function block design within the ambit of QDI with
DR encoding and 4-phase handshaking. The
decomposition technique is complex and decomposes
several gates in the entire implementation space
simultaneously. Enhancing the efficacy of the proposed
procedure, power/performance evaluation and focusing
on WI function block realization constitute further
work.

7. Acknowledgment

The authors acknowledge the support of EPSRC,

UK for the SEDATE project grant EP/D052238/1.

8. References

[1] SIA’s ITRS Report 2005, http://www.itrs.net
[2] J. Sparso and S. Furber (Eds.), Principles of
Asynchronous Circuit Design, Kluwer Academic, 2001.
[3] A.J. Martin, “The limitations to delay-insensitivity in
asynchronous circuits”, Proc. 6th MIT Conference, pp. 263-
278, MIT Press, 1980.
[4] T.M. Mak, “Is CMOS more reliable with scaling”, Proc.
IEEE International On-Line Testing Workshop, July 2002.
[5] R. Manohar and A.J. Martin, “Quasi-delay-insensitive
circuits are Turing-complete,” Caltech CS Technical Report,
CS-TR-95-11, 1995.
[6] A.J. Martin, “Compiling communicating processes into
delay-insensitive VLSI circuits”, Distributed Computing, vol.
1, no. 4, pp. 226-234, 1986.
[7] C.L. Seitz, in Introduction to VLSI Systems, Chapter 7 –
System Timing, Addison-Wesley, 1990.
[8] J. Sparso and J. Staunstrup, “Delay-insensitive multi-ring
structures”, Integration, the VLSI journal, vol. 15, no. 3, pp.
313-340, October 1993.

[9] I. David, et al., “An efficient implementation of Boolean
functions as self-timed circuits”, IEEE Trans. on Computers,
vol. 41, no. 1, pp. 2-11, January 1992.
[10] C.D. Nielsen, “Evaluation of function blocks for
asynchronous design”, Proc. ACM European DAC, pp. 454-
459, 1994.
[11] W.B. Toms and D.A. Edwards, “Efficient synthesis of
speed independent combinational logic circuits”, Proc. Asia
South-Pacific DAC, pp. 1022-1026, 2005.
[12] W.B. Toms, “Synthesis of Quasi-Delay-Insensitive
Datapath Circuits”, PhD thesis, Univ. of Manchester, 2006.
[13] J. Cortadella, et al., “Petrify: A tool for manipulating
concurrent specifications and synthesis of asynchronous
controllers”, IEICE Trans. on Information and Systems, vol.
E-80D, no. 3, pp. 315-325, 1997.
[14] A. Kondratyev, et al., “Hazard-free implementation of
speed-independent circuits”, IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 17, no. 9, pp. 749-771,
September 1998.

 Figure 1. Proposed QDI implementation of the SI 2-bit by 2-bit unsigned multiplier

