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Abstract 
 

This paper presents a technique for efficient gate-
level realization of strongly indicating function blocks. 
For the function block implementing the desired logic, 
the input state space explodes as it expands 
exponentially for even a gradual increase in the 
number of inputs. In this context, a novel design 
methodology for realizing non-regenerative logic as a 
function block, under the discipline of quasi-delay-
insensitivity with four-phase handshaking and dual-
rail encoding, which adheres to the strongly indicating 
timing regime has been discussed. Approximately 3 
times reduction in transistor cost has been achieved by 
the proposed method in comparison with a recent 
work, based on analysis with benchmarks and widely 
used digital circuit functionality; in particular cases 
the savings are remarkable.   
 
1. Introduction 
 

Digital logic design has been dominated by 
synchronous solutions for the past several decades. The 
renewal of interest in and requirement of asynchronous 
design is largely motivated by the need to overcome 
the problems associated with clocking. Future deep 
sub-micron technologies would be characterized by 
irregular parameter variations (voltage and temperature 
variations, process changes and noise), which could 
make asynchronous design an attractive solution. It is 
expected that parametric variance of device delay 
might reach 35% by 2020 [1]. Since asynchronous 
circuits are self-timed, they tend to absorb the 
deviations of device characteristics.  
     Unlike their synchronous counterparts, 
asynchronous circuits dispense with the need for clock 
synchronization and so they must operate correctly 
independent of any delays in circuit elements. The vast 
majority of existing design automation flows target 
synchronous circuits. Even when asynchronous designs 
leverage existing tool flows, they introduce large area 

overheads. Hence asynchronous function block 
implementation requires special techniques compared 
to the synthesis of non-regenerative (combinational) 
logic for synchronous digital circuits. 
 
2. Function block – Description  
 

A function block is the asynchronous equivalent of 
a digital combinatorial circuit [2]: it computes one or 
more outputs from a set of input signals. Apart from 
computing the desired function outputs based on the 
function inputs, a function block must also be 
transparent to handshaking that is implemented by its 
surrounding latches. Function blocks can be strongly 
indicating (SI) or weakly indicating (WI). In this work, 
we confine ourselves to the SI timing regime. A strong 
indication function block waits for all of its inputs to 
become valid/empty, before it starts to compute and 
produce valid/empty outputs. Besides it should possess 
a valid combinatorial structure implying that it should 
not have dangling inputs/outputs and feed-back paths. 
     Circuits designed following the four-phase protocol 
dual-rail (DR) approach are generally quasi-delay-
insensitive (QDI), since the class of delay-insensitive 
(DI) circuits is rather small [3]. QDI is as robust as the 
DI class to variable operating conditions and transistor 
variations [4]. A circuit is QDI if and only if the 
production rule set describing it is stable and non-
interfering [5]. It is also an attractive design style 
mainly for the simple timing closure and analysis that 
it permits. QDI circuit design assumes that both 
operators and wires can take an arbitrary time (finite 
and positive) to switch, except for certain wires that 
form isochronic forks [6] (weakest compromise to 
delay insensitivity). The isochronic fork assumption 
has been defined by Martin in [6] as: “In an isochronic 
fork, when a transition on one output is acknowledged 
and thus completed, the transitions on all outputs are 
acknowledged and thus completed”.  



3. Related work 
 

Various techniques proposed earlier are found to be 
suitable for strongly indicating function block design 
employing four-phase handshaking with DR encoding 
[7] [8] [9] [10] [11] [12]. [7] and [8] require the 
generation of all minterms (standard product terms), 
which is O[2n] for ‘n’ inputs, resulting in an input 
space explosion. For [8], decomposition of the multiple 
input C-element is necessitated. This may result in 
unacknowledged transitions (orphans) occurring within 
the circuit making it QnDI, leading to violation of 
speed-independence conditions.       
     In [9], a self-timed function block design was 
proposed, but decomposition procedures for the 
monotonic implementation of the dual-rail 
combinatorial network were not considered, without 
which gate orphans cannot be avoided. This restricts 
the scalability of this approach.  
     Five different techniques for implementation of a 
function block were discussed in [10]. However, many 
of them correspond to the lowest level of design 
abstraction (transistor level), though one of them is 
suitable for implementation with standard cells. But 
without specialized logic optimization techniques, 
possibility exists for unacknowledged transitions, 
which could pose potential hazards and probably lead 
to circuit malfunction.  
     A recent work [11] [12] dealing with the synthesis 
of QDI circuits (using 2-input C-elements and 2-input 
OR gates) described using DR or m-of-n codes, 
encompasses a decomposition technique incorporating 
elements of both conventional rectangle covering 
based multilevel logic synthesis and speed-independent 
synthesis. Though it is a versatile method, it also 
suffers from the problem of input space explosion as 
the entire input space is being covered with no room 
for accommodating don’t care function set(s). 
However, it has solved the difficulty faced by synthesis 
tools such as Petrify [13] in implementing non-
regenerative logic functions by asynchronous style due 
to the general purpose nature of the algorithms 
employed therein and also owing to the large size and 
concurrency inherent in combinational logic designs.       
 
4. SI Function block design 
 

The main issue addressed in this paper is to 
efficiently realize any arbitrary combinational logic as 
a QDI function block adhering to the SI timing regime 
within the discipline of 4-phase handshaking with DR 
encoding using standard library cells (including 2-input 
and 3-input C-elements), avoiding the possibility of 
orphan(s) creation while simultaneously satisfying the 

monotonic cover constraint (MCC) [14]. This poses a 
significant challenge for asynchronous logic design, as 
in general, the area overhead is considerable in 
comparison with conventional logic synthesis 
solutions. 

 
4.1. Dependency set, D(C) of a Boolean cube C 
and Cubes Dependency Intersection set, CDI  
 

The dependency set of a Boolean cube entails 
enumeration of all the literals in their actual form that 
the cube depends upon for its evaluation to a logic ‘1’. 
For a cube C specified by ef’g’h, its D(C) = {e,f’,g’,h}. 

The intersection of a cube dependency set with 
another is characterized by the literals that are common 
to both the cubes and is referred to by an intersection 
set, CDI. For example, with D(C1) and D(C2) described 
by {abc’d’} and {ab’c’g} respectively, the intersection 
of their corresponding dependency sets is,     
CDI[D(C1), D(C2)] = {a,c’} and its cardinality is 2.  

 
4.2. Synthesis issues and Decomposition 
constraints 

 
• Obtain a two-level minimized solution for all the 

multiple outputs (in positive phase). Similarly obtain a 
two-level reduced solution for all the multiple outputs 
(in negative phase). While the former corresponds to 
the expressions for true outputs, the latter corresponds 
to the equations for false outputs, after DR encoding.  

• Consider the whole functionality as a global 
combinatorial network with DR inputs and outputs.  

• Transform the cover cubes of both the true and 
false function output(s) expressions into disjoint cover 
cubes. This is accomplished through redundancy 
insertion using identity law and also by recursive 
application of absorption and distributive axioms of 
Boolean algebra. 

• If any |CDI[D(C1), D(C2)]| = 0 and D(C1)/D(C2) is 
not singleton; redundancy insertion through identity 
axiom is followed by application of distributive and 
absorption laws. Additional cube(s) get introduced.  

• For k cubes in the network, perform cube 
dependency intersection with each of the remaining   
(k-1) cubes. Isolate the common literals by an 
intermediate node and substitute into its parent nodes. 

• However, this is permissible only when       
HD(C1, C2) = 1 to preserve speed-independence, where 
HD signifies the Hamming distance between the cubes.   

• A cube in the transformed Boolean network is to 
be chosen only once, also an intermediate node (cube) 
resulting from the network should be chosen once, 
whether for substitution or for covering. 



• The covering cube(s) absorbs the covered cube. If 
a cube covers more than one cube in the network, then 
priority for a cube to be covered would be based upon 
a maximal value of cover extent for the covered cube. 

• A covered cube can be the covering cube for 
another cube and a covered cube can be substituted 
into as many covering cubes as possible apart from its 
actual covering cube provided cover extent for other 
covering cubes with respect to this cube is maximal. 

• Uncovered smaller cubes with small |D(C)| (bound 
defined) might exist in the final decomposed network. 

• For cases otherwise, the entire input space has to 
be explored to facilitate an optimal QDI realization. 
 
5. Results, Discussion and an Illustration 
 

Analysis has been carried out by considering some 
IWLS benchmarks and few widely used digital 
circuits.  

 
Table 1. Comparison in terms of 2-input 

gate count and transistor cost 
Circuit and its 
specification 

Realization 
style 

2-input 
gate count 

Device 
count 

[9] 229 1262 
[12] 224 672 

c17 
(5 I/p, 2 O/p) 

Proposed 123 320 
[9] 210 1078 
[12] 166 660 

newcwp 
(4 I/p, 5 O/p) 

Proposed 175 524 
[9] 3750 22590 
[12] 466 1396 

newtag 
(8 I/p, 1 O/p) 

Proposed 146 356 
[9] 234 1166 
[12] 194 828 

wim 
(4 I/p, 7 O/p) 

Proposed 178 542 
[9] 149 614 
[12] 177 670 

newbyte 
(5 I/p, 8 O/p) 

Proposed 237 706 
[9] 1697 10042 
[12] 486 1460 

con1 
(7 I/p, 2 O/p) 

Proposed 191 534 
[9] 240 1258 
[12] 342 1100 

newtpla1 
(10 I/p, 2 O/p) 

Proposed 175 500 
[9] 128 502 
[12] 139 554 

3:8 Decoder with 
high Enable 
(4 I/p, 8 O/p) Proposed 160 490 

[9] 277 1158 
[12] 396 1844 

4:16 Decoder with 
high Enable 
(5 I/p, 16 O/p) Proposed 333 1058 

[9] 602 2646 
[12] 1285 6702 

5:32 Decoder with 
high Enable 
(6 I/p, 32 O/p) Proposed 690 2290 

[9] 160 806 
[12] 152 576 

4-bit Priority 
Encoder 
(4 I/p, 4 O/p) Proposed 79 228 

[9] 4164 24662 
[12] 3440 15712 

8-bit Priority 
Encoder 
(8 I/p, 8 O/p) Proposed 184 562 

Comparison has been carried out on the basis of 
two-input gate equivalent count [9] and transistor cost 
[11] [12] for logic realization and they are listed in 
Table 1. On the basis of [11], the cost of a 3-input C-
element is equated to 12. However, an n-input OR gate 
is decomposed into (n-1) OR2 gates to maintain a 
common ground in theoretical estimation. On the 
whole, for the circuit functionalities listed in Table 1, 
the proposed realization enables reduction in 2-input 
gate count and transistor cost in comparison with [9] 
by 3.4× and 7.4× respectively; 1.8× and 3× with 
respect to [12]. In case of newbyte, the device 
reduction for other methods is attributed to a singleton 
ON-set for all the function outputs and no sharing, 
which is rare. For the 8-bit priority encoder, the 
reduction in transistor cost is huge for the proposed 
method (43× over [9] and 27× over [12] respectively). 
Nevertheless, this excludes shared OR-logic extraction 
and substitution.  

The QDI implementation of a strong indication 2-
bit by 2-bit unsigned multiplier with inputs (b1, b0),     
(a1, a0) and outputs (p3, p2, p1, p0) is portrayed by 
figure 1, as an illustration of the proposed method. 
Synchronization of the DR encoded inputs is achieved 
through Block I1 (shown in figure 1). Decomposed 
multi-level realization of the actual logic which strictly 
satisfies the MCC is represented by Block I2. Block I3 
ensures that the strong indication criterion is satisfied. 
 
Table 2. Comparison of different methods for a 

SI 2-bit unsigned multiplier implementation 
Realization 
style 

2-input 
gate count 

Device 
count 

Critical path 
elements 

[9] 124 596 AND4, OR4, 
OR3, CE2 

[12] 152 576 2 CE2, 4 OR2 

Proposed 162 382 CE3, 2 CE2, 
OR4, OR2 

 
6. Conclusion and Further work 

 
This paper highlights a novel strategy for SI 

function block design within the ambit of QDI with 
DR encoding and 4-phase handshaking. The 
decomposition technique is complex and decomposes 
several gates in the entire implementation space 
simultaneously. Enhancing the efficacy of the proposed 
procedure, power/performance evaluation and focusing 
on WI function block realization constitute further 
work.  
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    Figure 1. Proposed QDI implementation of the SI 2-bit by 2-bit unsigned multiplier


