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Abstract 

 
A novel synthesis method for self-timed realization 

of arbitrary combinational logic functions is presented 
in this paper. The cost of self-timed implementation of 
a large number of conventional combinatorial 
benchmarks is provided. A new self-timed system 
configuration is also proposed in support of the 
synthesis heuristic that generally favors weakly 
indicating realizations of combinational logic. The 
proposed two-level synthesis technique forms a good 
starting point for the multi-level synthesis of weak-
indication circuits and certain preliminary insights in 
this regard are highlighted.   
 
1. Introduction 

 
‘Reliability’ has been labeled as one of the five 

cross-cutting design challenges in the International 
Technology Roadmap for Semiconductors 2008 update 
on design [1]. This drives home the point that 
‘robustness’ is becoming an increasing priority for 
digital logic design in deep submicron technologies. In 
this scenario, self-timed design attracts increasing 
interest, as it can inherently tolerate fluctuations in 
process parameters, temperature and noise [2], whilst 
guaranteeing correct operation regardless of variations 
in design components or signal wires. In addition, it 
features greater modularity. In this perspective, this 
paper deals with research undertaken in the domain of 
self-timed combinational logic and presents results 
corresponding to a new two-level synthesis strategy. 
The ultimate objective is to arrive at a novel, 
practically feasible, technology-independent multi-level 
synthesis strategy for compact weak-indication 
realization of any combinational logic specification.    

The remaining portion of this paper is organized as 
follows. Section 2 describes a self-timed logic block 
and gives background information in the context of this 
paper. A brief overview of well-known synthesis 
methods for robust asynchronous logic realization, 

based on the delay-insensitive data encoding 
convention (mostly dual-rail) is provided in Section 3. 
Definitions of some terminologies are given in Section 
4. The proposed heuristic to derive minimum disjoint 
sum-of-products expression from a reduced sum-of-
products expression is elucidated in Section 5, and its 
efficiency vis-à-vis other methods is studied on the 
basis of some combinational benchmarks. The novel 
heuristic to obtain minimum orthogonal sum-of-
products format corresponding to an arbitrary 
combinational logic specification, on the basis of dual-
rail encoding, is discussed in Section 6. Results 
corresponding to the self-timed realization of many 
combinatorial benchmarks are also given in this 
section. The new self-timed system architecture that 
benefits the above synthesis mechanism is presented in 
Section 7. Finally, we make the concluding remarks in 
Section 8. Initial insights regarding extension of the 
proposed two-level heuristic to multiple levels are also 
mentioned therein.  
 
2. Self-timed logic block 

 
A self-timed logic block is also referred to as a 

function block and represents the robust asynchronous 
equivalent of a traditional synchronous combinational 
logic circuit. In addition to realizing the requisite 
functionality, the self-timed logic block has to be 
transparent to the handshaking, as implemented by its 
surrounding latches. Besides, there should not be any 
dangling inputs or outputs within the function block.  

A self-timed logic block is entrusted with the 
responsibility of indicating (acknowledging) the 
completion of the computation on all its intermediate 
nodes. With respect to the manner of indication, such 
logic blocks are either classified as strongly indicating 
or weakly indicating. A depiction of strong and weak-
indication timing models, as specified by Seitz [3], is 
shown in figure 1. In essence, strongly indicating logic 
blocks wait for the arrival of all the inputs (whether 
valid or spacer data) before they start to produce any 



output (valid or spacer). On the other hand, a weakly 
indicating logic block is allowed to produce a subset of 
the outputs based on a subset of the inputs. All inputs 
must become valid before the last output can become 
valid; the last output must not become invalid until all 
of the inputs become empty. It was also shown in [3] 
that a legal interconnection of strong or weak-
indication logic blocks is permissible.     
 

 

Figure 1: Portraying strong and weak-indication 
 

Delay-insensitive data encoding and return-to-zero 
handshaking (4-phase handshaking) constitutes a 
widely preferred robust signaling convention for self-
timed designs. With dual-rail encoding, a data wire d is 
represented using two rails: d0 and d1. A transition on 
the former indicates the transmission of a zero, while a 
transition on the latter indicates the transmission of a 
one. The condition when both d0 and d1 are zeroes 
signifies the spacer (empty) state and all the data wires 
assume this state between two valid data states. d0 and 
d1 are not allowed to be high simultaneously, as the 
coding scheme is unordered. The request signal from 
the sender is embedded within the encoded data wires.     

 
 

 
Figure 2: Depiction of delay-insensitive data encoding 

and 4-phase handshaking 
 

The return-to-zero handshake protocol is explained 
through the following steps:  
i. The dual-rail data bus is initially in the spacer 

state. The sender transmits the codeword (valid data). 
This results in 'low' to 'high' transitions on the bus 
wires (i.e. any one of the rails of all the dual-rail 
signals is assigned a logic 'high' state), which 
correspond to non-zero bits of the codeword.  

ii. After the receiver receives the codeword, it drives 
the ackout (ackin) wire 'high' ('low').  

iii. The sender waits for the ackin to go 'low' and then 
resets the data bus (i.e. it is driven to the spacer state).  

iv. After an unbounded, but finite (positive) amount 
of time, the receiver drives the ackout (ackin) wire 
'low' ('high'). A single transaction is now said to be 
complete and the system is ready to proceed with the 
next transaction.  

 
3. Review of self-timed design methods 

 
The unorthodox methods employed to synthesize 

self-timed combinatorial logic usually incur substantial 
area overhead and are beset with the problem of input 
space explosion, which poses an exponential 
complexity of O(2n) with the number of primary inputs 
of O(n). Here, n denotes the number of concurrent 
single-rail inputs. A self-timed logic block realization 
typically satisfies the acknowledgement property and 
the unique-successor-set property [4]. The 
acknowledgement property specifies that every 
transition on a gate output node, excepting the primary 
outputs, should be accompanied by a successive 
transition on another gate output in the subsequent 
stage. The unique-successor-set property stipulates that 
the monotonic cover condition [5], which ensures 
hazard-free implementation of speed-independent (SI) 
circuits, be incorporated into the description of the 
logic functionality. In simple terms, the monotonic 
cover constraint requires that only one product term in 
a sum-of-products implementation is allowed to assume 
a logic 'high' at any time in case of either set (true 
output) or reset (false output) functions. 

In general, the cover constraint entails the 
enumeration of all possible distinct input combinations. 
Therefore, many indicating logic realization schemes 
(especially strong-indication methods) suffer from 
large area overheads and this has usually restricted self-
timed logic implementations to those with fewer inputs. 
Self-timed implementation of larger combinational 
circuits could incur at least three times the area penalty 
of a conventional synchronous realization. However, 
many approaches have been proposed (especially on 



the basis of dual-rail encoding) and they differ in the 
way of dealing with this problem by either:  

i. Assuming the presence of the entire state 
space without mention of any scheme for SI 
decomposition [3] [6] or  

ii. Confining themselves to only full custom 
solutions for smaller functions [7] or 

iii. Circumventing this problem considerably by 
usually relying upon de-synchronization, with 
the additional provision of availability of full 
custom library gates as part of a standard cell 
library [8] [9] [10] [11] or   

iv. Performing SI logic decomposition 
with/without consideration of the entire input 
state space [12] [13] 

Among these, variants of the third approach have 
been predominant and facilitate weakly indicating 
solutions while being technology-dependent. They have 
their roots in the DIMS approach [6] and the dual-rail 
combinational logic implementation style [14], which 
do not synthesize self-timed circuits based on 
specifications such as communicating handshake 
processes or signal transition graphs. Instead, they rely 
upon synchronous CAD tools for initial synthesis and 
then resort to replacement of every gate with a dual-rail 
encoded gate pair in a template based fashion that are 
subsequently mapped using NULL convention logic 
(NCL) operators. These operators are developed on the 
basis of threshold logic and are made available as 
custom elements of a standard cell library.  

In contrast, we envisage a new technology-
independent multi-level self-timed synthesis technique 
that is different from any of the NCL based schemes. 
Towards this end, a preliminary (two-level) synthesis 
procedure is proposed demonstrating its feasibility for 
synthesizing combinational functions of any size as 
self-timed circuits without exploding the input space. In 
fact, this is cumbersome with approaches (i), (ii) or (iv) 
mentioned above.    
 
4. Preliminaries 

 
Some definitions are first stated in this section to 

help with further discussion.  
 
4.1. Definition 1. A literal is a symbol referring to a 
variable (x) or its complement (x’). In case of dual-rail 
encoding, the notion of a literal is used to refer to either 
the true-bit (x1) or the false-bit (x0) representation of a 
variable (x) respectively.  

4.2. Definition 2. A cube is defined as a logical 
product1 (conjunction) of different literals, where a 
variable appears in only one of its symbolic notations. 
For example, a’b, abc’d are single-rail cubes. With 
dual-rail encoding, a cube specifies a logical 
conjunction of the true-bits or false-bits of different 
variables. a0b1 and a1b1c0d1 are the respective dual-
rail encoded product term equivalents of the single-rail 
cubes mentioned earlier.  
 
4.3. Definition 3. A Boolean function, f, is a mapping 
of type f: {0,1}n → {0,1,d}, where d denotes a don't 
care condition. If d does not exist, then the function f is 
said to be completely specified or two-valued, 
otherwise it is called incompletely specified or ternary. 
Each of the 2n nodes in the Boolean space corresponds 
to a canonical product term (minterm). The ON-set, 
OFF-set and DC-set of f correspond to those minterms 
that are mapped to 1, 0 and d respectively.  
 
4.4. Definition 4. A cover is a set of irredundant 
product terms (prime implicants) pertaining to a logic 
specification and the cardinality of a cover is the 
number of essential products comprising the cover.   
 
4.5. Definition 5. A sum-of-products (SOP) form 
consists of a disjunction of product terms, each of 
which involves a conjunction of literals. If the number 
of terms in a SOP form is the least possible, then the 
SOP is referred to as minimum SOP. 
 
5. Disjoint sum-of-products form 
 

A Boolean equation is said to be in disjoint SOP 
(DSOP) form, if it is described by a logical sum of 
product terms that are all disjoint [15], i.e. no two 
product terms cover a common minterm when 
expanded. A DSOP form with the least number of 
product terms is known as minimum DSOP form. 
While SOP minimization can be likened to a set 
covering problem, DSOP minimization can be likened 
to the problem of finding a minimum disjoint cover, the 
exact solution of which is NP-hard [15]. For example, 
the number of irredundant product terms of the SOP 
expression of an Achilles’ heel function [15] is given 
by O(n/2), while the number of essential products 
constituting its DSOP expression is specified by 
O(2n/2–1), where ‘n’ represents the number of distinct 
primary inputs. DSOPs have been traditionally used in 

                                                           
1 The Muller C-element typically serves as the conjunction operator. 

It outputs a high (low) when all its inputs are high (low), 
otherwise it retains its state. It is an AND gate for transitions.   



several applications in CAD areas, for example, 
calculation of spectra of Boolean functions [16] or as a 
starting point for the minimization of exclusive-OR 
SOP logic [15]. This in turn forms the backbone of 
synthesis schemes for reversible logic circuits [17] that 
have applications related to the field of quantum 
computing. It has been found that DSOP solutions 
directly generated by Espresso are generally far from 
the optimum, especially in case of functions with 
several inputs because it considers group minimization 
of all the function outputs. An alternative approach 
would be to consider deriving DSOP solutions for the 
combinational function outputs on an individual basis 
on the basis of their SOP forms using heuristics [18] – 
[22], where the reduced SOP form of a non-minimized 
logic function can be obtained through multi-output 
minimization using a standard two-level logic 
minimizer: Espresso. A majority of the heuristics 
proposed earlier, following this strategy, were found to 
yield better solutions for many case studies in 
comparison with the DSOP solutions directly generated 
using Espresso.  
 
5.1. Proposed heuristic 

The heuristic proposed to derive DSOP format from 
a SOP format is explained below:  

§ Step 1: Obtain the SOP form of a logic function. 
§ Step 2: Compare each cube with every other cube 
in the SOP form to check whether they are mutually 
disjoint. If and only if each cube does not overlap 
with every other cube in the MSOP form, then go to 
Step 11, else proceed with Step 3. 
§ Step 3: Enumerate all the overlapping pairs of 
cubes that have a non-disjoint support. If only pairs of 
cubes with disjoint support exist, go to Step 8, else 
proceed with Step 4.  
§ Step 4: From among the overlapping pairs of 
cubes that feature a non-disjoint support, choose that 
pair of cubes which comprises the highest degree of 
logic sharing among its constituents. If many such 
pairs of cubes exist, which exhibit a similar highest 
degree of commonality then an arbitrary choice is 
resorted to. 
§ Step 5: Use the distributive axiom to extract the 
kernel. Apply the converse of the absorption axiom of 
Boolean algebra to transform the kernel comprising 
overlapping cubes with disjoint support into non-
overlapping cubes with a non-disjoint support. Apply 
the distributive property of Boolean algebra to re-
enumerate the product terms.  
§ Step 6: Check whether any cube contains any 
other cube in the function; if so, the covering cube is 
made to absorb the covered cube. Also, check 

whether any cube is duplicated in the logic function. 
If so, the redundancy is eliminated by applying the 
idempotency axiom.  
§ Step 7: Go to Step 2.   
§ Step 8: Consider any two cubes with a disjoint 
support, which also have the least support set 
cardinalities. If many choices result, then a random 
selection is made. Between such a pair of cubes, the 
identity axiom of Boolean algebra is applied to any of 
the pair of cubes considered. This results in a cube 
expansion by making use of the distributive axiom.  
§ Step 9: If any cube is found to cover any other 
existing cube in the function, the covered cube is 
discarded and the covering cube is alone retained. 
Logic duplication is eliminated using the idempotent 
law of Boolean algebra.   
§ Step 10: Return to Step 2. 
§ Step 11: Terminate the routine as the desired 
DSOP solution has been obtained.  

The logical correctness of the resulting DSOP 
solution is guaranteed by the Boolean axioms used, 
which are well-established and proven properties. The 
functional correctness of the DSOP solution is ensured 
by comparison of each cube with every other cube 
forming the cover of each function output to make sure 
that they do not overlap. The combinational 
equivalence of a SOP form and its corresponding 
DSOP form is confirmed through the ‘Dverify’ option 
of Espresso. The cost of the DSOP solution is 
represented by the count of all the unique input cubes, 
some/all of which may eventually be found to be shared 
between the various outputs.  

 
5.2. Illustration and results  

The DSOP heuristic described above has been 
implemented in Java and has been used to generate 
results for some combinatorial benchmarks specified in 
PLA format. Minimum SOP and DSOP forms of the 
benchmark, newtag, obtained using Espresso, are 
represented by means of the cube-variable matrices of 
figures 3 and 4 respectively for illustration purpose. 
The benchmark function has a single output and its 
support set is composed of 8 elements. The cube-
variable matrix is an O(m × n) matrix, where ‘m’ 
specifies the number of irredundant cubes of the 
function (rows of the matrix) and ‘n’ refers to the 
number of unique input support variables of the 
function (columns of the matrix). A ‘1’ entry at the 
intersection of a particular row and column index (amn) 
implies the existence of a variable in its normal form, 
while ‘0’ and ‘-’ entries signify the inverted and don’t 
care states of the variable respectively. The conjunction 



of all the variables in a row, appearing in either their 
normal or complementary forms, describes the cube 
corresponding to that row of the matrix. The logic 
function is expressed as F = ∑Ci, where i = 1,…,m; i.e. 
the summation of m non-redundant cubes that may 
have a maximum dimension of n. In a DSOP cube-
variable matrix, apq ≠ arq, for any pair (p, r) of m with 
respect to at least a column q of the matrix, where p ≠ r 
and q signifying a column index.  

 

 

Figure 3: Cube-variable matrix of SOP form of 
newtag, based on Espresso 

 

 
Figure 4: Cube-variable matrix of DSOP form of 

newtag, based on Espresso 
 
Figure 5 depicts the cube-variable matrix of the 

DSOP form of the benchmark newtag corresponding to 
our proposed heuristic. It can be inferred from this 

example that the cost (number of irredundant cubes) of 
our DSOP heuristic is similar to the cost of the SOP 
solution of Espresso. Thus, our DSOP procedure has 
effected reduction in the number of essential non-
overlapping product terms by 43% when compared 
with the DSOP solution of Espresso. 

 

 

Figure 5: Cube-variable matrix of DSOP form of 
newtag, corresponding to the proposed heuristic 

 
A set of combinational functions of the MCNC 

benchmark suite were considered to evaluate the 
potential of the proposed heuristic vis-à-vis the DSOP 
solutions rendered by other methods. These are shown 
in Table 1. The ‘dash’ in certain positions of the Table 
indicates the unavailability of a result for the 
benchmark corresponding to a specific method in the 
literature. The optimal solution for a benchmark based 
on a particular method(s) is highlighted in ‘bold-face’.  

From Table 1, it can be observed that the proposed 
heuristic has facilitated optimal/near-optimal solutions 
for a majority of problems. Among the logic functions, 
alu4, cordic, max1024 and x7dn are relatively bigger 
specifications, with alu4, max1024 and x7dn having 
been classified as hard problems in the original 
Espresso benchmark suite. In comparison with the 
DSOP solution rendered by Espresso, the proposed 
method reports a substantial reduction in the number of 
essential products by 65%. Compared to the SOP 
expression generated using Espresso, the proposed 
DSOP heuristic based solution is found to be greater by 
3.3×, while the DSOP solution of Espresso is found to 
be more expensive than its logically equivalent SOP 
format by 9.5×. With respect to the bigger 
specifications, the proposed method enables a 
reduction in the number of essential DSOP terms by 
15.5% compared to the best solution rendered by the 
other heuristics. When considering all the benchmarks, 
the proposed heuristic facilitates a cost reduction of the 
order of 14.3%, on a mean basis.  



 

 
6. Orthogonal sum-of-products form 

 
The orthogonal sum-of-products (OSOP) form [14] 

corresponding to a self-timed logic block output 
consists of product terms that are all orthogonal to each 
other, i.e. the cubes do not overlap. Every cube is 
orthogonal to every other cube in an OSOP expression 
and therefore it would inherently satisfy the monotonic 
cover constraint. While the DSOP form [15] is also 
composed of non-overlapping product terms, the OSOP 
form is distinguished in that it comprises encoded 
outputs described using encoded inputs. The OSOP 
form with the least number of product terms can be 
referred to as minimum OSOP form.  

 
6.1. Proposed synthesis strategy  

The problem of deducing the efficient OSOP form 
for a dual-rail encoded function block (inclusive of 
both its ‘true’ and ‘false’ outputs) can be narrowed 
down to finding a minimum DSOP solution for the 
outputs and their complements of a combinational logic 
specification. Here, the function block represents the 
dual-rail encoded equivalent of an original synchronous 
combinational logic description. This is possible 
because the output and its complement of a 
combinational circuit can be identified as the true and 
false outputs of a dual-rail encoded self-timed 
equivalent with a straightforward literal replacement, as 
is the case with DIMS [6] or NCL based approaches 
[8] – [11]. Thus the OSOP synthesis scheme relies 
upon the DSOP synthesis procedure as its back-end.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In view of this, it can be concluded that the efficacy 
of the DSOP heuristic could have a direct bearing on 
the effectiveness of the resulting OSOP solutions for a 
self-timed logic block construction. The ON-sets and 
DC-sets of the logic function outputs and their 
corresponding OFF-sets are considered separately so as 
to obtain the SOP forms for the combinational function 
outputs and their complements. The corresponding 
DSOP expressions are then derived for the function 
outputs and their complements in parallel. However, 
the DSOP procedure purely corresponds to 
synchronous logic. Therefore, the OSOP form of a self-
timed logic block is obtained by invoking the DSOP 
heuristic for both the ON and OFF-sets of a 
combinatorial function specification simultaneously, 
followed by subsequent encoding (here, dual-rail 
encoding) of the inputs and outputs. The OSOP 
heuristic has also been implemented in Java on the 
basis of the DSOP synthesis method.  
 
6.2. Results 

Asynchronous dual-rail equivalents of a number of 
combinatorial benchmark functions were considered to 
estimate the cost of their OSOP forms. The OSOP cost 
shown in column 4 of Table 2 reflects the number of 
unique cubes. It can be seen that, on an average, the 
OSOP heuristic has resulted in solutions, which 
encompass approximately 21% logic (cubes) sharing, 
but could be higher in specific cases. For example, in 
case of ex5, an 83% reduction in the number of cubes 
has been achieved through sharing of common logic.  

Table 1: Cost of DSOP form of some combinatorial benchmarks corresponding to different heuristics 
 

Benchmark Espresso [17] [18] [19] [20] [21] Proposed 
5xp1 62 70 - - 82 79 48 
alu4 3551 - - - 1545 1372 1206 
b12 654 57 - - 60 60 62 
clip 359 162 - - 262 212 167 
cordic 22228 - - - 19763 8311 6687 
max1024 776 - - - 444 - 362 
misex1 18 15 - - 34 34 15 
misex2 29 28 - - 30 29 28 
mlp4 206 - - - 203 - 155 
rd53 31 31 - - 35 35 31 
rd73 127 127 - - 147 147 127 
rd84 255 - - - 294 294 255 
x7dn 1697 - - - 1091 - 1228 
xor5 16 - 16 16 16 16 16 
Z9sym 190 - 186 148 - - 171 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Cost of self-timed realization of combinational benchmark functions 
 

 
Function block  

 

 # Inputs in 
dual-rail 
format 

# Outputs 
in dual-rail 

format 

# Orthogonal product terms Runtime  
(Minutes: 
Seconds) After sharing Before sharing 

9sym 18 2 251 251 0:2 
al2 32 94 310 472 0:0 
alu4 28 16 2711 2803 3:16 
amd 28 48 358 613 0:0 
apex3 108 100 1351 2504 0:9 
b3 64 40 1298 1507 1:7 
bcd 52 76 6831 7942 10:15 
chkn 58 14 523 526 0:17 
cps 48 218 3390 5001 0:36 
duke2 44 58 705 955 0:1 
e64 130 130 2376 3033 3:55 
ex4 256 56 1062 1062 0:5 
ex5 16 126 346 2054 0:2 
exep 60 126 3177 3591 0:27 
ibm 96 34 1365 1366 0:14 
in3 70 58 496 813 0:1 
in4 64 40 1396 1673 1:11 
intb 60 28 2320 2320 3:10 
jbp 72 114 636 869 0:1 
luc 16 54 175 496 0:0 
max1024 20 12 663 826 0:6 
misex3 28 28 3826 4422 3:5 
misg 112 46 189 192 0:0 
mish 188 86 163 173 0:0 
misj 70 28 58 69 0:0 
mlp4 16 16 319 403 0:0 
newapla 24 20 82 94 0:0 
newill 16 2 19 19 0:0 
opa 34 138 572 1464 0:2 
pdc 32 80 1358 1740 0:4 
ryy6 32 2 155 155 0:4 
sao2 20 8 202 258 0:0 
shift 38 32 200 212 0:0 
soar 166 188 1269 1566 0:3 
spla 32 92 1577 2209 0:7 
sym10 20 2 478 478 0:24 
t1 42 46 384 501 0:0 
t481 32 2 2142 2142 26:23 
ti 94 144 1388 2500 0:5 
ts10 44 32 272 512 0:0 
vg2 50 16 632 647 0:6 
x6dn 78 10 432 603 0:5 
x7dn 132 30 3711 3752 2:1 
Z9sym 18 2 243 243 0:1 

 



The benchmarks highlighted in ‘bold-face’ in Table 
2 correspond to dual-rail asynchronous equivalents of 
hard combinational logic specifications. The synthesis 
time corresponds to the heuristic running on an Intel 
Core2 Duo processor at 2.4GHz under Windows XP 
with a 1GB RAM. In case of self-timed logic blocks 
that comprise only two encoded outputs, for example, 
9sym, newill, ryy6, sym10, t481 and Z9sym, it should 
be obvious that hardly any logic sharing is feasible. 
The synthesis of function blocks 9sym, newill, ryy6, 
sym10, t481 and Z9sym reveals that the package’s 
processing time depends on the number of inputs and 
the logic description. With respect to soar, [3] [6] and 
[13] would consider the entire input space, which is of 
O(283). In contrast, the OSOP heuristic results in only 
1269 product terms. It is to be noted here, that the 
recent two-level weak-indication synthesis method [23] 
is unlikely to cope with larger combinatorial problems. 
This is owing to its selective expansion of products to 
achieve distributive indication; hence its scalability is 
dependent on the block size.   
 
7. Proposed self-timed system topology 

Our self-timed logic block realization method has 
only ensured that the cover constraint is satisfied 
without addressing the system indication aspect. The 
architecture that externally takes care of the indication 
phenomenon is shown in figure 6. It generally favors a 
weakly indicating realization by synchronizing only a 
pair (true & false) of encoded outputs with the current 
stage completion detection logic using the 
synchronizer, before being fed to the next stage.  
 

 
Figure 6: Proposed robust system configuration  

 
8. Conclusion and scope for further work 

A two-level synthesis method for implementing 
combinatorial logic as compact self-timed circuits is 
presented in this paper. For multi-level synthesis, 
‘complementary cubes insertion’ is proposed as a 
supplementary concept. It necessitates the insertion of 

complementary OFF-set/ON-set cubes in a rail of the 
function block output, whose complementary rail 
contains an indecomposable ON-set/OFF-set term 
respectively. Implementation of this procedure and 
analyzing various delay-insensitive data encodings 
within this framework are left for future work. 
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