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ABSTRACT 

SpiNNaker (Spiking Neural Network architecture) is a massively 
parallel computing machine, comprised of a million ARM9 cores. 
These are realised on 50000 chips, 20 cores/chip. While it could 
be classed as a MIMD machine, there is no unifying bus structure, 
and there is no attempt to maintain cross-system memory 
coherency. Inter-core communication is brokered by a fast 
message-passing system, built in and managed at the hardware 
level - thus there is an inevitable tension between speed and 
flexibility. 

The message passing infrastructure was designed to be fast and 
have a high bandwidth; a consequence of this design decision is 
that the effective data payload is only 32 bits/packet. Whilst this is 
ample for a wide range of applications, whilst the system is 
initialising, it is necessary to transport relatively large and 
sophisticated data structures across the system. This can be slow 
and cumbersome, and makes some form of internal self-
organisation extremely attractive. This is described in outline 
here. 

Categories and Subject Descriptors 

C.1.3 [Computer Systems Organisation]: Other architecture 
styles. 

General Terms 

Algorithms, Design, Reliability, Experimentation, Languages.  

Keywords 

Multi-core, self-organisation. 

 

1. INTRODUCTION 
Generalising outrageously, the class of problems for which 
SpiNNaker is ideally suited contain any problem that can be 
represented as a mesh, where node-node interactions are local (in 
the topological sense). This definition is broad: it covers network 
simulations (including large networks of neurons), finite element 
problems, ray-tracing, and many-body interaction problems, to 
name but a few. 

2. THE SYSTEM 
The computational ensemble of a million cores is not isotropic. 
The sheer scale of the system demands that some type of hierarchy 
exists: each SpiNNaker node contains 20 cores, of which one is 
selected as the 'monitor' core. Each of these 20 cores has its own 
local memory, plus they share access to some node-local RAM, 
six fast I/O ports and 128 MByte of node-local off-chip SDRAM - 
see figure 1. Each chip is connected (via the IO ports) to six 
physically adjacent nodes. The configuration of choice at this 
level is currently a hexagonal mesh, although there is nothing 
sacred about this. One of the node-local central resources on each 
chip is an ethernet port; approximately one in 5000 of these is 
connected to an external 'conventional' computing system. 

Thus there exists a shallow hardware hierarchy - although in 
steady state, any core in any node may communicate with any 
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other core in any node, whilst the system is configuring, it is 
obliged to make use of the hardware hierarchy provided: worker 
core → monitor core → ethernet monitor core → outside world.  

Three types of packet support inter-core communication: Nearest 
neighbour (NN) packets, which allow monitor cores to 
communicate with their nearest neighbour monitors, via the fixed 
hardware I/O links; point to point (P2P) packets, which allow 
arbitrary pairs of monitors to communicate, and multicast (MC) 
packets, which allow arbitrary pairs of cores to communicate. The 
NN protocol is entirely hardware, and is available from power-up, 
but the latter two require significant bootstrap processing to 
establish. 

Once in place, however, (by a mechanism nor described here), the 
next problem is the mapping of our problem mesh into the 
physical processor mesh. 

 

2.1 Self-organisation 
Conventional place and route techniques (generally considered 
largely a solved problem by the late 1980s) require - at some stage 
- for some part of the system to have an overview of the entire 
problem space. Where this is not feasible, hierarchical 
decomposition allows the problem to be solved as a series of sub-
problems, and the solution stitched together; the decrease of 
quality of solution is not considered important. 

For the P2P infrastructure, we have 50000 routing tables (one for 
each chip), each containing 50000 entries. Thus we need to 

compute and load into SpiNNaker 2.5GBytes of data to create this 
packet network. 

For the MC problem, using neural network simulation as an 
example, we will typically be mapping 109 neurons to 106 cores 
(each core can support the emulation of 1000 neurons), and 
(assuming the average neural fan-in to be a biologically realistic 
104), establish 1013 neural interconnects, which are then required 
to be loaded into 50000 MC route tables. These numbers indicate 
that we cannot even hold the data in a 32-bit offline machine, let 
alone reason about them in anything other than linear time. 

Fortunately, we have an alternative: a million core parallel 
processing machine, which, with careful planning, can actually 
generate the results where they need to be.  

The computational process by which this is performed is best 
outlined by analogy. Consider the problem mesh as a set of 
mutually repulsive particles; spread them randomly on a two-
dimensional plane; allow the system to relax into a configuration 
of minimum potential energy, energy being defined as some 
suitable non-linear function of inter-particle distance. 
(Inconveniences such as local energetic minima can be dealt with 
as in simulated annealing.) 

Mapping this solution technique onto the pair of discrete 
networks that is the processor:problem mesh, we allow each 
problem node to broadcast (via the NN packet protocol) a "field" 
(some scalar value that is decreased geometrically with every node 
hop.) Each node also accumulates an integral of all fields 
broadcast from every other node. Although the notion of slope is 
not easily defined in a discrete mesh with an arbitrary topology, 
the notion of relative size of (topologically) adjacent integrals is 
easy to capture - if a problem node detects a lower field integral 
on a processor node adjacent to the one to which it is currently 
mapped, it migrates there. 

Thus the system (i.e. the problem:processor node map) will 
"relax" to a configuration of minimum energy, which corresponds 
to a maximal separation of problem nodes within the processor 
mesh. 

Note this is an asymptotic process, and these are never realised 
comfortably on discrete networks - they can oscillate. Whilst this 
in itself is not an issue (we are attempting to solve a discrete 
placement and mapping problem, not solve a field), the reliable 
detection of this oscillation, and the identification of a steady state 
solution (the two are not the same thing) remain problematical.  
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Figure 1: SpiNNaker internal architecture  


