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Abstract: An investigation into an effective and low-complexity adaptive routing strategy based on stochastic
principles for an asynchronous network-on-chip platform that includes dynamically reconfigurable computing
nodes is presented. The approach is compared with classic deterministic routing and it is shown to have
good properties in terms of throughput and excellent fault-tolerance capabilities. The challenge of how to
deliver reliability is one of the problems that multiprocessor system architects and manufactures will face as
feature sizes and voltage supplies shrink and deep-submicron effects reduce the ability to carry out
deterministic computing. It is likely that a new type of deep-submicron complex multicore systems will
emerge which will be required to deliver high performance within strict energy and area budgets and
operate over unreliable silicon. Within this context, the paper studies an on-chip communication
infrastructure suitable for these systems.
1 Introduction
Network-on-chips (NoCs) have been proposed as a
technology able to overcome the performance
bottleneck faced by traditional shared bus designs.
Conventional bus structures (AMBA, Coreconnect,
and so on) have being coping with the increasing
number of connected IP blocks with the introduction
of complex hierarchies. This has helped to alleviate
problems such as shared-medium access contention
and wasteful data broadcast but the scalability of
these solutions is limited. Additionally, the increases
in noise and crosstalk expected in sub-65 nm
dimensions will also hinder the performance of
conventional bus structures [1]. The multicore
technology of the future is poised to use on-
chip packet or circuit-switched networks for
effective communication. This will enable increases
in bandwidth as more processing nodes are added,
as well as providing support for error resilience and
energy-saving techniques [2].
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Synchronous and asynchronous NoCs have been
proposed by different academic and commercial
research teams. Asynchronous NoCs offer some clear
advantages in solving power and delay problems
associated with clock distribution in large chips. They
also have some serious challenges regarding
verification of the self-timed logic together with the
possible area overheads introduced by having to add
wires and logic to eliminate problematic glitches and
support the handshaking protocols that replace the
global clock. The lack of commercial electronic design
automation (EDA) support for asynchronous logic is
also a limiting factor in increasing its wide acceptance.
Intensive work in the computational domain involving
the design of complex self-time processor cores has
been conducted in the Amulet group in Manchester
University [3]. The challenges of self-timed logic are
evident in this work and it is hard to imagine that this
type of logic will replace well-understood synchronous
design in the processing elements of a multicore
platform in the short to medium future. On the other
& The Institution of Engineering and Technology 2008
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hand, the higher regularity and fewer gates of the
communication domain mean that the advantages of
asynchronous design are more apparent [4].

The dynamic reconfiguration feature means that a
single silicon platform could support multiple
applications via rapid reconfiguration of the logic gates.
Existing and emerging consumer audio/video standards,
and the need for product differentiation by introducing
new feature updates in already deployed devices, mean
that the cost of the design, verification and fabrication
of billion-transistor dedicated application specific
integrated circuit (ASIC) [5] will be increasingly
difficult to justify compared with a reconfigurable
platform. Current platform FPGAs already incorporate
a highly structured network at a very fine grain level
used to connect the basic logic cells that form the
FPGA computing fabric [6]. FPGAs, however, tend to
consume a lot of energy most of it on the routing
wires which can follow convoluted routes in the fabric
as determined by the routing algorithm. Routing
complexity increases with chip size and this tendency
also decreases the performance since the high
capacitance of long wires negatively affects the
achievable clock rates. Introducing the NoC offers a
natural way to structure this complexity so that FPGA
routing domains are confined within the areas defined
by the NoC wires and global communication is limited
to using NoC resources.

The combination of an asynchronous communication
infrastructure with dynamically reconfigurable
computing nodes presents some interesting
opportunities and challenges in the design of an
effective communication protocol and their
exploration constitutes the objective of this work. The
paper investigates both the throughput and the fault-
tolerance performance of this adaptive multicore
platform which has been named network on a
reconfigurable chip (NoRC). The main focus is how
the presence of dynamically reconfigurable computing
resources affects the design of a flexible routing
strategy based on stochastic principles. Stochastic
routing means that routes are discovered dynamically
with little area overhead. Throughput, however, can
degrade since typically more hops are needed for a
packet to reach its destination. The paper is organised
as follows. Section 2 describes the related work in the
area of fault-tolerance strategies and adaptive routing
in on-chip communication architectures. Section 3
presents the features of the NoRC platform and
Section 4 describes how adaptive routing is
implemented by NoRC. Section 5 studies the trade-off
between the throughput and platform complexity,
varying the number of functions supported in the
processing nodes in NoRC, compared with a
deterministic routing strategy. Then, in Section 6, an
investigation is carried into the fault-tolerance
he Institution of Engineering and Technology 2008
capabilities and throughput offered by the stochastic
approach compared with the same deterministic
routing approach. Finally, Section 7 presents the
conclusions and indicates future research directions. It
should be noted that the simulator developed in this
work does not pretend to be a cycle accurate model
of a particular process but rather its role is to provide
an initial insight into the features and limitations of
the proposed NoRC platform.

2 Related work in NoC fault-
tolerance and adaptive routing
Reliability in a multiprocessor system on chip (MPSoC)
platform such as NoRC could be affected by soft/
transient errors (cosmic rays, alpha particles, crosstalk
and coupling noise) and hard/permanent errors
(defective open or short circuits, electro-migration)
introduced by the low yield and process variations that
are likely in deep-submicron processes. The globally
asynchronous locally synchronous (GALS) platform
combined with dynamic voltage scaling could also
generate synchronisation errors between the
asynchronous and synchronous domains that become
difficult to trace. Both transient and permanent errors
should be taken into account when designing a fault-
tolerance strategy.

Traditionally, analysis of transient faults assumes that
some bits in the data packet are flipped to the wrong
value and the literature focuses on the use of linear
codes such as cyclic redundancy check (CRC) and
Hamming to detect and/or correct these errors and
the area/energy/performance trade-offs involved.

In [7], a detailed study is conducted on the energy-
reliability trade-off comparing correction at the
receiver stage against retransmission of the corrupted
data. Error-correcting detection is based on cyclic
codes and Hamming codes. The paper points out that
advance interconnect schemes such as NoCs tend to
have shorter point-to-point links which should favour
retransmission rather than error correction from an
energy point of view. Communication reliability can
be obtained at different levels of granularity: it should
be possible, for example, to add Hamming codes to
each data flit while using a single CRC code to
protect the whole packet. Retransmission at the
switch level translates to a need for power hungry
buffering resources so that end-to-end retransmission
at the network interface (NI) level is generally
preferred. Similar conclusions are reached in [8] which
also investigate the advantages of either retransmitting
the erroneous packets after error detection or fixing
the problem using error-correcting techniques
without the need for retransmission. The paper finds
that the overheads of error correction in terms of
IET Comput. Digit. Tech., 2008, Vol. 2, No. 3, pp. 184–198/
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extra area are high and this also translates into high-
energy consumption. A hybrid scheme is proposed
that uses error detection and retransmission for short
distances and error correction for long distances with
a crossover point of six hops. This approach offers the
best energy trade-off but it requires the presence of
hardware modules for error detection and correction
in the network interfaces and its area overhead is large.

The work presented in [9] studies the energy
consumption incurred by different error-correcting/
recovery schemes depending on whether they are
deployed at the switch or network interface level.
This work assumes static routing with paths set at the
sender network interface. Critical information such as
packet headers is protected with hardware redundancy
such as triple modular redundancy (TMR). The scheme
relies heavily on data buffering and these buffers are
found to be the main cause of the power overhead.
The conclusions are that switch-based error control
works better for local communication while end-to-end
is better suited for global communication.

In [10], a technique is proposed that uses different
levels of error protection depending on the reliability
of the communication link. As reliability of the link
changes depending on level of noise present, the
error-detection scheme changes from single error bit
detection to double and triple error detection. The
work focuses on error detection coupled with
retransmission, and obtains energy savings because the
complexity of the error-detection scheme is adjusted
to meet the channel needs. The obtained energy
savings are modest at 10% since the hardware
required to support the most complex scheme needs
to be physically present event if it is not used.

In [11], Hamming codes are also used to detect errors
and retransmission used as the recovery method as it has
been reported as being more energy efficient. The paper
recognises that even with the addition of error-
correcting capabilities to the system, the approach will
not work in the presence of permanent errors since
the error could affect the data in such a way that the
error-correcting technique proves ineffective and
multiple retransmissions would only deliver multiple
copies of incorrect data. To tackle this situation, the
approach adds TMR to the hardware with spare
components. A reconfiguration strategy is used to
select components that are functionally correct after
error detection using Hamming codes. This works
well so long as the extra links provided are able to
eliminate the problem, but there is an obvious area
overhead.

Additionally, it is reasonable to assume that errors
could affect not only the data lines but also the
control lines of the communication links and the logic
IET Comput. Digit. Tech., 2008, Vol. 2, No. 3, pp. 184–198
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of the router nodes [12]. This means that transient
errors could result in routers which temporarily stop
responding to requests or stop forwarding data
correctly. A fault-tolerance strategy should also take
into account these types of problems and the
described techniques that rely on CRC codes/
Hamming codes and retransmission and/or correction
cannot do that on their own.

In [13], a comprehensive study of the most
common failure types expected in NoCs is conducted
and architectural solutions proposed for a generic
synchronous NoC router. The approach is based on a
combination of error detecting/correcting codes and
retransmission. Buffers are heavily used in the router
nodes to support hop-to-hop retransmission when the
error correction codes are insufficient for solving the
problem. Deadlock recovery is also included as part of
the fault tolerance infrastructure. Both intra-router
errors in the combinatorial logic and classic link faults
are considered. It is apparent in the paper that the
extra complexity added to the router to support all
these fault-tolerant features is considerable.

The routing protocol employed has also a major
impact on fault tolerance. Dynamic and adaptive
approaches offer fault tolerance to temporal and
permanent errors in the network compared with
static schemes. The disadvantage is the complexity
introduced in the routing nodes with extra processing,
larger buffers and large routing tables that can
quickly make the communication network complexity
unmanageable in an embedded system. Dynamic
routing algorithms typically use tables to determine
the position of the receiver of a data packet [14]. The
route is dynamically discovered and path changes can
be accommodated easily.

A simpler approach to the dynamic discovery of the
route that removes the need for routing tables and
complex processing is the randomised gossip protocols
proposed in [15]. In this case, if a router has a packet
pending to send, it will forward it to a randomly
chosen subset of neighbour routers. These routers will
upon reception of the packet behave in the same way.
This type of probabilistic broadcast algorithm has very
good fault-tolerance properties but generates a lot of
redundant traffic with multiple replicated copies of the
same packet using scarce resources in the network
which could result in energy waste and network
congestion. The work conducted in [16] investigates
the flooding mechanism used in [15] and concludes
that excessive unnecessary redundancy is generated. A
variation is proposed in which a limited number of
packets move towards the destination in a directed
way. This means that routing decisions are not totally
random but the routers know the destination of the
packet and some weighting is performed so that the
& The Institution of Engineering and Technology 2008
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ports that lead towards the destination have a higher
probability of being chosen than the other ports.

The routing approach used in this work shares some of
the stochastic features of [15] and avoids packet replication
by using a single request flit to establish the communication
followed by a variable number of deterministically routed
data packets. It combines packet switching for the initial
single-flit request packets with circuit switching for
the data flits. It is designed to exploit the features of the
dynamically reconfigurable platform by replacing the
inflexible destination addresses with service requests.
This adaptive routing offers fault tolerance to permanent
failures in the processing and routing nodes. For
transient errors affecting the packet header (that
identifies the service requested) and/or payload, a
combination of error-detecting Hamming codes at the
flit level and CRC codes at that packet level can be
used to detect erroneous bits packet headers and
payloads. Upon detection of errors, the packets are
dropped and a retransmission requested since this
technique is simpler and it has been found in the
reviewed literature to be more efficient that full-
blown error correction. One of the most attractive
features of the routing used in NoRC compared with
the reviewed methods is its simplicity since it does not
require buffering of the packets at the router level,
routing tables or hardware redundancy to operate
efficiently.

3 NoRC platform
Fig. 1 illustrates the NoRC platform which combines
NoC, a reconfigurable fabric, hardwire processing
functions such as a RISC CPU and embedded digital
signal processor (DSP) blocks, dynamic voltage scaling
and GALS technology in a single silicon chip.

Our research into this system is based on the on-chip
communication network (OCCN) [17]. OCCN is an
open-source object-oriented SystemC library which
provides an efficient framework for the modelling,
simulation and design space exploration of on-chip
communication architectures. OCCN enables the
separation between the communication and
computation with the use of the communication
interface which is the only way to interact with
the behaviour of a processing node. This enables both
the communication and behaviour components to
be described at different levels of detail and these
modules to be freely intermixed as along as the
interface protocols remain the same. Packets in
OCCN are called protocol data units and typically
consist of a header field, payload field and a trailer
field. Packets are defined as the smallest part of a
message that can be routed independently through the
network. The packets are transmitted and divided
into flits.
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Segmentation and reassembly are implemented
among different layers of communication (transport,
network and link layer). Communication refinement
enables, for example, replacing the abstract
communication channel that transfer 32-bit flits
between the master and slave ports into a detailed
description of a dual-rail return-to-zero asynchronous
protocol similar to CHAIN links.

In this work, we have ported the SystemC OCCN
library and classes to the ModelSim simulation
environment. Modelsim is considered the standard in
RTL (VHDL, Verilog) simulation and for some time
now it also supports SystemC simulation. The three
languages can be intermixed in the same simulation
and this opens some interesting avenues for
communication and computation refinement. The
initial NoRC platform is based on a 2D mesh
Manhattan topology that have been shown to be VLSI
friendly [18] and well suited for allocation of the
regular blocks of reconfigurable fabric. Typical
parameters in the SystemC code describing NoRC
include: network dimensions, packet injection rate,
transient error rate, permanent error location and
timing, router and link latency, retry latency, buffer,
packet and flit size. Fig. 2 gives an overview of the
different components used in the SystemC NoRC
model. Each computing tile can behave both as a
master or slave. The figure only shows a control
thread running in the router but in reality five control
threads (one per port) run in parallel monitoring
activity in each of the ports.

We have aimed at minimising the complexity of
routers since they represent the main area and power
overhead in the on-chip network [19]. Buffering in the
router nodes is typically introduced to provide
guaranteed throughput (GT) so routers can buffer
packets if high priority packets arrived that must be
forwarded immediately. Additionally, buffers
temporarily store clean copies of data units (packets,
flits) and can be used to retransmit the data if errors
are detected obtaining fault tolerance. On the negative
side, buffering also means that delay times go up and
the buffers can quickly become the highest contributor
to the area overhead. In the following sections, we
investigate a routing/switching strategy that can work
without buffers while providing good levels of fault
tolerance and throughput in the context of the
dynamically reconfigurable NoRC platform.

4 Flexible routing in the NoRC
platform
NoRC aims at supporting the high-demand processing
power expected in multimedia MPSoC. The
initia NoRC configuration includes processing nodes
IET Comput. Digit. Tech., 2008, Vol. 2, No. 3, pp. 184–198/
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(transmitter and receiver), routers and channel classes
which have been extended to collect statistical data for
throughput and packet loss. The network interfaces
move data from the synchronous processing domain
to the network asynchronous domain. Computation
is synchronised with a clock signal modelling a
IET Comput. Digit. Tech., 2008, Vol. 2, No. 3, pp. 184–198
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GALS platform. Buffering is limited to the network
interface with the use of asynchronous FIFOs. No
extra buffering is provided in the router ports to
keep complexity low. To further eliminate the
need for buffering in the network interface,
NoRC provides a connection-oriented communication
Figure 1 NoRC components
& The Institution of Engineering and Technology 2008
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protocol so the delivery of the payload flits is done in
order avoiding the extra complexity of a reordering
scheme.

NoRC delivers flexibility by not having the IP of the
processing nodes determined at design time.
Consequently, more resources can be dedicated to the
communication infrastructure at design and fabrication
time since these costs can be shared over the multiple
applications in the multimedia domain. The
predictable wire lengths in the proposed homogenous
NoRC mean that inductance, resistance and capacitive
parasitic effects can be controlled allowing aggressive
he Institution of Engineering and Technology 2008
circuit design techniques such as low swing drivers
and receivers that will be beneficial for the energy-
efficient design paradigm.

Communication in NoRC starts with a single request
flit used to set-up the connection between the
transmitter and receiver followed by a variable
number of flits containing the data payload. The final
flit contains the CRC code used to verify error-free
communications. Successful CRC verification results in
a single acknowledge flit send to the transmitter
which is also used to release the resources reserved by
the initial request flit.
Figure 2 SystemC NoRC components
IET Comput. Digit. Tech., 2008, Vol. 2, No. 3, pp. 184–198/
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The initial request flit follows a store-and-forward
switching approach with the single-flit packet being
stored in the router before a decision on where to
forward it is made. Once the circuit is established
payload transfer is done using circuit switching with
no further arbitration being required. This enables in
order delivery and good levels of GT [20]. The
presence of circuits removes the need for buffers since
only enough capacity to store a single flit is required.

In NoRC, we envisage that processing nodes perform
request for services sending data packets that need
certain processing to be done on them (for example,
motion estimation in a macroblock in video coding).
The request flits routing could be based on a
randomised algorithm because we assume that the
service provider location is not known in this
distributed computing platform based on dynamic
reconfiguration and FPGA-like silicon structures. This
function-based random-routing strategy means that the
request flits do not contain a destination address but a
function identifier. A single copy of a request flit
exists and when it is received by a router, an initial
check is performed to verify if the processing node
attached to that router can service the function
request. If this is the case, the request flit is delivered
to the processing node which will acknowledge it
/ IET Comput. Digit. Tech., 2008, Vol. 2, No. 3, pp. 184–198
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once it is ready to start accepting the data payload. In
this work, the flit size has been configured to 32 bits
although other flit sizes are certainly possible.

This strategy means that the circuits established for
the data payload transfer are not fixed but they can
change between packets so adaptation to dynamic
traffic is provided. When the first choice of output
port for the request flit is busy, a hot potato/
deflective approach is used to choose another
router port randomly. Request packets are
constantly transferred among routers until they reach
a processing node that can service the request
contained in the flit avoiding the need for extra
buffering. If all the output ports are busy, the request
flit bounces back with a circuit unsuccessful flag set.
The sender will then wait for some small random
amount of time before requesting the same service.
This new request will follow a different route from
the one used by the unsuccessful request.

Fig. 3 shows a flow chart of the routing decisions
taken place in one of the five ports available in each
router. There are three main flit types: request flits,
acknowledge flits and data flits. Each flit arriving at a
router port is checked to identify it as one of these
three types. A flit identified as a request flit that
Figure 3 Router activity flow chart
& The Institution of Engineering and Technology 2008
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cannot be serviced in the current processing node,
results on a forward operation using a randomly
chosen port and setting the corresponding input port,
output ports and direction as busy. For example, if the
north–south direction is reserved future flits entering
through the north port are automatically forwarded
to the south port without further arbitration.
Similarly, flits entering through the south port are
forwarded to the north port without further
arbitration. This direction reservation is maintained
until an acknowledge flit is used to free the reserved
resources. Acknowledge flits are also generated when
a request flit cannot progress any further and bounces
back (connection failure). This situation could arise
with busy or faulty ports. This specially flagged
acknowledge flit releases resources as normal and
informs the source node that a connection failure has
taken place. Possible errors affecting the bits in these
controls flits could be detected using error-detection
codes. Additionally, if an acknowledge flit gets lost in
transit the source is designed to retry the transmission
after a certain time out period. Fig. 3 indicates the
possibility of collisions among request flits. This
circumstance can take place when two request flits
originating from different nodes arrive at two ports
which share the same channel. For example, ports
west and east in routers horizontally adjacent. Under
this condition, both request flits bounce back resulting
in two connection failures.

Figs. 4 and 5 show examples of successful connections
established between the source and receiver nodes.
Source nodes cannot request a function that can be
provided by themselves. The dark squares represent
unavailable busy ports so the router is forced to
randomly choose another port. Request flits keep
moving sometimes crossing more than once the same
router as shown in Fig. 5 until a node that can provide
the requested function is found. Fig. 6 shows a
situation in which a flit arrives at a router that has its

Figure 4 Process 10 requests service 7
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two possible exit ports busy resulting in a connection
failure. The bounced flit is used to release all the
reserved resources up to that point and inform the
source about the problem. A new retransmission will
result in a new route and node chosen to service the
request.

To compare this dynamic random-walk/stochastic
routing approach, we have implemented the
deterministic XY algorithm routing leaving the rest of
the NoRC infrastructure intact. In XY routing, the
positions of the processing nodes are described by
coordinates, the X-coordinate for the horizontal and
the Y-coordinate for the vertical position. Packets are
routed to the correct horizontal position first and then
in the vertical direction. XY routing produces minimal
paths and simple routers but its tolerance to
permanent and transient errors is low.

In order to be able to make direct comparisons with the
stochastic approach, the initial single-flit request is routed
along the horizontal direction until the router location Y

Figure 5 Process 12 requests service 3

Figure 6 Process 12 connection failure
IET Comput. Digit. Tech., 2008, Vol. 2, No. 3, pp. 184–198/
doi: 10.1049/iet-cdt:20060175

191



/192

www.ietdl.org
index matches the Y part of the address. Then, the request
flit moves along the vertical direction until the flit finds its
destination. If the receiver accepts the request and the
acknowledge flit is sent back to the transmitter and a
connection established between the sender and
transmitter which will persist until the receiver sends an
acknowledge flit indicating successful or erroneous
payload transfer. Independent of the data payload
transmission being successful or erroneous, the
transmitter will need to re-arbitrate for the connection
resources using another request flit before more data can
be sent. If the request packet cannot proceed according
to the XY route, it bounces back releasing the resources
reserved up to that point and informs the transmitter
about the failure to establish the connection. Similar to
the random case, the transmitter waits for a small
random amount of time before trying to establish a
connection again.

The XY strategy assumes that the transmitter node
knows the location of the receiver node. For example,
in a multimedia application involving video coding, the
fact that a computing node providing motion
estimation services is located at position [3, 2] should
be known by a control thread processing a particular
macroblock in position [1, 1]. The stochastic approach
is more flexible and it does not require this
knowledge to operate correctly. It is, therefore more
suitable to a platform such as NoRC which enables
dynamic reconfiguration of the nodes based on power
or processing demands so the number and location of
processing nodes being able to perform a particular
task could vary as requirements change.

In summary, transmitters and receivers behave
differently for the XY routing and for the random
case. In XY routing, the transmitter chooses a receiver
based on X- and Y-coordinates, whereas in the random
case, it chooses some processing needed on a data
packet rather than which is the processing node that is
going to perform the task.

In principle, the random strategy should generate more
link transversals and consume more energy since XY
follows the shortest path, but this depends on which is
the ratio between the processing nodes and request
functions. If the number of processing nodes is much
larger than the number of functions available in the
system, the chances are that a request flit will soon find a
node able to service the requested function. Once the
link is established, the flits containing the data payload
are transmitted using the reserved resources in the path
without further arbitration.

5 Throughput analysis
For the throughput investigation, we have configured
the NoRC SystemC model with a link delay of 1.3 ns
IET Comput. Digit. Tech., 2008, Vol. 2, No. 3, pp. 184–198
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corresponding to a link length of 2 mm in a CHAIN-
style network using 0.18 mm technology [21]. This
link delay includes all the transitions required in a
return-to-zero dual-rail encoding protocol to transmit
one bit of data. We have also configured the router
latency to 5 ns and the clock used by the computing
nodes to 10 ns. These values are used by both
configurations: XY and routing and random so a fair
comparison can be carried out.

We have defined four operation points in terms of
network load. These load points enable the study of
network behaviour under different levels of
congestion. The load is determined by a random
variable with different bounds depending on the level
of congestion required. Table 1 gives details of the
four loading points used.

Fig. 7 shows the behaviour of a reliable (no
retransmissions or failures included) 4 � 4 NoRC for
XY routing and random. The Y-axis shows throughput

Table 1 Network load points

Description Time between
request packets

Min, ns Max, ns

light load 0 5000

medium load 0 500

high load 0 50

maximum load 0 5

Figure 7 Throughput analysis (four-service stochastic
and XY)
& The Institution of Engineering and Technology 2008
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as a cumulative value obtained by averaging the
throughput obtained in multiple small time windows
of 50 ns. The X-axis shows the simulation time in
nanoseconds. The NoRC using stochastic routing is
configured with four functions distributed randomly as
shown in Fig. 8. From this figure, it is apparent
that for this configuration, if a node implements a
particular service there is a high chance that the
neighbouring nodes will implement the other three
services. This is not always the case since, for
example, if the top-right node needs service number
3, the request flit will need to transverse the whole
network before a node servicing the request
can be found.

Figure 8 Distribution for four services

Figure 9 Throughput analysis (service count impact on
stochastic routing)
he Institution of Engineering and Technology 2008
In Fig. 7, we observe that the throughput for the XY
and stochastic cases under light load conditions is very
similar. If we increase the load, we observe that the
XY case saturates the network much earlier than the
stochastic case. This means that the random routing
can delivered almost 30% extra bandwidth compared
with XY routing for heavy load conditions.

Figure 10 Distribution for 6, 8 and 11 services
IET Comput. Digit. Tech., 2008, Vol. 2, No. 3, pp. 184–198/
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Fig. 9 investigates the behaviour of random routing
varying the number of services available in the system
for the high load case. We compare the case with four
services shown in Fig. 7 with 6, 8 and 11 services.
Increasing the number of services means that the
probability of quickly finding a node that can service a
particular request decreases and network capacity is
reduced. In a real implementation, it is expected that
the number of services will change dynamically and
the capacity of the network as well. Fig. 9 shows that
in all the cases the network reaches the steady state
quickly and continues to operate without service
interruptions (no deadlocks) with data payloads
successfully transferred between request originators
and service providers. Fig. 10 shows the function
distribution in NoRC for each of the new three cases.

Fig. 11 shows the behaviour of the 4 � 4 mesh for
the stochastic six-service and XY routing with the
network saturating at around 350 MB per second.
Both algorithms offer similar levels of performance in
this particular configuration assuming a reliable
NoRC. Since in the random case, the transmitter does
not need to know where a particular service provider
is located, packet data could contain not only payloads
needed to be processed but also bitstreams defining
the functionality for the node. For example, a
network node that is failing to meet processing
deadlines because some particular function is not being
performed fast enough could request the generation of
a bitstream packet implementing that function. A
configuration node could then generate a request for
an available node which is not performing any useful
function. A node replying to this request could accept

Figure 11 Throughput analysis (six-service stochastic
and XY)
/ IET Comput. Digit. Tech., 2008, Vol. 2, No. 3, pp. 184–198
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the bitstream packet and start the new service.
The dynamic discovery of the route provided by the
random algorithm means that no explicit
communication to identify service provider locations is
required.

Fig. 12 compares the capacity of XY and random
routing using different NoRC sizes: 4 � 4, 5 � 5,
6 � 6 and 7 � 7. The performance of the six-service
4 � 4 and 5 � 5 NoRCs is very similar but, for the
6 � 6 and 7 � 7 cases, it is apparent that the
stochastic algorithm works better. We then investigate
how many extra services the stochastic algorithm can
accommodate before its performance is similar to XY.
This is shown in Fig. 12 for the nine-service case
which works very similar to XY. This is then the
service count threshold between both algorithms.
Increasing the service count further means that the

Figure 12 Throughput analysis (network size)

Figure 13 Router error distribution
& The Institution of Engineering and Technology 2008
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capacity of stochastic is lower than XY but, in any case, it
is important to note that capacity is stable and grid lock
states are not detected. The next section investigates the
advantages of stochastic compared with XY in terms of
fault tolerance.

6 Fault-tolerant analysis
To explore the fault-tolerance properties of the NoRC
approach, we have used a simple 4 � 4 NoRC
configured with a total of six different services and
high traffic load. The service distribution and the port
errors progressively introduced are illustrated in
Fig. 13, whereas Fig. 14 shows the relative timing of
these errors.

Fig. 15 shows the effects of a single permanent fault in
the south port of router [2, 2] in a 4 � 4 NoRC. The
graphs use an instantaneous window throughput so each
point in the graph represents the throughput of the
network in a small window of 50 ns. The fault takes

Figure 14 Router error relative timing

Figure 15 Fault-tolerant analysis (faulty south port in
router [2, 2])
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place at 400 ms and the XY algorithm shown in darker
colour immediately suffers a degradation in throughput.
It is expected that as more request flits try to make use
of this router, the bandwidth will decrease further until
zero packets can get through. On the other hand, the
random algorithm continues to operate without
showing any significant reduction in throughput.

Figs. 16 and 17 show the effects of transient and
permanent router malfunctions, respectively. The

Figure 16 Fault-tolerant analysis (temporal fault in router
[2, 2])

Figure 17 Fault-tolerant analysis (permanent fault in
router [2, 2])
IET Comput. Digit. Tech., 2008, Vol. 2, No. 3, pp. 184–198/
doi: 10.1049/iet-cdt:20060175
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same router [2, 2] in the 4 � 4 NoRC is chosen for
these experiments.

From the figures, it is apparent that the XY routing
strategy has no fault-tolerance capabilities and
immediately breaks causing the whole platform to stop
processing. The reason is that all the processing nodes,
within a short time interval, try to route some data
through router [2, 2]. Despite the constant failures, the
algorithm has no flexibility to choose alternative paths

Figure 18 Fault-tolerant analysis (temporal fault in
router [0, 3])

Figure 19 Fault-tolerant analysis (temporal fault in router
[0, 3] and [1, 2])
IET Comput. Digit. Tech., 2008, Vol. 2, No. 3, pp. 184–198
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and the network quickly locks up. The random strategy
has a reduction in throughput when router [2, 2] stops
working but it continues to operate in a stable state
and it shows the good fault-tolerant properties
expected in an adaptive routing strategy.

Fig. 18 shows the effects of a failure in router [0, 3]
instead of router [2, 2] to investigate how the relative
location of the router affects the drop in performance.
The XY router again encounters a dead lock situation

Figure 20 Fault-tolerant analysis (temporal fault in router
[0, 3], [1, 2] and [2, 3])

Figure 21 Fault-tolerant analysis (temporal fault in router
[0, 3], [1, 2], [2, 3] and [2, 0])
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as nodes progressively try to use a router that keeps
bouncing back the packets. The negative effect in the
stochastic case is less noticeable since router [0, 3] has
one port less and less chances of being used to route
traffic. In Figs. 19–21, the number of routers failing
is increased to two ([0, 3] and [1, 2]), three (add [2,
3] to the previous two) and four (add [2, 0] to the
previous three), respectively. It can be observed in the
figures that a failure in a single router for the XY case
always hangs the system, whereas for the stochastic
case, the degradation in performance is evident with
the increase in the number of faulty routers but it is
not critical. The limit can be seen in Fig. 21 during
the time interval in which four routers fail in parallel
and there are some time windows in which data do
not get through the system. This suggests that for this
particular distribution of load, services and network
size, a failure rate superior to 4 could hang the
network. It is also important to note that in these
experiments, we have made sure that at least on
service provider for each service in the network
remains fault free. Otherwise, requests would be left
in the network and the system would eventually hang,
as progressively each node makes a request for the
unavailable service.

7 Conclusions and future work
This paper has presented the NoRC platform and study
how the features expected in a dynamically
reconfigurable platform can be exploited by a simple
but efficient stochastic routing algorithm. The initial
results are compared with a simple deterministic
algorithm and show competitive levels of performance
in terms of throughput. The main advantage of the
stochastic strategy is its excellent fault-tolerant
capabilities and the flexibility introduced in the
distributed multiprocessor platform with a service-
based strategy. This means that there is no need to
maintain up-to-date location tables in the processing
nodes as the platform dynamically changes. Error
resiliency is expected to be a fundamental feature that
systems fabricated with billions of transistors in deep-
submicron processes should possess to be cost
effective. The regularity of the proposed NoRC
together with stochastic routing could be the steps in
the right direction. The dynamic reconfiguration
obtained with the FPGA-like processing nodes should
enable one device service different requirements in the
multimedia domain. Traditionally, multimedia
applications can tolerate small service drops and could
be a good match to the stochastic approach. For
example, a few erroneous pixels in one video frame of
a high definition display working at 50 frames per
second do not invalidate the system. Economics
dictate that the fabrication costs of one of these
complex devices in ultra-deep submicron technology
will be very high, of the order of a few million dollars
he Institution of Engineering and Technology 2008
per mask set, and as such this cost should be
amortised over the device volume required for
multiple applications.

GT traffic could be one of the challenges faced by a
stochastic approach such as the one proposed in this
paper. A simple option could be to reserve the
routing resources needed by GT traffic and let the
stochastic algorithm find an alternative path for non-
critical traffic. Additionally, the dynamic
reconfiguration capabilities could be used to move
physically closer transmitters and receivers involved in
the GT traffic. We expect to investigate these
alternatives as work progresses.

Further work should also investigate the energy
consumption introduced by the stochastic alternative.
In principle, more flits need to be retransmitted to
found a service provider but the request flits are very
small and need a fraction of the energy required by a
full packet transmission. The connection-oriented
transmission of data packets without arbitration once a
circuit has been successfully established should limit
energy waste. To introduce a suitable energy model in
the SystemC NoRC model constitutes part of our
future work. We will also investigate the suitability
for asynchronous realisation of the stochastic
router using the Balsa synthesis toolset [22] and
extract data in terms of latency and energy
consumption to further refine the initial model
presented in this paper.
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