

School of Computer Science University of Manchester

New Security Protocol for M-Learning

Lirong He Lisha He Ian Rogers

M-Learning and Security

- Mobile Learning (M-Learning)

 → the next generation of e-learning
 → based on mobile devices
- Security is a significant challenge for M-Learning
 → authentication, confidentiality, integrity, privacy, etc
- Authentication is essential
 - \rightarrow to ensure that someone or something is whom it claims to be

Related Work

Some protocols with only two entities normally require heavy operational load at the mobile side.

Some solutions (with three entities) allow a server to get access to the session key establishment and therefore subsequent confidential transactions.

4 Though the solutions by [Yeh and Sun 2004, Alsan 2003] are secure and more efficient than other proposals, they remain computationally expensive.

Our Objectives

• To present a secure and efficient authentication protocol for M-Learning applications

• Achieve mutual authentication and key establishment between a mobile learner and an online education organisation

• Place less operational cost at the mobile side

Network Assisted Authentication Protocol (NAAP)

- Network operators can:
 - easily implement new platforms and protocols for secure mobile transactions
 - use existing Internet-based protocols to communicate with the education organisation on the Internet
 - reuse this security sensitive information
 - be always online and provide ample resource

Authentication Requirements

4 (S1) Authentication of the online education organisation to the mobile learner.

4 (S2) Authentication of the mobile learner to the online education organisation.

4 (S3) End-to-end session key establishment.

4 (S4) Session key confirmation.

4 (S5) Freshness of the session key.

Network Infrastructure

School of Computer Science, University of Manchester

NAAP Description

NAAP Protocol Analysis (1) - Against requirements

4 Use of the authentication challenge $\{x\}pk_B$ meets the requirement S1.

4 Use of K_{AS} meets the requirement S2.

4 The session key K_{AB} (= h(x, y)) is not transmitted in clear text in any transaction, and x is always inaccessible to the public. These together meet S3.

 $4 h(y, id_A, id_B, K_{AB})$ in T3 confirms B's knowledge to A, and $h(K_{AB})$ in T5 demonstrates A's knowledge of K_{AB} to B. S4 is met.

 $= K_{AB}$ is computed by using two random numbers, *x* and *y*, generated by A and B. Therefore K_{AB} is fresh.

NAAP Protocol Analysis (2) - Comparison with KAAP and AUTHMAC_DH

4 All three protocol meet all security requirements.

4 Each protocol requires the mobile learner to send two transactions (same communication cost).

4 NAAP requires least computational cost.

Heavy cryptographic operations at mobile	KAAP	AUTHMAC_DH	NAAP
Number of public key encryption	1	0	1
Number of exponential operation	2	2	0

School of Computer Science, University of Manchester

Conclusions

• Authentication requirements have been addressed.

• The current state-of-the-art work of authentication services have been investigated and evaluated.

- An novel network-assisted approach for authentication services has been proposed.
- This asymmetrical authentication protocol has been analysed with regard to the requirements and been compared with related work.

Thank you

School of Computer Science, University of Manchester