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Abstract—In this paper we present the construction of a self-

timed, multiple-input, priority arbiter with lower latency than 
existing solutions. The arbiter also overcomes the problem of 
allowing a contender to obtain over 50% of the resource 
allocation in a self-timed system by using downstream knowledge 
to trigger the arbitration. The arbiter is especially suited to the 
provision of quality of service in a self-timed interconnect. 
 

Index Terms—arbiters, asynchronous logic circuits, quality of 
service (QoS), on-chip networks  

I. INTRODUCTION 

YSTEM on Chip (SoC) denotes a methodology where 
designers combine pre-existing and/or new components 

and IP blocks on a single chip in order to achieve the required 
functionality of the whole system whilst reducing the overall 
costs and shortening time-to-market. Components of such 
systems are connected by an interconnect architecture which 
has replaced dedicated point-to-point connections. 

A modern SoC application can implement various 
components with different traffic characteristics and 
constraints. For example, a video stream from a camera to an 
MPEG decoder requires high constant bandwidth but can 
tolerate relatively high latency, while an interrupt signal 
requires low bandwidth and low latency. It is therefore 
essential for an interconnect architecture to provide Quality of 
Service (QoS) capabilities in order to accommodate various 
components on the same network. 

In essence, providing QoS requires reserving a certain 
proportion of network resource for a particular connection that 
demands preferential service. Those resources consist of buffer 
space and physical bandwidth. This paper investigates only the 
latter problem, reserving buffer space is not within the scope 
of the research presented here. 

Reserving bandwidth in synchronous networks is usually 
done by time division multiplexing (TDM) [1] where the time 
axis is partitioned into time-slots each of which presents a unit 
of time when a single connection can transmit data over a 
physical channel. The bandwidth is reserved by dedicating a 
proportion of time-slots for a particular connection. 
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In asynchronous networks the TDM technique is not 
applicable because it requires global synchronization between 
network elements. Another way to dedicate bandwidth is to 
employ a scheduling algorithm that will prioritise input 
requests according to the level of QoS required. 

Figure 1 shows an example of three inputs competing for an 
output. The capacity of the output channel is 1 and inputs A 
and B require 1/2 and 1/3 of the available bandwidth 
respectively. Input C has no QoS demands (BE stands for best-
effort). We assume that QoS inputs are not oversubscribed 
while input C is able to generate enough throughput to saturate 
the output. 
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Fig. 1. Three input arbiter. 
 

The departure events from the arbiter are depicted on the 
right side, and the arrival events are on the left. If we apply a 
random scheduling arbiter (upper right output sequence) the 
system does not provide the required bandwidth to inputs A 
and B and distributes the bandwidth randomly between the 
inputs. On the other hand a priority arbiter provides QoS 
inputs with the required bandwidth as shown in the figure. 
Inputs A and B acquire 1/2 and 1/3 of the bandwidth 
respectively, and input C acquires the remaining bandwidth 
(1/6). Note that the exact output sequence of the arbiter is 
impossible to predict due to the non-deterministic behaviour of 
the asynchronous circuit when multiple inputs arrive at 
approximately the same time. 

II. RELATED WORK 
In the past the main concern when designing multi-way 

arbiters was to provide the property of fairness, meaning that 
when a request is issued it will be granted after a finite number 
of other requests have been granted. Token ring [2] and tree 
arbiters [3] both fall into this category. The sequence of the 
grants generated by such arbiters is non-deterministic [4], 
making them unsuitable for system-level design. 

Priority arbiters based on the topology of the circuit, such as 
daisy chain and priority ring arbiters, provide a means of 
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controlling the sequence of grants. However, the worst-case 
latency of such systems grows linearly with the number of 
inputs, as does the implementation cost. Furthermore, a 
topologically fixed priority discipline makes these arbiters 
very inflexible and thus not sufficient to cover the wide range 
of modern applications. 

Bystrov et al. presented a priority arbiter which operates in 
two stages [5]. In the first stage the arbiter locks the current 
state of the request vector in a special lock register comprising 
a two-way mutual exclusion element (MUTEX). At the second 
stage it computes a grant vector using combinatorial logic. 
Although the arbiter presents a very clever design, it suffers 
from two drawbacks. Firstly, the circuit is relatively slow with 
a period of approximately 40 inverter-delays and secondly, it 
cannot guarantee that a single input can acquire more than 
50% of the available output bandwidth if multiple inputs are 
constantly arbitrating for the output. 

The latter problem is common to most asynchronous 
arbiters and results from the fact that once a grant is released 
the arbiter starts arbitrating for the next output cycle 
immediately, leaving no time for the last granted input to 
recover and set the request signal high, thus giving the pending 
inputs a critical advantage to win the arbitration for the 
subsequent output cycle. A single input can therefore compete 
only for every other output cycle in the case when multiple 
inputs are constantly arbitrating for the output. 

III. PROPOSED SOLUTION 
As noted above Bystrov’s arbiter [5] implements a special 

register shown in figure 2 that locks the current state of the 
request vector until the grant is calculated. The register is 
controlled by a single input (lock) and generates a dual-rail [6] 
output (outputs w and l). When lock goes high the circuit sets 
one of the output signals to logic one, w if request signal r is 
active and l if it is inactive. The state of the output persists 
while lock remains high. When lock is set low and the request 
is removed the output goes low producing an empty dual-rail 
code-word. 
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Fig. 2. A single bit lock register. 
 

Furthermore, the register controls the start of arbitration by 
enabling signal lock. If request r arrives before lock is set high 
the register will not change the state of the output until lock is 
set low. Only when lock is enabled will the register produce a 
valid dual-rail output. This will activate combinatorial logic 
and the arbiter will generate the grant. Most arbiters will start 
the next arbitration as soon as the grant is released and at least 
one request signal is active. Bystrov’s priority arbiter [5] 
follows the same behaviour because the positive edge of signal 
lock is generated by the ‘ored’ input request vector. Therefore, 
as soon as the grant is released the pending inputs will 
reactivate lock and restart the arbiter. This prevents the last 

granted input from competing for the subsequent output cycle 
as we mentioned before. 

A. Principle of Operation 
Our solution is based on the assumption that an arbiter is not 

the slowest part of a system and a critical section has a longer 
period than the arbiter. If this is correct we can decouple the 
arbiter from the critical section (CS) and delay the start of the 
arbitration to the last possible moment without sacrificing the 
performance of the system. 
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Fig. 3. Principle of the operation. 
 

Figure 3 shows the principle of our approach. The system in 
the figure presents a mutually exclusive merge of two inputs 
into a single output. The arbiter is decoupled from the critical 
section by a latch and signal lock is generated by the output 
(rather than by the input as in [5]). 

After the reset, lock is active and the system is awaiting data 
from the inputs. When at least one of the inputs arrives the 
arbiter generates the grant without any delay (apart from the 
delay inherent in the arbiter itself). This is normal behaviour 
because there is no way to know when the other input will 
arrive. After the output has been latched, lock is set low and 
the granted input is released. From this moment on, the arbiter 
and the critical section start to execute the current cycle 
independently with a speed that is limited only by the design of 
these two components. Note that if the other input has a 
request pending at the moment when the grant is released the 
arbiter will ignore that signal until the critical section has 
finished executing its current cycle and signal lock is set high. 
The behaviour of the system is denoted by the signal transition 
graph (STG) in figure 4. 
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Fig. 4. Partial STG of the system. 

 
The STG shows that if the input cycle, comprising the 

arbiter and the input FIFO, is fast enough to generate the new 
request before the positive edge of signal lock arrives, the 
input will be able to compete for every single output cycle 
providing there is enough throughput available at the input. If 
lock is activated before the new request is generated, the 
pending request (input B in our example) will win the 
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arbitration as indicated in figure 4 by the positive edge of 
signal Gb. 

The lock signal is providing similar functionality in this 
four-phase design as the “done” signal in the classical two-
phase request-grant-done (RGD) arbiter used by Sutherland in 
his Micropipelines work [7]. 

B. Implementation 
Figure 5 shows a gate level circuit of a three input version 

of the arbiter with a linear priority module to calculate the 
grant vector. The priority module incorporates the C-element 
of a lock register (shown in figure 2) to reduce the latency of 
the circuit. The circuit does not include the output latch shown 
in figure 3. Signal lock is generated by a request vector (OR 
gate I4) and an enable signal (E) is basically an inverted 
acknowledge signal from the output latch. Asymmetrical C-
elements I1...I3 prevent a MUTEX from being released before 
signal lock is deactivated during a return to zero stage of the 
arbiter. Inverted C-element I12 does not participate in the 
normal behaviour of the arbiter. Its function is to restart the 
arbitration when an empty request vector is locked. 

Fig. 5. Circuit of the arbiter. 
 

The circuit is quasi delay-insensitive (QDI) [8] which means 
that it will operate correctly for arbitrary delays associated 
with the outputs of gates and mutually exclusive elements. 
However, the correct operation of the arbiter depends on 
isochronic behaviour of forks implemented in the circuit. 

An STG in figure 6 describes the behaviour of the arbiter. 
Since all the inputs follow the same behaviour the STG shows 
the traces of only one input in order to simplify the graph and 
make it easier to follow. 

1) Normal Operation 
When at least one input is set high (R1...R3), OR gate I4 

asserts signal lock through asymmetric C-element  I8. Note 
that input E and inverted C-element I12 are both set to logic 
one after the reset. At the same time the request propagates 
through an asymmetric C-element (I1...I3) and sets signal r to 

logic one. Both signals compete for a MUTEX, but with 
reasonable wire layout, r should arrive first since it has to 
propagate through fewer, lighter loaded gates than the lock 
signal (I1 versus I4 and heavily loaded I8). On acquiring the 
MUTEX, r causes s to rise. Similar competitions occur for 
each MUTEX, to generate the inputs to the priority module 
that calculates a grant vector using one of the s signals and the 
l signals from the higher priority contenders. 

Fig. 6. STG of the arbiter. 
 
After a grant vector is produced the arbiter has to wait for 

the environment to remove the granted request and set input E 
to zero. The asymmetric C-element at the input (I1..I3) only 
releases the MUTEX when r and lock are both low ensuring 
that the priority module does not generate an invalid grant 
vector. Furthermore, I8 ensures that lock is set low only after 
input E has been reset. When the MUTEX is released the 
priority module clears the grant and the arbiter is ready for the 
next cycle. Note that the next cycle will start only after input E 
has been set to a high level and not immediately after the grant 
is released. Bold arrows in the STG in figure 6 show this 
behaviour. 

When a request (R2 or R3) is locked but not granted 
because the priority module made a decision to satisfy a higher 
priority input, the s signal remains high until the request is 
eventually granted. Note that signal r holds the state of the 
MUTEX while input E is low and lock is deactivated. This 
situation is marked with dashed arrows in the STG. 

The third situation that can occur during the normal 
operation of the arbiter is when a request arrives after lock has 
been generated. When this happens the MUTEX sets output l 
to a high level which means that the particular request is not 
active and forwards this information to the priority module. 
The request has to wait until the next arbitration cycle when it 
will be sampled by the MUTEX as described by the following 
sequence: lock+, l+, R+, r+, E-, lock-, l-, E+, lock+, s+, 
(priority resolution), ... 

2) Avoiding Hazardous Situations 
The correct operation of the arbiter assumes that an 

electrical path from R to r is faster than a path from R to lock. 
We believe this is a fairly reasonable assumption for the 
reasons given above in section 3.2.1, and becomes even safer 
if the arbiter is extended to allow for additional contenders. 
However, to accommodate possible failures if this assumption 
does not hold (as a result of inadequate placement and/or 
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routing), gate I12 is included to detect the presence of an 
empty request vector locked into the MUTEX elements 
(signals l1...l3 are all set to one). In this situation, the priority 
module cannot produce a valid grant, and so gate I12 is used to 
cause a retry of the locking of the MUTEX elements which 
will resolve the situation and avoid a deadlock. This is 
undesirable since it increases the arbitration latency, but with 
an adequate circuit layout it should occur very infrequently or 
not at all. 

The following sequence (not shown in the STG) illustrates 
this situation: R+, lock+, r+, l+, (deadlock detected), lock-, s+, 
(deadlock resolved), lock+, G+, ... 

The other hazardous situation that could theoretically occur 
with this circuit due to poor layout and routing involves lock 
being deasserted as part of the clear-down phase after a 
successful arbitration won by R3. Lock falling causes l1 and l2 
to fall, but if R2 is waiting, and l2 falls much quicker than l1, 
then C-element I10 could see s2 rise before l1 has fallen. To 
avoid this situation or others like it falsely triggering G2, the 
lock signal is used as an input to the gates in the priority 
module. 

3) Arbiter limitation 
The arbiter presented here has one limitation regarding the 

implementation of the priority module. A designer has to make 
sure that signals s1, s2 and s3 are only used to generate grant 
signals G1, G2 and G3, respectively. This is because signals 
s1, s2 and s3 can only be reset by input requests R1, R2 and 
R3, respectively. 

As an example consider the function of G2=s1⋅s2. Once 
signal G2 is asserted it will never be reset because signal w1 
will not go low until request R1 (which has set s1 high) is 
removed. Unfortunately this cannot happen because the output 
is stuck at G2 high and the system deadlocks. 

IV. CONCLUSIONS 
Providing QoS in asynchronous systems is not a trivial task 

and requires careful design both at the circuit and the system 
level. There are several timing constraints that have to be met 
in order for the system to operate inside the boundaries of the 
specifications. The arbiter presented in this paper was 
designed to loosen those constraints and to provide designers 
with a fairly deterministic asynchronous building block. 

The arbiter presents a low latency solution with an 
approximately 20 inversions period (the period depends upon 
a priority module implemented in the design) and the ability to 
guarantee a throughput of more than 50% of the system’s 
bandwidth for a single input, the feature that has not been 
available with the arbiters that are known to us. The circuit is 
quasi-delay-insensitive (QDI) and will operate correctly for 
arbitrary delays of gates and wires but it will provide a certain 
level of QoS only when several timing constraints are fulfilled 
as described in section 3. 
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