
E103

1

Abstract—In this paper we present the construction of a self-

timed, multiple-input, priority arbiter with lower latency than
existing solutions. The arbiter also overcomes the problem of
allowing a contender to obtain over 50% of the resource
allocation in a self-timed system by using downstream knowledge
to trigger the arbitration. The arbiter is especially suited to the
provision of quality of service in a self-timed interconnect.

Index Terms—arbiters, asynchronous logic circuits, quality of
service (QoS), on-chip networks

I. INTRODUCTION

YSTEM on Chip (SoC) denotes a methodology where
designers combine pre-existing and/or new components

and IP blocks on a single chip in order to achieve the required
functionality of the whole system whilst reducing the overall
costs and shortening time-to-market. Components of such
systems are connected by an interconnect architecture which
has replaced dedicated point-to-point connections.

A modern SoC application can implement various
components with different traffic characteristics and
constraints. For example, a video stream from a camera to an
MPEG decoder requires high constant bandwidth but can
tolerate relatively high latency, while an interrupt signal
requires low bandwidth and low latency. It is therefore
essential for an interconnect architecture to provide Quality of
Service (QoS) capabilities in order to accommodate various
components on the same network.

In essence, providing QoS requires reserving a certain
proportion of network resource for a particular connection that
demands preferential service. Those resources consist of buffer
space and physical bandwidth. This paper investigates only the
latter problem, reserving buffer space is not within the scope
of the research presented here.

Reserving bandwidth in synchronous networks is usually
done by time division multiplexing (TDM) [1] where the time
axis is partitioned into time-slots each of which presents a unit
of time when a single connection can transmit data over a
physical channel. The bandwidth is reserved by dedicating a
proportion of time-slots for a particular connection.

Manuscript received August 1, 2003. This work was supported by EPSRC
under Grant GR/R47363/01.

The authors are with the University of Manchester, Department of
Computer Science, Manchester, UK. (e-mail: felicijt@cs.man.ac.uk or
jbainbridge@ieee.org).

In asynchronous networks the TDM technique is not
applicable because it requires global synchronization between
network elements. Another way to dedicate bandwidth is to
employ a scheduling algorithm that will prioritise input
requests according to the level of QoS required.

Figure 1 shows an example of three inputs competing for an
output. The capacity of the output channel is 1 and inputs A
and B require 1/2 and 1/3 of the available bandwidth
respectively. Input C has no QoS demands (BE stands for best-
effort). We assume that QoS inputs are not oversubscribed
while input C is able to generate enough throughput to saturate
the output.

A

t1 t2 t3 t4 t5 t6 t7

C1 A1 C2 B1 C3 A2

t6 t5 t4 t3 t2 t1 t0

A3 A2 A1

B1B2

C1C2C3C4C5C6

1/2

1/3

BE

A

B

C C1 A1 B1 A2 B2 A3

Random

Priority

Fig. 1. Three input arbiter.

The departure events from the arbiter are depicted on the
right side, and the arrival events are on the left. If we apply a
random scheduling arbiter (upper right output sequence) the
system does not provide the required bandwidth to inputs A
and B and distributes the bandwidth randomly between the
inputs. On the other hand a priority arbiter provides QoS
inputs with the required bandwidth as shown in the figure.
Inputs A and B acquire 1/2 and 1/3 of the bandwidth
respectively, and input C acquires the remaining bandwidth
(1/6). Note that the exact output sequence of the arbiter is
impossible to predict due to the non-deterministic behaviour of
the asynchronous circuit when multiple inputs arrive at
approximately the same time.

II. RELATED WORK
In the past the main concern when designing multi-way

arbiters was to provide the property of fairness, meaning that
when a request is issued it will be granted after a finite number
of other requests have been granted. Token ring [2] and tree
arbiters [3] both fall into this category. The sequence of the
grants generated by such arbiters is non-deterministic [4],
making them unsuitable for system-level design.

Priority arbiters based on the topology of the circuit, such as
daisy chain and priority ring arbiters, provide a means of

An Asynchronous Low Latency Arbiter for
Quality of Service (QoS) Applications

Tomaz FELICIJAN, John BAINBRIDGE, Member, IEEE and Steve FURBER, Senior Member, IEEE

S

E103

2

controlling the sequence of grants. However, the worst-case
latency of such systems grows linearly with the number of
inputs, as does the implementation cost. Furthermore, a
topologically fixed priority discipline makes these arbiters
very inflexible and thus not sufficient to cover the wide range
of modern applications.

Bystrov et al. presented a priority arbiter which operates in
two stages [5]. In the first stage the arbiter locks the current
state of the request vector in a special lock register comprising
a two-way mutual exclusion element (MUTEX). At the second
stage it computes a grant vector using combinatorial logic.
Although the arbiter presents a very clever design, it suffers
from two drawbacks. Firstly, the circuit is relatively slow with
a period of approximately 40 inverter-delays and secondly, it
cannot guarantee that a single input can acquire more than
50% of the available output bandwidth if multiple inputs are
constantly arbitrating for the output.

The latter problem is common to most asynchronous
arbiters and results from the fact that once a grant is released
the arbiter starts arbitrating for the next output cycle
immediately, leaving no time for the last granted input to
recover and set the request signal high, thus giving the pending
inputs a critical advantage to win the arbitration for the
subsequent output cycle. A single input can therefore compete
only for every other output cycle in the case when multiple
inputs are constantly arbitrating for the output.

III. PROPOSED SOLUTION
As noted above Bystrov’s arbiter [5] implements a special

register shown in figure 2 that locks the current state of the
request vector until the grant is calculated. The register is
controlled by a single input (lock) and generates a dual-rail [6]
output (outputs w and l). When lock goes high the circuit sets
one of the output signals to logic one, w if request signal r is
active and l if it is inactive. The state of the output persists
while lock remains high. When lock is set low and the request
is removed the output goes low producing an empty dual-rail
code-word.

Mutex

r

lock l

wC

R1

R2

G1

G2

Fig. 2. A single bit lock register.

Furthermore, the register controls the start of arbitration by
enabling signal lock. If request r arrives before lock is set high
the register will not change the state of the output until lock is
set low. Only when lock is enabled will the register produce a
valid dual-rail output. This will activate combinatorial logic
and the arbiter will generate the grant. Most arbiters will start
the next arbitration as soon as the grant is released and at least
one request signal is active. Bystrov’s priority arbiter [5]
follows the same behaviour because the positive edge of signal
lock is generated by the ‘ored’ input request vector. Therefore,
as soon as the grant is released the pending inputs will
reactivate lock and restart the arbiter. This prevents the last

granted input from competing for the subsequent output cycle
as we mentioned before.

A. Principle of Operation
Our solution is based on the assumption that an arbiter is not

the slowest part of a system and a critical section has a longer
period than the arbiter. If this is correct we can decouple the
arbiter from the critical section (CS) and delay the start of the
arbitration to the last possible moment without sacrificing the
performance of the system.

A

B

Arbiter CS

lock

LatchRa

Rb

Ga

Gb

Fig. 3. Principle of the operation.

Figure 3 shows the principle of our approach. The system in
the figure presents a mutually exclusive merge of two inputs
into a single output. The arbiter is decoupled from the critical
section by a latch and signal lock is generated by the output
(rather than by the input as in [5]).

After the reset, lock is active and the system is awaiting data
from the inputs. When at least one of the inputs arrives the
arbiter generates the grant without any delay (apart from the
delay inherent in the arbiter itself). This is normal behaviour
because there is no way to know when the other input will
arrive. After the output has been latched, lock is set low and
the granted input is released. From this moment on, the arbiter
and the critical section start to execute the current cycle
independently with a speed that is limited only by the design of
these two components. Note that if the other input has a
request pending at the moment when the grant is released the
arbiter will ignore that signal until the critical section has
finished executing its current cycle and signal lock is set high.
The behaviour of the system is denoted by the signal transition
graph (STG) in figure 4.

Ra+

lock+

Ga+

Ra- lock-

Ga-

Input
cycle

Output
cycle

Gb+

Fig. 4. Partial STG of the system.

The STG shows that if the input cycle, comprising the

arbiter and the input FIFO, is fast enough to generate the new
request before the positive edge of signal lock arrives, the
input will be able to compete for every single output cycle
providing there is enough throughput available at the input. If
lock is activated before the new request is generated, the
pending request (input B in our example) will win the

E103

3

arbitration as indicated in figure 4 by the positive edge of
signal Gb.

The lock signal is providing similar functionality in this
four-phase design as the “done” signal in the classical two-
phase request-grant-done (RGD) arbiter used by Sutherland in
his Micropipelines work [7].

B. Implementation
Figure 5 shows a gate level circuit of a three input version

of the arbiter with a linear priority module to calculate the
grant vector. The priority module incorporates the C-element
of a lock register (shown in figure 2) to reduce the latency of
the circuit. The circuit does not include the output latch shown
in figure 3. Signal lock is generated by a request vector (OR
gate I4) and an enable signal (E) is basically an inverted
acknowledge signal from the output latch. Asymmetrical C-
elements I1...I3 prevent a MUTEX from being released before
signal lock is deactivated during a return to zero stage of the
arbiter. Inverted C-element I12 does not participate in the
normal behaviour of the arbiter. Its function is to restart the
arbitration when an empty request vector is locked.

Fig. 5. Circuit of the arbiter.

The circuit is quasi delay-insensitive (QDI) [8] which means
that it will operate correctly for arbitrary delays associated
with the outputs of gates and mutually exclusive elements.
However, the correct operation of the arbiter depends on
isochronic behaviour of forks implemented in the circuit.

An STG in figure 6 describes the behaviour of the arbiter.
Since all the inputs follow the same behaviour the STG shows
the traces of only one input in order to simplify the graph and
make it easier to follow.

1) Normal Operation
When at least one input is set high (R1...R3), OR gate I4

asserts signal lock through asymmetric C-element I8. Note
that input E and inverted C-element I12 are both set to logic
one after the reset. At the same time the request propagates
through an asymmetric C-element (I1...I3) and sets signal r to

logic one. Both signals compete for a MUTEX, but with
reasonable wire layout, r should arrive first since it has to
propagate through fewer, lighter loaded gates than the lock
signal (I1 versus I4 and heavily loaded I8). On acquiring the
MUTEX, r causes s to rise. Similar competitions occur for
each MUTEX, to generate the inputs to the priority module
that calculates a grant vector using one of the s signals and the
l signals from the higher priority contenders.

Fig. 6. STG of the arbiter.

After a grant vector is produced the arbiter has to wait for

the environment to remove the granted request and set input E
to zero. The asymmetric C-element at the input (I1..I3) only
releases the MUTEX when r and lock are both low ensuring
that the priority module does not generate an invalid grant
vector. Furthermore, I8 ensures that lock is set low only after
input E has been reset. When the MUTEX is released the
priority module clears the grant and the arbiter is ready for the
next cycle. Note that the next cycle will start only after input E
has been set to a high level and not immediately after the grant
is released. Bold arrows in the STG in figure 6 show this
behaviour.

When a request (R2 or R3) is locked but not granted
because the priority module made a decision to satisfy a higher
priority input, the s signal remains high until the request is
eventually granted. Note that signal r holds the state of the
MUTEX while input E is low and lock is deactivated. This
situation is marked with dashed arrows in the STG.

The third situation that can occur during the normal
operation of the arbiter is when a request arrives after lock has
been generated. When this happens the MUTEX sets output l
to a high level which means that the particular request is not
active and forwards this information to the priority module.
The request has to wait until the next arbitration cycle when it
will be sampled by the MUTEX as described by the following
sequence: lock+, l+, R+, r+, E-, lock-, l-, E+, lock+, s+,
(priority resolution), ...

2) Avoiding Hazardous Situations
The correct operation of the arbiter assumes that an

electrical path from R to r is faster than a path from R to lock.
We believe this is a fairly reasonable assumption for the
reasons given above in section 3.2.1, and becomes even safer
if the arbiter is extended to allow for additional contenders.
However, to accommodate possible failures if this assumption
does not hold (as a result of inadequate placement and/or

R+ r+ s+ G+

E-

R-
lock+

l+ lock- l-

lock-

r- G-s-

E-

E+

E-lock-E+

Mutex

PM

G1

G2

G3

E

Mutex

Mutex

Mutex

C

C

C

C

R1

R2

R3

r1

r2

r3

lock

s1

l1

s2

l2

s3

l3

C

C

C

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

Linear priority module

C
I13

E103

4

routing), gate I12 is included to detect the presence of an
empty request vector locked into the MUTEX elements
(signals l1...l3 are all set to one). In this situation, the priority
module cannot produce a valid grant, and so gate I12 is used to
cause a retry of the locking of the MUTEX elements which
will resolve the situation and avoid a deadlock. This is
undesirable since it increases the arbitration latency, but with
an adequate circuit layout it should occur very infrequently or
not at all.

The following sequence (not shown in the STG) illustrates
this situation: R+, lock+, r+, l+, (deadlock detected), lock-, s+,
(deadlock resolved), lock+, G+, ...

The other hazardous situation that could theoretically occur
with this circuit due to poor layout and routing involves lock
being deasserted as part of the clear-down phase after a
successful arbitration won by R3. Lock falling causes l1 and l2
to fall, but if R2 is waiting, and l2 falls much quicker than l1,
then C-element I10 could see s2 rise before l1 has fallen. To
avoid this situation or others like it falsely triggering G2, the
lock signal is used as an input to the gates in the priority
module.

3) Arbiter limitation
The arbiter presented here has one limitation regarding the

implementation of the priority module. A designer has to make
sure that signals s1, s2 and s3 are only used to generate grant
signals G1, G2 and G3, respectively. This is because signals
s1, s2 and s3 can only be reset by input requests R1, R2 and
R3, respectively.

As an example consider the function of G2=s1⋅s2. Once
signal G2 is asserted it will never be reset because signal w1
will not go low until request R1 (which has set s1 high) is
removed. Unfortunately this cannot happen because the output
is stuck at G2 high and the system deadlocks.

IV. CONCLUSIONS
Providing QoS in asynchronous systems is not a trivial task

and requires careful design both at the circuit and the system
level. There are several timing constraints that have to be met
in order for the system to operate inside the boundaries of the
specifications. The arbiter presented in this paper was
designed to loosen those constraints and to provide designers
with a fairly deterministic asynchronous building block.

The arbiter presents a low latency solution with an
approximately 20 inversions period (the period depends upon
a priority module implemented in the design) and the ability to
guarantee a throughput of more than 50% of the system’s
bandwidth for a single input, the feature that has not been
available with the arbiters that are known to us. The circuit is
quasi-delay-insensitive (QDI) and will operate correctly for
arbitrary delays of gates and wires but it will provide a certain
level of QoS only when several timing constraints are fulfilled
as described in section 3.

REFERENCES
[1] ATM Forum. http://www.atmforum.com.
[2] A. J. Martin, “The Design of a Self-timed Circuit for Distributed Mutual

Exclusion,” In 1985 Chapel Hill Conference on VLSI, pp. 245-260,
(1985).

[3] M. B. Josephs and J. T. Yantchev, “CMOS Design of the Tree Arbiter
Element,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 4(4), pp. 472-476, December 1996.

[4] C. Seitz, “System Timing”, Chapter 7 of Introduction to VLSI Systems
by C. Mead, L. Conway, Addison Wesley Second Edition, 1980.

[5] A. Bystrov, D. Kinniment and A. Yakovlev, “Priority Arbiters,” Int.
Symposium on Advanced Research in Asynchronous Circuits (ASYNC),
Eilat, Israel, pp. 128-137, April 2000.

[6] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design: A
System Perspective. Dordrecht, The Netherlands: Kluwer Academic
Publishers, 2001.

[7] I. E. Sutherland, “Micropipelines,” Communications of the ACM, 32 (6),
pp. 720-738, June 1989.

[8] A. J. Martin, “The Limitations to Delay-Insensitivity in Asynchronous
Circuits,” In W. J. Dally, editor, Sixth MIT Conference on Advanced
Research in VLSI, pp. 263-278, MIT Press, (1990).

