
SpiNNaker: The design automation problem

Andrew Brown1, David Lester2, Luis Plana2, Steve Furber2 and Peter Wilson1

1 Electronics and Computer Science, University of Southampton, UK
2 Computer Science, University of Manchester, UK

{adb,prw}@ecs.soton.ac.uk
{drl,lap,sbf}@cs.man.ac.uk

Abstract. This paper describes the design automation issues and techniques used to design a
massively parallel processing platform – SpiNNaker – from a hardware and systems design
perspective. The emphasis of this paper is addressing the key problem of resource mapping,
where multiple threaded programs are to be targeted onto a hardware platform that consists of
multiple ARM cores and other resources such as memory and networks. In addition, the design
environment is considered to ensure that a designer can program applications onto this
environment in a practical manner.

1 Introduction

SpiNNaker is a massively parallel multi-core computing engine, consisting of a
vast array of ARM cores and a fast interconnect fabric. Although strictly a clocked
system, each ARM core is effectively decoupled from its peers, and individual
processors communicate with each other by means of packets; a packet incident upon
a processor causes an interrupt which handles the packet. The system has been
designed to support the real-time simulation of large aggregates of spiking neurones.
The development strategy is coarsely incremental, but the final goal is to be able to
simulate aggregates of a billion neurones, where each of a million processors is
supporting the emulation of a thousand neurones.

 Various aspects of the system (physical architecture and interconnect fabric,
neural and synaptic models) have been described in detail elsewhere [1-3]. The
overall structure of the system is shown in figure 1. This paper describes some of the
problems associated with mapping the abstract neural connection topology (which
may, but is not required to be, three dimensional) onto a physical two dimensional
array of processors. The requirements are highly analogous to the automated place
and route (APR) problem experienced in chip design, and the evolution of those
problems almost identical. In the world of IC design, components representing the
realisation of a circuit (transistors, resistors, vias and so on) have to be laid out on a
two dimensional silicon die, and then the geometry of the interconnect defined. In the
early days of IC design, this could be done by hand, but as the size and complexity of
systems grew, design automation - initially a luxury - became a necessity. Today, it is
simply not possible to lay out a state-of-the-art IC (5mm x 5mm die, feature size
O(100nm)) by hand. So it is with SpiNNaker: the neural systems we wish to simulate
are vast topologies of interconnected neurones, which have to be mapped onto our
array of processors. The situation is actually worse than in the electronic counterpart:

in electronic designs, design automation tools and techniques capitalise heavily on a
hierarchical input description, an advantage that is largely denied us in the current
problem domain. This paper describes the development strategy for a suite of APR
tools designed to be used to load the SpiNNaker data structures with large (O(109))
interconnected neurones.

II. THE HARDWARE PLATFORM

A. The chip
 The internal architecture of the SpiNNaker chip is depicted in figure 1. Each

chip contains 20 ARM processors (with a small amount of local memory in a Harvard
configuration) and 6 bi-directional inter-chip link ports. These are interconnected by
an on-chip network. External interfaces are also provided to a single bank of chip-

local DRAM and
Ethernet.

 The chips

themselves are
connected (via the
inter-chip link ports)
in a hexagonal mesh,
mapped onto the
surface of a toroid.
This conveniently
avoids edge effects,
although it requires
that the notion of
geometric hop
distance be handled
rather carefully.
However, this
particular design
decision is one of the
more easily
overturned: The

economics of getting silicon right first time are significantly different to changing the
inter-chip layout on a PCB.

 Neurones are mapped statically onto an individual ARM processor, and the
internal state of the neurones mapped onto each die is held in the associated DRAM.
When a spike arrives at a processor, it fetches the state of the relevant neurone from
the DRAM, processes the incoming spike, updates the state of the neurone in the
DRAM and may broadcast spikes of its own.

B. Neural events (spikes)
 Spikes are embodied by a 32-bit packet, a technique known as Address Event

Representation (AER). When a neurone spikes, the spike is a pure asynchronous
'event': all of the information is conveyed solely in the time of the spike and the

identity of the neurone that emitted the spike. In a real-time system time models itself
(possibly with a scaling factor, but we normally assume no scaling), so in an AER
system the identity ('address') of a neurone that spikes is simply broadcast at the time
that it spikes to all neurones to which the spiking neurone connects.

 In SpiNNaker AER is implemented using packet-switched communication
and multicast routing. Although the communication system introduces some temporal
latency, provided this is small compared with biological time constants (which in
practice means provided it is well under 1ms) then the error introduced by this latency
is negligible.

III. PLACE AND ROUTE

A. A traditional methodology
 Real circuits, though they may have hugely different functionalities, are all

remarkably similar from a purely topological perspective. Most logic elements have a
handful of inputs; most nets are connected to very few components, but a very few
nets will be massively connected. As the general place and route problem is NP-
complete, APR tools today all use heuristics to deliver the results. Whilst these are
very powerful, and have been honed over several decades of use and development, a
heuristic wins because it capitalises on the statistical properties of its input dataset. If
you change the nature of the presented problem, the efficacy of a given algorithm
must be viewed with some caution. However, there exists a vast and mature body of
work in this area, and it would be foolish not to utilise it. The APR problem is
conventionally broken down into the sub-problems of placement, global and detailed
routing.

1. Placement
 Placement (in the context of SpiNNaker) involves choosing a mapping

between the neurones of the abstract topological circuit and the fixed geometry of the
processor array. This placement is only weakly influenced by the properties of the
interconnect. Two broad classes of placement algorithms exist: iterative and
constructive. Iterative systems operate by starting with a very crude, computationally
cheap (often both random and unrealizable), and improving upon it in an incremental
fashion. Many different convergence criteria have been studied.

Force-directed placement (iterative)[4] considers the neurones (modules) as point
masses, and the interconnect as springs, of weighted force constant. The system is
allowed to relax to a configuration of minimum energy. This algorithm can be made
extremely fast; although it is derived from the laws of physics, there is, of course, no
necessity to abide by them if it is computationally inconvenient.

Simulated annealing (iterative)[5] also attempts to minimise the overall 'energy' of
a system, by a sequence of random perturbations, the probability of acceptance of
each depending on the improvement wrought as a consequence.

2. Routing
 The routing problem is concerned with finding a route between a set of

points, round a set of obstructions (placed modules) on a two-dimensional plane. The

routing problem is generally decomposed into global and detailed routing, the
difference being the granularity of the analysis.

Routing algorithms are even more diverse and numerous than placement, and offer
the usual spectrum of reliability and quality-of-solution vs. speed. One of the earliest -
and possibly most versatile - is a graph-searching algorithm, known as Lees' maze-
runner[6]. The algorithm can be used at arbitrary levels of granularity, and is
guaranteed to find a solution for a given single route if it exists. On the other hand, it
is relatively slow, and the overall success in finding a solution for a set of routes is not
guaranteed. Numerous enhancements to reduce memory footprint and runtime exist,
but the algorithm in its simplest form is widely applicable to all manner of graph-
searching problems.

B. SpiNNaker-specific issues
 The APR problem in the context of the SpiNNaker system may be

summarized by figure 2: a fragment of circuitry, comprising six neurones, is to be
mapped onto the fixed array of processing nodes. Each node can accommodate
around 1000 neurones. Having decided upon this mapping, the routes (the sequences
of nodes between source and target) must be established, and the routing tables
defined in each node. What is different about the SpiNNaker context?

1. Data size
 Conventional processing speeds have increased by many orders of magnitude

over the past few decades, but even this is not enough to overcome polynomial
complexity in an algorithm when the input datasets become large. APR of electronic
circuits containing a billion components is feasible today in reasonable timescales, but
these circuit descriptions are highly hierarchical, the decomposition being determined
and fixed by human input.

The discussion of where we actually
get (meaningful) circuits of a billion
neurones has yet to be published, but
irrespective of whether these circuits are
generated semi-automatically or
stochastically generated, the APR task
will be formidable.

� 32 bit machines can only address four

billion memory locations; it will not
be possible to even hold (let alone
process) the entire datastructure at
one time in an APR machine.

� Even O(n3) algorithms - generally

considered to be acceptable for APR
problems - will be unusable.

 The unavoidable outcome of

these points is that aggressive

hierarchical decomposition of the neural aggregate descriptions is an absolute
necessity.

2. Chip level topology
 The SpiNNaker chips have been designed with six bidirectional I/O ports

each, lending themselves naturally to a hexagonal placement on a two-dimensional
plane. Six links were chosen to support a measure of fault tolerance in the final
system, by providing a simple triangular bypass to each link if one fails. Identifying
opposing edges of the array of chips folds the system naturally onto a toroid.

 Point-to-point packet routing only requires routing table entries in certain
nodes. Consider figure 3: a packet is to be sent from node S to node T; the route has
been chosen to be S-1-2-3-4-T. The only nodes that require a routing table entry are S
(this is from me), 2 (turn a corner) and T (this is for me). Packets incident on nodes
with no corresponding routing table entry are simply passed through in a 'straight line'

- the default route.

It is necessary to define some
terminology before going further: A
fascicle is the collective noun for a set
of neurones. Other than to note that no
neurone can be a member of more than
one fascicle, the term defines nothing
about any connectivity. There is an
implication (and an efficiency
assumption) that the neurones in a
fascicle share common input fascicles
(probably sparsely connected) and
common output target fascicles (again,
probably sparsely connected). There is
no implication that they are
interconnected with each other, though

they can be (or not). However, none of this is required - it just makes the
datastructure packing more efficient if it holds.

C. The framework
A Fascicle Processor is a single physical ARM core on a SpiNNaker chip. It may

be host to zero, one or more fascicles in the simulation process. The intention is that
of the n ARM cores on a chip, n-1 will be Fascicle Processors. (The other ARM will
be used for housekeeping functions.)

 The overall APR structure is fairly conservative, and outlined in figure 4. It
is a heuristic; the size of the datasets makes iteration a very expensive operation, and
so the design intention is that a neural circuit will pass through the design flow only
once. Feedback of any kind is to be avoided, but if this is not possible, the feedback
loops have been arranged in order of computational expense:

fb1: Should never be necessary anyway.
fb2: Is cheap and may never even be necessary - see later.
fb3: Is cheap, but the usefulness is dubious.

fb4: The Loop of Last Resort: expensive, but allows the system to expand onto
unused SpiNNaker chip sites if any exist.

1. Neurone to fascicle mapping
 Here we take the input neurone circuit (figure 2, for example), and partition

it between the Fascicle Processors. In outline, the algorithm - based on the Kernighan-
Lin partitioning scheme[7] - is as follows:

1. The input graph G is bisected randomly (in terms of synapse count) into two

subgraphs, A and B. (These are potential fascicles - we note that, in general, each
will be far too big to fit into a single SDRAM, certainly for the first few
recursion levels of the algorithm).

2. Define some size limit, h, corresponding to the approximate capacity of a
Fascicle Processor.

3. Find the neurone (in A or B) that (a) is unflagged, and (b) that would make the
biggest improvement (which may,
actually, be the smallest
degradation) to the penalty function
d() if it were to be moved to the
opposite subgraph.

 If Δd() is an improvement, and
does not violate the fascicle size
limit h, then {move it and flag it,
return to the start of step 3}

 // Only here if the best Δd() is
actually a degradation

 If it was the first attempt (i.e. no
neurones are flagged) then stop,
else clear flags and return to the
start of step 3.

4. Recursively apply step 3, replacing
G with A and B at each level. The
size of G will (approximately) halve
at each recursion level; a recursive
branch can terminate when h <
SDRAM size (i.e. we have created
a fascicle that will fit into a node
SDRAM).

The nature of the penalty function,

d(), is worthy of some comment. In the
traditional (electronic) context, it will
represent the number of interconnects
that cross the subgraph partition (i.e.
pass between A and B). Here, however,
because of the way the data is packed
into the SDRAM, we are not attempting

to minimise the cut interconnects, we are attempting to even out the density of
fascicle-fascicle interconnect. In essence, we look at each neurone in turn (subject to
the restrictions in step 3 above), and see what effect would be had on the cut-line
count if it were to be moved to the opposing subgraph. The neurone that is chosen is
the one that minimises the total standard deviation of the cut-line counts.

2. SDRAM data
 The output from the algorithm of the previous section is a set of bitmaps,

which represent the connectivity of the neural circuitry, plus the state. These are
loaded into the SDRAM of figure 1.

3. Fascicle to fascicle processor mapping
 Having partitioned the neural network into fascicles, it is now necessary to

map these onto the individual fascicle processors, as in figure 2. The partitioning
achieved by the last algorithm simply divided the neural aggregate up into fascicles,
but the attributes of geometric position were not assigned to the neurones. This is
done using a combination of Lees algorithm and force-directed placement.

 The force-directed algorithm is ideal for this; it has approximately linear
complexity and delivers an acceptable
placement extremely quickly

4. Routing geometry
 The derivation of the individual

packet trajectories over the system is simple.
For a given point-to-point route, there will
be a maximum of six 'shortest' routes (recall
that the toroidal layout has no edges) and an
arbitrary number of longer possibilities. The
only real selection criterion here is the
capacity of the routing tables at the
inflection nodes. Each route is examined in
turn, and that with the lowest line integral of
routing table occupancy chosen[8]. Thus the
interconnect route density is kept as even as
possible over the routing surface.

5. Routing tables
 The final step in the process of

loading the SpiNNaker ensemble is the
generation of the data to be contained in the
routing tables. The structure of the routing
table hardware is outlined in figure 5. The
32-bit source key is input to a 1024 x 32 bit
tristate CAM. As it is a tristate (0, 1, X)
CAM, in general, multiple hits will be both
possible and common. These hits are written
to a 1024 x 1 bit hit register. All but the
most significant single bit in this register are
discarded, and this single remaining bit

treated as a 1024 bit 1-hot and passed into an address encoder. This generates a 10 bit
binary equivalent, which drives a 1024 x 26 bit lookup RAM. The 26 bit word so

generated consists of a 6-bit nibble and a 20-bit nibble. The 6-bit nibble represents an
n-hot external link indicator (0-5) to which the packet is forwarded (for example
010110 would cause the packet to be routed to external links 1, 2 and 4). The 20-bit
nibble represents an n-hot internal Fascicle Processor address (0-19) to which the
packet will be forwarded, triggering an interrupt as it arrives. (For example,
00001000100100000000 will cause packets to go to Fascicle Processors 8, 11 and 15
on the current chip. It is easy to see how packets may be duplicated by this
mechanism. The 1024 x 32 bit tristate CAM is implemented as a 1024 x 32 bit binary
CAM and a 1024 x 32 bit binary RAM. The RAM simply holds a bit mask indicating
the position of the "don't cares" in the CAM. The corresponding bits in the CAM will
actually be '0' or '1', but will never be read.

IV FINAL REMARKS

 The design, development and realisation of a customised APR tool suite for
the SpiNNaker system is a significant undertaking, requiring resources comparable to
that of the hardware design. Like the hardware, the system is not yet complete,
although the hope and intention is that the alpha release will coincide with the
delivery of the prototype silicon.

 The detailed design and development of the SpiNNaker hardware is an
extremely complicated piece of electronic design, and this naturally makes heavy use
of EDA tool suites. A simulation model of the chip has been built, but unfortunately
(perhaps not unsurprisingly) this is unable to cope with the simulation of neural
systems of any realistic size or complexity. It should be noted, however, that the
datastructures required to support a bespoke behavioural simulator are all present in
the tools described here; the addition of a behavioural simulation capability is not
seen as a vast undertaking.

ACKNOWLEDGEMENTS

The SpiNNaker project is supported by the Engineering and Physical Sciences
Research Council, UK, ARM and Silistix.

REFERENCES

[1] S.B. Furber, S. Temple, A.D. Brown, "On-chip and inter-chip networks for modelling large-scale
neural systems" in Proc. International Symposium on Circuits and Systems, ISCAS-2006, Kos,
Greece, May 2006.

[2] S.B. Furber and S. Temple, "Neural systems engineering", J. R. Soc Interface, 4, no 13, pp 193-
206 Apr 2007.

[3] L.A. Plana, S.B. Furber, S. Temple, M.M. Khan, Y. Shi, J. Wu and S. Yang, "A GALS
infrastructure for a massively parallel multiprocessor", IEEE Design and Test of Computers, 24,
no 5, pp 454-463, Sept-Oct 2007.

[4] N.R. Quinn "The placement problem as viewed from the physics of classical mechanics", IEEE
Circuits and Systems, CAS-26, no 6, pp 173-178, 1979.

[5] M.P. Vecchi and S. Kirkpatrick, "Global wiring by simulated annealing", IEEE Transactions on
Computer-Aided Design, TCAD-2, no 4, pp 215-222, 1983.

[6] C.V. Lee, "An algorithm for path connections and its applications", IRE Transactions on
Electronic Computers, pp 346-364, 1969.

[7] B.W. Kernighan and S. Lin, "An efficient heuristic procedure for partitioning graphs", Bell Sys.
Tech. Journal, 49, pp 291-308, 1970

[8] A.D. Brown, "Automated placement and routing", Computer-aided design, 20,

