
A System for Runtime Loop Optimisation in the Jikes RVM
Jisheng Zhao, Dr Ian Rogers, Dr Chris Kirkham
Department of Computer Science, University of Manchester

Key words to describe the work:

JVM, Dynamic Compiler Optimisation, Runtime Check Elimination, Loop Unrolling.

Key Results:

The creation of a new loop analysis phase for the Jikes RVM and three new optimizing compilation phases.
Between 0.25% (overall) and 3% (best-case) speed-up of the SPECJVM Client 98 benchmark. An improved
array-bound and null check elimination phase that eliminates a greater number of runtime checks than existing
analyses. Two new loop optimisation phases that achieve loop unrolling and eliminate redundant branches for
FOR loops.

How does the work advance the state-of-the-art?:

The Jikes RVM has a redundant check and loop unrolling optimisation system. The redundant check system looks
for known to be true checks and eliminates them. The loop unrolling optimisation replicates loop bodies and their
contents. Our new optimisations use loop analysis and explicit checks to remove a greater number of array-bound
and null checks through explicit testing, and to unroll loops without replicated test and branches. Our results show
the efficacy of runtime loop analysis and runtime checks to improve loop optimisations, and to remove array-
bound and null checks.

Motivation (problems addressed):

Dynamic optimising compilers must trade the time spent optimising code with time taken away from running it.
With Java the implicit throwing of exceptions can cause poor runtime performance. Standard loop optimisations
can also greatly improve performance. A loop analysis phase is desirable in an optimising compiler to generate a
number of optimisations, however, the efficacy of such an approach at runtime isn't clear given the potentially
large computational cost. This work demonstrates the efficacy of the loop analysis approach, which will be built
upon in the future to deliver a range of loop optimisations.

Introduction

The Jikes RVM [1] is a Java Virtual Machine
written in the Java programming language. It has
two compilers: a baseline compiler that translates
the Java bytecode directly into machine code, and an
optimizing compiler that translates to machine code
going via an intermediate representation and a
number of compiler optimisation phases. An
adaptive framework uses runtime profiling data to
recompile the bytecode using the optimizing
compiler to improve the running codes performance.
ie.

The Jikes RVM's intermediate representation (IR) is
made up of instructions with operands, contained
within basic blocks that are part of a control-flow
graph. Useful properties of the IR include it being
mutable (reducing the cost of modifying
instructions), having an initially unlimited number of
temporary registers (these are removed as the code is
prepared for the target architecture) and for
removing the inefficiencies of the stack-based Java
bytecode. The Jikes RVM has a static single
assignment (SSA) form [3] built upon its core IR. A

program is in SSA form if each of its variables has
exactly one definition, thus making the IR only
contain true data dependencies. The Jikes RVM also
captures important control-flow, exception and heap
accesses in its IR using guard, exception and heap
operands. These simplify analyses of the IR and allow
it to be modified in such a way that, as long as the
appropriate dependency information is maintained,
will be safe for future optimisation phases.

Annotated loop analysis

We build upon the SSA form by creating an
additional representation for loops. Loops are
represented in a tree, where loops contained within
other loops are represented as sub-trees within the
tree. Loops must conform to the structure shown in
Figure 1; however, the loop header, body and exit

Figure 1 Loop format

loop predecessor

loop header

loop body

loop exit

loop successor

may be the same basic block. Annotations are added
to the loop that determine the structure and initial,
terminal values of the loop iterator. A loop that has
the correct properties we call affine if the initial and
terminal values are loop invariant and the instruction
to modify the iterator uses a loop invariant stride
value. If these values are constant then we call the
loop constant.

Array-Bound and Null Check Elimination

Existing analyses to remove array-bound and null
checks have relied on adding pi instructions to the
IR in an attempt to propagate known test results and
eliminate redundant tests [2]. We complement this
approach with the addition of a new phase. Our new
phase starts at the leaves of the loop tree and creates
two identical loops, for that node, with and without
checks. To determine the loop to execute at runtime,
a dynamic check is created to check that the null and
array-bound checks will never be executed. The pi
nodes can eliminate redundant checks, and our
approach works in all cases whereas the current
ABCD algorithm has limitations.

Constant Loop Unrolling

In the case of a constant loop, a loop can be
perfectly unrolled, removing all branches and
replicating the body of the loop. We determine
whether to perform constant loop unrolling by
looking at the size of the loop and the number of
iterations it executes for. Creating a large number of
loop bodies can significantly slow the optimising
compiler, so we unroll these loops with a more
general approach.

Affine Loop Unrolling

Current loop unrolling in the Jikes RVM replicates
loop bodies and doesn't modify tests and the use of
iterator values. We improve upon this by creating a
loop unrolled a number of times (currently set at 4)
and independent loop bodies to take up any spare
iterations. We show this in Figure 2.

Result and Discussion

Overall the three optimization phases improve the
geometric mean runtime performance of Jikes RVM
by 0.25% when running the SPECJVM Client 98
benchmark. Figure 3 shows a break down of the
improvements for individual benchmarks.

The results show the optimisations can gain upto a
3% improvement in performance on individual
benchmarks. If mpegaudio is ignored the overall
improvement from the optimisation phases is 1.195%.

The performance of the optimisations is dependent on
applying them when necessary and ensuring the extra
compilation overhead is regained. Using profile
information we hope to better guide when to perform
optimisation. We believe we can also better guide our
optimisations by dynamically modifying thresholds
for their application. We believe further work is
needed to extend the current adaptive system to tackle
the complex dynamic optimisation problem.

Summary

We have introduced a new system for loop
optimisation performed at runtime within the Jikes
RVM. We have demonstrated their performance
improvement on the SPECJVM Client 98. There is
significant work to be done on the optimisation
system structure and on new loop optimisations.

References

[1] The Jalapeño Dynamic Optimizing Compiler for Java, Mical
Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael
Hind, Vivek Sarker, Mauricio Serrano, V.C.Sreedhar, and Harini
Srinivasan. 1999 ACM Java Grande Conference, San Francisco,
June 12-14, 1999.

[2] ABCD: Eliminating Array Bounds Check on Demand
Rastislay Bodik, Rajiv Gupta and Vivek Sarkar. ACM SIGPLAN
2000 Conference on Programming Language Design and
Implementation (PLDI 2000), Vancouver, British Columbia,
Canada, June 17-21, 2000.

[3] Advanced Compiler Design Implementation Steven S.
Muchnick. Morgan Kaufmann Publishers, 1997.

Figure 2 Affine loop unrolling

l oop code

br anch code

l oop pr edcessor

l oop successor

l oop code

br anch code

l oop pr edcessor

l oop successor

l oop code

l oop code

l oop code

br anch code

br anch code

l oop code

l oop code

br anch code

l oop code

Figure 3 Performance of independent optimisation phases

- 3. 5
- 3. 0
- 2. 5
- 2. 0
- 1. 5
- 1. 0
- 0. 5
0. 0
0. 5
1. 0
1. 5
2. 0
2. 5
3. 0
3. 5

- 3. 5
- 3. 0
- 2. 5
- 2. 0
- 1. 5
- 1. 0
- 0. 5
0. 0
0. 5
1. 0
1. 5
2. 0
2. 5
3. 0
3. 5

af f i ne

ar r ay_bound

const ant

_2
08

_j
ac

k

_2
27

_m
t r

t

_2
22

_m
pe

ga
ud

i o

_2
13

_j
av

ac

_2
09

_d
b

_2
05

_r
ay

t r
ac

e

_2
02

_j
es

s

_2
01

_c
om

pr
es

s

