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Key Results:

The creation of a new loop analysis phase for the Jikes RVM and three new optimizing compilation phases.
Between  0.25% (overall)  and 3% (best-case)  speed-up of the SPECJVM Client  98 benchmark.  An improved
array-bound and null check elimination phase that eliminates a greater number of runtime checks than existing
analyses. Two new loop optimisation phases that achieve loop unrolling and eliminate redundant branches for
FOR loops.

How does the work advance the state-of-the-art?: 

The Jikes RVM has a redundant check and loop unrolling optimisation system. The redundant check system looks
for known to be true checks and eliminates them. The loop unrolling optimisation replicates loop bodies and their
contents. Our new optimisations use loop analysis and explicit checks to remove a greater number of array-bound
and null checks through explicit testing, and to unroll loops without replicated test and branches. Our results show
the efficacy of runtime loop analysis and runtime checks to improve loop optimisations, and to remove array-
bound and null checks.

Motivation (problems addressed): 

Dynamic optimising compilers must trade the time spent optimising code with time taken away from running it.
With Java the implicit throwing of exceptions can cause poor runtime performance. Standard loop optimisations
can also greatly improve performance. A loop analysis phase is desirable in an optimising compiler to generate a
number of optimisations, however, the efficacy of such an approach at runtime isn't clear given the potentially
large computational cost. This work demonstrates the efficacy of the loop analysis approach, which will be built
upon in the future to deliver a range of loop optimisations.

Introduction

The  Jikes  RVM  [1]  is  a  Java  Virtual  Machine
written  in  the  Java  programming  language.  It  has
two  compilers:  a  baseline  compiler  that  translates
the Java bytecode directly into machine code, and an
optimizing compiler that translates to machine code
going  via  an  intermediate  representation  and  a
number  of  compiler  optimisation  phases.  An
adaptive  framework  uses  runtime profiling  data  to
recompile  the  bytecode  using  the  optimizing
compiler to improve the running codes performance.
ie.   

The Jikes RVM's intermediate representation (IR) is
made  up  of  instructions  with  operands,  contained
within basic  blocks  that  are  part  of  a control-flow
graph. Useful  properties of the IR include it being
mutable  (reducing  the  cost  of  modifying
instructions), having an initially unlimited number of
temporary registers (these are removed as the code is
prepared  for  the  target  architecture)  and  for
removing the inefficiencies of the stack-based Java
bytecode.  The  Jikes  RVM  has  a  static  single
assignment (SSA) form [3] built upon its core IR. A

program is in SSA form if each of its variables has
exactly  one  definition,  thus  making  the  IR  only
contain true data dependencies. The Jikes RVM also
captures important  control-flow, exception and heap
accesses  in  its  IR  using  guard,  exception  and  heap
operands. These simplify analyses of the IR and allow
it to be modified in such a way that, as long as the
appropriate  dependency  information  is  maintained,
will be safe for future optimisation phases.

Annotated loop analysis

We  build  upon  the  SSA  form  by  creating  an
additional  representation  for  loops.  Loops  are
represented  in  a  tree,  where  loops  contained  within
other  loops  are  represented  as  sub-trees  within  the
tree. Loops must conform to the structure shown in
Figure  1;  however,  the  loop  header,  body  and  exit
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may be the same basic block. Annotations are added
to the loop that  determine the structure and initial,
terminal values of the loop iterator. A loop that has
the correct properties we call affine if the initial and
terminal values are loop invariant and the instruction
to  modify  the  iterator  uses  a  loop  invariant  stride
value. If these values are constant then we call  the
loop constant.

Array-Bound and Null Check Elimination

Existing  analyses  to  remove  array-bound  and  null
checks have relied on adding pi instructions to the
IR in an attempt to propagate known test results and
eliminate redundant  tests  [2].  We complement  this
approach with the addition of a new phase. Our new
phase starts at the leaves of the loop tree and creates
two identical loops, for that node, with and without
checks. To determine the loop to execute at runtime,
a dynamic check is created to check that the null and
array-bound checks will  never be executed. The pi
nodes  can  eliminate  redundant  checks,  and  our
approach  works  in  all  cases  whereas  the  current
ABCD algorithm has limitations.

Constant Loop Unrolling

In  the  case  of  a  constant  loop,  a  loop  can  be
perfectly  unrolled,  removing  all  branches  and
replicating  the  body  of  the  loop.  We  determine
whether  to  perform  constant  loop  unrolling  by
looking  at  the  size of  the loop and the  number  of
iterations it executes for. Creating a large number of
loop  bodies  can  significantly  slow  the  optimising
compiler,  so  we  unroll  these  loops  with  a  more
general approach.

Affine Loop Unrolling

Current loop unrolling in the Jikes RVM replicates
loop bodies and doesn't modify tests and the use of
iterator values. We improve upon this by creating a
loop unrolled a number of times (currently set at 4)
and independent  loop bodies  to  take  up any spare
iterations. We show this in Figure 2.

Result and Discussion

Overall  the  three  optimization  phases  improve  the
geometric mean runtime performance of Jikes RVM
by  0.25%  when  running  the  SPECJVM  Client  98
benchmark.  Figure  3 shows  a  break  down  of  the
improvements for individual benchmarks.

The results  show the optimisations  can gain upto  a
3%  improvement  in  performance  on  individual
benchmarks.  If  mpegaudio  is  ignored  the  overall
improvement from the optimisation phases is 1.195%.

The performance of the optimisations is dependent on
applying them when necessary and ensuring the extra
compilation  overhead  is  regained.  Using  profile
information we hope to better guide when to perform
optimisation. We believe we can also better guide our
optimisations  by  dynamically  modifying  thresholds
for  their  application.  We  believe  further  work  is
needed to extend the current adaptive system to tackle
the complex dynamic optimisation problem.

Summary

We  have  introduced  a  new  system  for  loop
optimisation  performed  at  runtime  within  the  Jikes
RVM.  We  have  demonstrated  their  performance
improvement  on the  SPECJVM Client  98.  There  is
significant  work  to  be  done  on  the  optimisation
system structure and on new loop optimisations.
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Figure 2 Affine loop unrolling
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Figure 3 Performance of independent optimisation phases
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