
A System for Runtime Loop
Optimization in the Jikes RVM

The University of Manchester

Jisheng Zhao

Background

● Jikes RVM Java Virtual Machine
– A good test bed for evaluating research ideas
– Flexible and modularized architecture

● Runtime service (virtual processors, light-weight threads, etc.)
● Optimizing compiler and Baseline compiler
● Memory management (MMTK)
● Written in Java (more than 90% of code)

Background

● Jikes RVM Optimizing compiler
– 3 level optimization frameworks

(Java code already compiled to
bytecode)

– A series of optimizing compilation
phases in different intermediate
representation(IR) levels

– Simple loop optimization framework
– Extended Array Static Single

Assignment (SSA form)

BYTECODE TO HIR

OPTIMIZATION OF HIR

HIR TO LIR

OPTIMIZATION OF LIR

LIR TO MIR

OPTIMIZATION OF MIR

ASSEMBLE TO BINARY CODE

HIR

OPTIMIZED HIR

LIR

OPTIMIZED LIR

MIR

OPTIMIZED MIR

MACHINE CODE

Array Bound Check and Null Check
Elimination

● Observation:
– Array Bound Check on

Demand (ABCD) limited effect
● Consider eliminating

redundant checks using loops
– Test bounds before executing

more optimal loop
– Run original loop if possible

exception

 for (int t1=0; t1 < 100; t1++) {
c1 = phi c0, c2

 gv1 = null_check l0
 gv2 = bounds_check l0, t1
 gv3 = guard_combine gv1,gv2
 t2 = aload l0, t1, gv3

c2 = c1 + t2
 }

Array Bound Check and Null Check
Elimination

optimal_loop:
for (int t1_1=0; t1_1 < 100; t1_1++)
{
 c1_1 = phi c0_1, c2_1
 gv1_1 = true_guard
 gv2_1 = true_guard
 gv3_1 = guard_combine
gv1_1,gv2_1
 t2_1 = aload l0, t1_1, gv3_1
 c2_1 = c1_1 + t2_1
 }

if l0 == null goto sub_optimal_loop
if 100 >= l0.length goto sub_optimal_loop
goto optimal_loop

 sub_optimal_loop:
for (int t1_0=0; t1_0 < 100; t1_0++)
{
 c1_0 = phi c0_0, c2_0
 gv1_0 = null_check l0
 gv2_0 = bounds_check l0, t1_0
 gv3_0 = guard_combine
gv1_0,gv2_0
 t2_0 = aload l0, t1, gv3_0
 c2_0 = c1_0 + t2_0
 }

Constant Loop Unrolling

● Loop Unrolling
– Constant number of

iterations
– Eliminate redundant

branch code

loop code

branch code

loop predcessor

loop successor

loop code

branch code

loop predcessor

loop code

loop code

leave loop code

...

loop successor

Constant Loop Unrolling

● The size of unrolling
factor will affect the
workload of dynamic
compiler
– More unrolled iterations

increases number of
basic blocks

1.78

1.76

1.74

1.72

1.70

1.68

1.66
0 2 4 6 8 10 12 14 16

_205_raytrace

size of unrolling factor

performance(sec)

Affine Loop Unrolling

● A general loop unrolling
strategy
– General model for any

number of iterations
– Eliminate most of the

redundant branch code

loop code

branch code

loop predcessor

loop successor

loop code

branch code

loop predcessor

loop successor

loop code

loop code

loop code

branch code

branch code

loop code

loop code

branch code

loop code

Affine Loop Unrolling

● Compared with the original loop
– 4 blocks of branch code in this model
– Number of iterations should be larger than 4

● Division factors (now, we use 4, 2, 1)
– Other factors, eg. 8, 4, 2, 1
– Increase work load for dynamic compiler (same problem

as constant loop unrolling)

Experimental Result

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
affine

array_bound

constant

_2
08
_j
ac
k

_2
27
_m
tr
t

_2
22
_m
pe
ga
ud
io

_2
13
_j
av
ac

_2
09
_d
b

_2
05
_r
ay
tr
ac
e

_2
02
_j
es
s

_2
01
_c
om
pr
es
s

% changes

Effect on Dynamic Compilation

● Adaptive optimizing compilation in Jikes RVM
● Trade-off between the cost of dynamic compilation

and the benefit got from loop optimization
Executing Code

Compilers
[Base, Opt0, Opt1]

Dynamic Linker

Class Loader

Adaptive Optimization
System

Profiling Data

Compile Class Init

Lazy Compilation
Stub Invoked

Installing the Machine
Code to JTOC including
the lazy compilation stub)

Resolution
Unresolved
Reference

(Re)Compilation Plan

Future Work

● Chip Multi-Threaded (CMT)
● Chip Multi-Processor (Jamaica CMP)

– Allows distributed execution of fine-grained parallel code
sections

● Loop-Level Parallelization (LLP)
● Challenges

– Modeling loops and heap based data dependences
– Java exception semantics in parallel code

Questions

