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Background

● Jikes RVM Java Virtual Machine
– A good test bed for evaluating research ideas
– Flexible and modularized architecture

● Runtime service (virtual processors, light-weight threads, etc.)
● Optimizing compiler and Baseline compiler 
● Memory management (MMTK)
● Written in Java (more than 90% of code)



Background

● Jikes RVM Optimizing compiler 
– 3 level optimization frameworks 

(Java code already compiled to 
bytecode)

– A series of optimizing compilation 
phases in different intermediate 
representation(IR) levels

– Simple loop optimization framework
– Extended Array Static Single 

Assignment (SSA form)
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Array Bound Check and Null Check 
Elimination

● Observation:
– Array Bound Check  on 

Demand (ABCD) limited effect
● Consider eliminating 

redundant checks using loops
– Test bounds before executing 

more optimal loop
– Run original loop if possible 

exception

 for (int t1=0; t1 < 100; t1++) {
c1 = phi c0, c2

       gv1 = null_check   l0
       gv2 = bounds_check l0, t1
       gv3 = guard_combine gv1,gv2
       t2 = aload l0, t1, gv3

c2 = c1 + t2
 }



Array Bound Check and Null Check 
Elimination

optimal_loop:
for (int t1_1=0; t1_1 < 100; t1_1++) 
{
       c1_1 = phi c0_1, c2_1
       gv1_1 = true_guard
       gv2_1 = true_guard
       gv3_1 = guard_combine 
gv1_1,gv2_1
       t2_1 = aload l0, t1_1, gv3_1
       c2_1 = c1_1 + t2_1
 }

if l0 == null goto sub_optimal_loop
if 100 >= l0.length goto sub_optimal_loop
goto optimal_loop

 sub_optimal_loop:
for (int t1_0=0; t1_0 < 100; t1_0++) 
{
       c1_0 = phi c0_0, c2_0
       gv1_0 = null_check   l0
       gv2_0 = bounds_check l0, t1_0
       gv3_0 = guard_combine 
gv1_0,gv2_0
       t2_0 = aload l0, t1, gv3_0
       c2_0 = c1_0 + t2_0
 }



Constant Loop Unrolling

● Loop Unrolling
– Constant number of 

iterations
– Eliminate redundant 

branch code
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Constant Loop Unrolling

● The size of unrolling 
factor will affect the 
workload of dynamic 
compiler
– More unrolled iterations 

increases number of 
basic blocks
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Affine Loop Unrolling

● A general loop unrolling 
strategy
– General model for any 

number of iterations
– Eliminate most of the 

redundant branch code
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Affine Loop Unrolling

● Compared with the original loop
– 4 blocks of branch code in this model
– Number of iterations should be larger than 4

● Division factors (now, we use 4, 2, 1)
– Other factors, eg. 8, 4, 2, 1
– Increase work load for dynamic compiler (same problem 

as constant loop unrolling)



Experimental Result
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Effect on Dynamic Compilation

● Adaptive optimizing compilation in Jikes RVM
● Trade-off between the cost of dynamic compilation 

and the benefit got from loop optimization
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Future Work

● Chip Multi-Threaded (CMT)
● Chip Multi-Processor (Jamaica CMP)

– Allows distributed execution of fine-grained parallel code 
sections

● Loop-Level Parallelization (LLP)
● Challenges

– Modeling loops and heap based data dependences
– Java exception semantics in parallel code



Questions


