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Abstract—The System-on-Chip module described here
builds on a grounding in digital hardware and system
architecture. It is thus appropriate for third-year under-
graduate Computer Science and Computer Engineering
students, for postgraduate students, and as a training
opportunity for postgraduate research students. The course
incorporates significant practical work to illustrate the
material taught and is centered around a single design
example of a drawing machine. The exercises are composed
so that students can regard themselves as part of a design
team where they undertake the complete design of their
own particular section of the system. These design tasks
range from algorithmic specification and Transaction Level
Modeling of the architecture down to describing the design
at the Register Transfer Level with subsequent verification
of their prototype on a Field Programmable Gate Array.
With this approach, students are able to explore and gain
experience of the different techniques used at each level
of the design hierarchy and the problems in translating
to the next level down. Throughout the module, there is
emphasis on using industry standard tools for the modeling
and simulation, leading to the use of the SystemC and
Verilog hardware description languages and Cadence for
the simulation environment.

Index Terms—Integrated circuit design, large-scale sys-
tems modeling, systems engineering education, system-level
design, system-on-chip, transaction-level modeling.

I. INTRODUCTION

The design of a modern System-on-Chip (SoC) is a

complex task involving a range of skills and a deep

understanding of a hierarchy of perspectives on design,

from processor architecture down to signal integrity. At

a time when many organizations are walking away from

the difficult challenge of teaching a System-on-Chip

(SoC) module which incorporates significant practical

work on the system level design required to imple-

ment SoC, a course in this area is set to be given

to third-year Computer Science, Computer Engineering

and Computer Systems Engineering students at The

University of Manchester in the UK. These students will

have undertaken digital design in their first year and an

introductory course in VLSI Design in their second year.

The module aims to show how correctly-working

chips can be obtained by presenting and demonstrat-

ing the techniques and stages used in the design and
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implementation of chips. Since leading-edge industry-

standard software tools and languages are taught and

practiced, the skills gained with this course are directly

transferable into companies and post-graduate research

in this area. Both the taught and practical components

emphasize the methodology of the design process. This

is accomplished through the use of a top-down design

hierarchy, modeling and simulation of hardware using

Hardware Description Languages, partitioning of sys-

tems appropriately to deal with design complexity, and

the use of Computer Aided Design environments for

providing a design flow from the system specification

down to implementation, together with software tools

for design verification.

This course differs from earlier courses in its con-

sistent treatment of all design levels from specification

to implementation. Due to the complexity of the topic

many courses emphasize one level of design. For ex-

ample, in [1], RTL (Register Transfer Level) design

and implementation is emphasized, and lecture topics

focus on on-board peripherals and on-chip components.

In [2], lecture topics cover a wider range of levels but

the practicals only cover the RTL implementations of a

memory display and a video compressor. In [3], on the

other hand, the emphasis is on system-level design using

SystemC.

The guiding principles in the design of the course were

the following:

• Consistency across levels of design: the architec-

ture is constant although progressively refined. The

same verification environment can be used in all

practicals including the processor code developed

by the students.

• A sample system that includes a commercial pro-

cessor, multiple communications channels with

routing and arbitration, and multiple clock domains

is used in the practicals.

• Students are seen as part of a team: they work on

a specific section of the system but are aware of

the complete system design. They have adequate

documentation and clear interface specifications in

order to take their design down from initial concept

to implementation.

• External Intellectual Property (IP) is extensively

used and the integration of the IP and their custom

design is carefully verified.
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• Commercial tools and standard languages are used

across all levels of design.

II. SYSTEM-ON-CHIP DESIGN HIERARCHY

Both the lectures and the practical work follow the

design methodology for top-down SoC design [4], [5].

This methodology partitions the design into a number of

stages where one level is designed, tested and modified

until correct. The process then repeats at the next level

down, beginning with the translation of the design from

the upper to the lower level; unfortunately, this transla-

tion is not always a direct translation. The generic design

hierarchy used is summarized in Fig. 1.

Fig. 1. Design Hierarchy for SoC.

The design starts with the user requirements, which

are then translated into a formal system specification

written in a high level programming language such as

C or C++. This specification is the user’s view of the

system and this model is modified until under testing

it performs all the functions required by the user. This

level is suited to the exploration of different algorithms

for implementing functions, and while the external view

provided has no details of any internal hardware, these

may be implied from the algorithm. Once completed,

the model then represents a ‘gold standard’ by which all

other models at other levels are compared.

Architectural design follows, identifying the func-

tional blocks and their interconnections. Genuine SoC

design demands the use of abstract modeling in order

to give the design the flexibility to explore the hard-

ware/software divide and different architectural arrange-

ments without needing to specify low level detail such as

the communication protocol. For these reasons, a Trans-

action Level Model (TLM) [6] having computational

blocks and separately modeled interconnecting channels

is adopted at this level [7], [8]. Such a model allows

the external behavior of the computational and channel

components to be expressed as a set of information trans-

fers between them. Such a high-level view of the system

requires a high-level Hardware Description Language

for efficient modeling, with SystemVerilog [9], [10] or

SystemC [11], [12] being the main choices.

Different TLMs are possible depending on whether the

computational blocks and the channels are timed or un-

timed. Totally untimed models enable hardware/software

and architectural exploration while totally timed models

give a performance indication. Both model types are used

in the course to ease the transition between the system

specification and Register Transfer Level (RTL) stages.

Hardware implementation at the RTL follows. Here,

the internal functionality is described in terms of the

registers and combinatorial logic functions required [13];

the former require storage elements and so have outputs

which depend on inputs at a previous time, while the

latter has outputs totally defined by the inputs at that

time. The model is usually a behavioral description

which describes the internal data flow and the opera-

tions required. The RTL description is usually written

in the lower level Hardware Description Language of

VHDL [14], [15] or Verilog [16], [17] since these are

compatible with the Computer Aided Design (CAD)

tools used at the lower levels of the hierarchy.

From this point onwards, much of the process is

automated by the CAD tools. Thus an important feature

of the RTL model is to obtain a description that can be

synthesized by the tools. Synthesis takes the RTL design

and translates this to a digital logic gate implementation

on the targeted technology. Although practical consid-

erations have dictated the use of a field-programmable

gate array (FPGA) as the implementation vehicle in the

practical work so that the translation and mapping onto

the FPGA is a single process, the more usual target for

SoC design is semi-custom silicon. In this case, at the

small transistor geometries used in current SoC of 130

nanometers and below, interconnection delays dominate

the timing and these are not accurately known until

layout on silicon. Thus the logic synthesis tool for the

targeted technology needs to be timing aware, and this

is incorporated via a set of timing constraints specified

by the user. The tool uses models to estimate worst

case interconnection timing and so determine whether

the user’s timing requirements can be met.

The synthesized logic design is then placed and routed

onto silicon. This CAD tool performs physically-aware

place and routing synthesis to ensure the integrity of

all signals on the chip. It checks that pick-up between
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adjacent signals, current flows, the supply voltage to

logic elements, surface unevenness arising from multiple

layers on the chip, and antennae effects are within limits

that ensure the correct transmission of binary information

between any two points. After checking the outcome

of the placed and routed design for correctness against

the top level specification, and checking that the design

is sufficiently toleranced with respect to operating and

transistor variations, the design is ready for manufacture.

Following fabrication, the resulting chip needs to be

validated, usually using the same functional tests as at

the system specification stage.

III. COURSE OBJECTIVES

A. Course Aims

Usually, in their first two years students study the

fundamentals of hardware and software design, rang-

ing from computer technology to databases backed by

appropriate practical exercises, which tend to be rel-

atively short in scope and length. Third- and fourth-

year courses are advanced modules on particular themes

and/or courses based round a particular research area;

the SoC module fits into both these categories. The

primary objective of the module is to provide in-depth

theoretical and practical insights into the design method-

ology, focusing primarily on the high-level issues of

system modeling, IP core reuse, architecture modeling

and testing, on-chip interconnect, and RTL synthesis.

The course aims to give students experience through

practicing the methodology and the techniques required

at each level of the design hierarchy. To this end, a single

design problem runs throughout the course. Although

relatively simple and constrained, it is significant enough

to illustrate all the problems likely to be encountered in

more complex multi-processor, multi-bus SoC such as

arbitration, routing and the crossing of time domains.

Furthermore, the use of a single problem and the in-

cremental nature of the practical work gives students a

coherent view of the design flow with the steps which

need to be taken in translating from one level to the next.

An important feature of the practical work is the

understanding gained of industry-standard languages and

CAD environment. Cadence is used for the simulation

environment while SystemC is used for the high-level

architectural modeling. Verilog is used for behavioral

modeling at the RTL because of its ability to be syn-

thesized.

B. Learning Outcomes

The specific student learning outcomes resulting from

completing this course unit are:

1) a knowledge and understanding of the principle

industry-standard tools used in system-level design

2) an understanding of the issues relating to on-chip

interconnect, architecture, modeling, testing and

design verification

3) an understanding of the role of RTL synthesis,

technology mapping, cell libraries and timing clo-

sure in the SoC design process

4) an ability to apply this understanding to the design

of prototype systems

5) an insight into future developments in SoC tech-

nology

C. Contribution to Program Learning Outcomes

This module contributes to an overall program of

study undertaken by Computer Science and Computer

Engineering students in the following four areas:

• Knowledge & Understanding

1) acquire knowledge in an advanced topic in

Computer Science at the forefront of research

2) understand, apply and develop leading-edge

technologies in computer engineering

• Intellectual Skills

1) use methodologies for the development of

computational systems at an advanced level

2) solve problems in an academic environment

that are also applicable to an industrial context

• Practical Skills

1) develop applications to satisfy given require-

ments

• Transferable Skills

1) write reports to a professional standard

2) give talks to a high level of proficiency

IV. COURSE OVERVIEW

Lectures and the practicals run in parallel and are

synchronized throughout the course, with each following

the top-down design methodology. In this way lectures

and practical work support each other. This enables

students to see directly the relevance of taught topics

which they then have to apply in their exercise work.

Similarly, the design example provides illustrations of

good practice and techniques for use in the lectures to

which the students can readily relate. Lectures not only

include the technical aspects required for SoC design

but also the languages required to support the exercises

undertaken.

Table I lists the lectures and practicals in time se-

quence. The lectures occupy 22 lecture slots at two per

week, as shown on the left column of the table with the

numbers in brackets indicating the number of lectures on

a topic if more than one. The lectures follow the themes

of: What do you want?, How do you design it?, How

do you implement it and get it to work?, and Where is
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TABLE I
LECTURE TOPICS

Lecture Topic Practical

setting the scene

system specification Algorithmic Level

C++ system modeling Model (ALM)

TLMs (2)

SystemC HDL (2)

assembly language untimed Transaction

timed TLM (2) Level Model (uTLM)

translating to RTL (2)

timed TLM (tTLM)

behavioral Verilog (3)

design for test

debugging

power issues Register Transfer Level

tools & verification (RTL) and

design flow implementation

timing closure

future of SoC

it all going? In the first few weeks, the lecture sequence

is informed by the need to provide students with the

knowledge and understanding to undertake the practical

exercises.

The practical work also occupies 22 hours and concen-

trates on four areas of the design hierarchy: algorithmic,

untimed TLM, timed TLM and RTL followed by imple-

mentation. The most novel feature of the module is the

scope of the practical work, where not only are students

able to gain real experience of design at different levels

of the hierarchy but also get a view of the processes

required in moving from one level to another through the

use of a single example which contains all the essential

elements of SoC design.

V. DESIGN EXERCISES

The design example chosen is a drawing machine

capable of accepting commands to draw a particular

shape, computing the points to be drawn and writing

these into a memory called the frame store. The contents

of this memory can then be displayed on a screen giving

an immediate visual check on system activity and likely

correctness.

This type of system partitions naturally into two sec-

tions, comprising an environment testbench and drawing

machine modules. The latter perform the actual drawing

of the desired shapes while the former initiates the

drawing operations and can receive the results of the

requests to draw shapes. Since it is difficult for students

with no prior knowledge to get a system up and running,

students are given a complete working basic system, at

each level of the design hierarchy, which is capable of

drawing and displaying points and lines.

The student task is to add another shape and to inte-

grate their design into the system, making any changes

required to the existing system they are given. The

integration of their shape into the system is the major and

most challenging part of the exercises. This task exposes

students to the major problems in SoC design, namely

arbitration to access shared resources, the crossing of

time domains and routing to a specific destination.

While the drawing machine is a relatively simple design

with these features, the techniques used to solve these

are illustrative of those required in locally synchronous

multi-processor multi-bus systems.

So far the shape chosen by students is circle drawing

as this is a computation-friendly algorithm requiring

no multiplication hardware. Testing that the expanded

system functions at each level as expected plays an im-

portant part in their learning process. Equally important

is their ability to analyze the results if incorrect, diagnose

the problem and rectify the design. Thus diagnostic skills

as well as design techniques are enhanced.

A. Algorithmic Exploration

Since students are given the system specification, the

design starts at the algorithmic level. Here, the system

is a top level view of what the user wants the system to

do without any implication of how this might be imple-

mented. Any high-level programming language could be

chosen to describe the system but C++ [18] is adopted

because, at the architectural design levels which follow,

the system description language used is implemented as

a set of C++ library routines.

Fig. 2 shows the logical partitioning of the system into

software blocks performing distinct behavioral functions

with the environment to the left of the dotted line and the

drawing machine to the right. The command interpreter

reads commands from the input stream. Point and line

drawing requests are checked for the correct number of

parameters before being passed to the drawing engine

code for execution; in the case of a line this engine

computes the coordinates of the next pixel to be lit on the

line and then writes the specified color to that coordinate

in the frame store (implemented as a two dimensional

array). The frame store contents are displayed on a CPU

monitor in order to give the students direct feedback of

the memory contents.

Other requests to the command interpreter cause

actions within the environment designed to assist the

students. Thus the “clear” instruction sets the frame

store to all-black, the “sleep” instruction inserts a delay

enabling screen effects which change to be observed,

while the “dump” order writes non-black entries in the
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Fig. 2. Algorithmic Model of the Drawing Machine.

frame store to a text file enabling students to have the

opportunity to verify formally the correctness of their

computational code.

In the first exercise, students create a separate code

block to draw their particular shape. Thus they need

to determine the format of the order and also amend

the command interpreter to handle the request. A key

part of this exercise is to explore different algorithms

for the chosen shape with the emphasis on it being

computation-friendly, since the computations performed

by the algorithm will be reflected in the final hardware

implementation. Thus operations such as multiplication

and division are to be avoided as they involve significant

hardware and such operations can usually be performed

using the simpler, smaller hardware of addition or sub-

traction combined with shifting.

B. Drawing Machine Transaction Level Model

Architectural design follows and here the system is

partitioned into computational blocks with interconnect-

ing communication channels; these channels can be

simple connections such as those used in buses or can

be modules of any complexity, such as buffering data

and performing data manipulation or transformations.

Formally separating out the computation from commu-

nication allows each to be modeled separately, enabling

extremely large and complex designs to be partitioned

between different teams, enhancing the chances of cor-

rect operation when the different sections are merged.

A key step in this process is the formal specification

of the interfaces between modules. Another significant

advantage of this approach is that software development

can commence in parallel with hardware development;

previously when the interconnections weren’t formally

modeled, software development was unable to proceed

significantly until the hardware was defined at the Reg-

ister Transfer Level.

The basic TLM for the testbench and drawing machine

given to students is shown by the solid lines in Fig. 3.

The computational blocks for the drawing machine, to
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Fig. 3. Transaction Level Model.

the right of the vertical dotted line, comprise distinct

functions with the drawing engine and frame store code

evolving directly from the algorithmic level description.

Located also on the drawing machine side, the inquisitor,

in response to a request from the testbench, reads a byte

from the frame store at a requested address and returns

the pixel color to the testbench. The Cathode Ray Tube

(CRT) controller is an autonomous unit which reads the

frame store sequentially and displays the colors read on

a (virtual) screen. The inquisitor provides a verification

tool for use on implemented hardware, which of course

has no software dump facility.

As well as the computational blocks, the drawing ma-

chine has two interconnection channels. The command

channel routes requests from the testbench to the correct

computational block. The drawing engine, inquisitor and

CRT controller can all compete to make read or write

requests to the frame store, and the video channel arbi-

trates to determine which one of these master requests is

forwarded to the frame store. The frame store is a slave

unit as it only ever responds to requests from a master.

An important consideration in developing the test-

bench from the TLM downwards was to provide a

uniform environment for the students. This uniform

environment would mean that any software written to

test their computational block need only be developed

once and could then be reused at each level. The soft-

ware environment provided is similar to that used on

the provided hardware, both of which were previously

developed for use in a Microcontrollers course [19]. The

Jimulator, an in-house emulator written in C, mirrors the

operation of an ARM (Advanced RISC Machine) mi-

croprocessor, taking executable ARM instructions from

an input program and performing them. The emulator

operation is (automatically) linked to, and displayed on,

an in-house graphical debugger named Komodo.

ARM instructions which store data to, or load data

from, particular memory addresses communicate with

the microcontroller emulator transactor. A transactor
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converts from TLM transactions to RTL signals or vice

versa. In the drawing machine, the microcontroller em-

ulator transactor translates the RTL signals from the mi-

crocontroller emulator into the transactions required by

the TLM of the command channel. The microcontroller

emulator also has access to the shared memory used by

the screen and is also able to dump the screen non-black

content to a text file.

SystemC [11], [20], [21] consists of a set of library

functions and a simulation kernel. All of the drawing

machine modules are written in this system description

language. Information transfers between modules as a

set of transactions and the code for the model con-

forms to the three-layer standard comprising application,

protocol and transport layers. This is shown in Fig. 4.

At the top application layer, the code corresponds to

the functional operations performed by the master and

slave computational blocks. Masters produce read and

write requests. Their initiator code transforms this into

a get, put or transport (which is get followed by put)

transaction which passes to the transport layer

initiator

master slave

targetprotocol layer

programmer’s view i/f

tlm i/f

application layer

read()

write()

transport()

get()

put()

get()

put()

transport()

write()

read()

arbitration routing

transport layer

Fig. 4. Three Layer Model for Transaction Level.

The transport layer implements the channels. If several

masters which can simultaneously request transfers are

connected to this channel then arbitration is required

to select just one for transmission. If the channel can

pass transactions to many computational blocks then the

channel has to route the get, put or transport transaction

to the specified recipient. The target code in the slave’s

protocol layer transforms the transactions into appropri-

ate read or write requests and the functional slave code

at the application layer contains the methods to perform

these requests.

C. Untimed Transaction Level Model

Many of the computational blocks used in SoC design

are acquired from firms as intellectual property (IP),

and therefore it is usual to need only to design the

channels and any custom computational blocks required.

Acquired computational blocks are usually supplied with

encrypted descriptions in the system design language

SystemC and in the (lower level) hardware description

language Verilog. These blocks cannot be modified in

any way, and to reflect this real life situation, students are

told that they are only allowed to modify the channels of

the drawing engine, and that all supplied computational

blocks at whatever level must be left as-is. However, to

aid with teaching and learning, the code for all modules

is made visible and available to the students.

SystemC models can be either timed or untimed.

Simulation of a model comprising untimed computa-

tional blocks and channels enables an exploration of

different architectures of the hardware-software divide,

while simulation with timed modules enables a rough

estimate of the system performance to be gained. The

former model yields a system close to the algorithmic

description, while the latter makes it easier to translate

to the hardware description of the RTL level. Usually,

just one SystemC model is supplied. However, the use

of a single model leads to a conceptually large gap for

students to bridge either from the algorithmic level above

or to the Register Transfer Level below. For this reason,

the design exercises start with an untimed TLM and then

move to a timed TLM.

In both cases, students are given a complete, working

basic system and are asked to design and add a custom

block in SystemC based on their selected algorithm for

their chosen shape. This master computational block is

placed in parallel with the drawing engine and inquisitor

blocks and is indicated by the dotted blocks in Fig. 3.

In both TLM models, the insertion of this new computa-

tional block leads to students having to make significant

modifications to the command and video channels in

order to integrate it into the system.

In the untimed TLM, no timing is associated with any

of the modules and operations are considered to occur in

zero time. Thus, the command channel only needs to de-

tect and route draw requests to the new shape block. The

video channel services requests from the master blocks

connected to it. The servicing of these requests occurs in

the order in which they arrive, since the simulation runs

on a single processor imposing an ordering of arrival in

practice. Thus the video channel in the untimed model

need only be modified to accommodate write requests

from the new block to the frame store.

Having integrated their block into the basic untimed

TLM model, students are expected to expand on the

testbench code running in the emulator so as to test their

shape thoroughly and confirm that modifications to the

system have been successful. Again, a screen allows for

a rapid informal assessment as to whether the model

and test code are correct, while the dump facility is also

included to allow for formal verification of correctness.
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D. Timed Transaction Level Model

In moving to a timed TLM, the students need to

convert their new drawing shape model to a timed block,

make appropriate changes to the command and video

channels, test the complete system and verify correct

operation. The test programs developed for the untimed

TLM in ARM assembly language code can again be used

so students can concentrate on their drawing shape and

integration code.

Timing their drawing block involves students in work-

ing through the logical time progression of operations

in order to compute which locations in the frame store

to draw, and allocating states to this sequence. States

are updated if required on the positive clock edge and

although operations are allocated to a state, a state

may occupy several clock periods, for example when

reading from or writing to the frame store. All these

considerations give students experience of the real prob-

lems encountered in design while being contained within

the framework of a relatively confined and manageable

design example. In addition, students do have the ex-

emplar of the line drawing code in the drawing engine

block to assist them in their block design and channel

modifications.

The timed TLM also illustrates important problems

in obtaining correct SoC designs, namely crossing clock

domains and the need to arbitrate when timed masters

simultaneously compete for the same resource. In the

drawing system, the environment to the left of the dotted

line in Fig. 3 operates from one clock, and the modules to

the right all operate from a different clock. These clocks

are independent of one another and thus data can change

at any time on one side with respect to the clock on the

other side. In the model, the synchronization of such data

to the new clock domain is achieved by checking for

such data on the positive clock edge in the new domain.

If no request is currently in progress, the video

channel inspects for incoming master requests on the

positive (drawing machine) clock edge and selects one

for forwarding to the frame store. Arbitration between

masters in the video channel allows students to consider

different methods of achieving this with realistic timings,

since the clock rate on the targeted hardware is known

(20×10−9
s = 20ns) as is the time to read from or write

to the frame store (55ns). Thus the store access time

means that once the video channel grants a frame store

request, then each request granted occupies the video

channel for three clock slots.

A further complication is that the autonomous CRT

controller sends the video channel a request every eight

clock cycles to read four sequential pixels from the frame

store. The controller needs the data at this rate in order

to maintain a continuous image on the screen. Since the

CRT controller is unable to wait for its data, it is given

top priority in the video channel for the servicing of

its requests. Because the CRT controller occupies three

out of every eight time slots, this leaves an average of

five out of every eight of the available time slots for the

drawing engine, new draw shape and inquisitor requests

to the frame store.

Fig. 5. Timing in the Video Channel.

Fig. 5 illustrates the video channel timing when the

drawing engine is also making requests. When the CRT

controller and drawing engine make their first request

simultaneously, the CRT controller request is granted

first and when complete the drawing engine request is

granted. This request completes at the end of the sixth

clock cycle and the drawing engine is able to enter its

next request to the video channel for the start of the

eighth clock cycle. This new request is granted since the

CRT controller won’t present its next request until the

start of the next clock cycle. The CRT is now queued

waiting for the release of the video channel and so will

not be granted access until clock eleven.

In the basic system, the code for the video channel

arbitration assigns a fixed priority to the masters con-

nected to it, with the highest priority request present

selected. The CRT controller is assigned top priority with

the drawing engine next and the inquisitor has bottom

priority. In adding their new drawing shape, students can

assign it a fixed priority or are free to consider other

allocation strategies such as a dynamic priority scheme

allowing masters other than the CRT controller a fair

share of the remaining clock slots.

E. RTL Design

The SystemC description is a user’s view of the

operations of each module and the transactions that take

place between them. While the modules may imply much

of the internal hardware required, the description is not

sufficiently detailed to generate hardware automatically

using CAD software tools. Thus the next stage in the

design process is to specify the internal hardware of each

module, as a behavioral model, using a hardware de-

scription language which can be synthesized by software

tools to provide a logic implementation. The Verilog

hardware description language [5], [16], [17] is chosen

as this is the most commonly used in industry, and hence
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the software CAD tools are designed to work with this

language, including the processing tools mapping a logic

design onto a hardware implementation. The Verilog

simulation of the RTL design runs under the Cadence

CAD environment
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mc cntrl
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req/ack

req/ack
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iq data
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Fig. 6. Register Transfer Level Model.

Again students are given a complete basic system as

shown in Fig. 6. As can be seen, the environment is

exactly the same as before, except that the transactor to

translate from signals to transactions is no longer needed

and has been replaced by an emulator external timing

unit to add timing information to the emulator output;

this unit is not required on the actual implementation as

this output uses the timing on the provided hardware.

An RTL design requires the precise definition of

signals between modules, and a protocol is needed to

indicate to a module when its input lines are valid. Often,

a source is required to hold the request on its output

constant until the receiver signals that the request has

been accepted, indicating that the source can remove

the request. This simple handshake protocol has been

adopted in the RTL design and replaces the request-

response protocol used in the TLMs.

Handshaking is illustrated in Fig. 7. The request line

from the source going high indicates a valid request on

the output lines while the acknowledge going high from

the receiver frees the source and causes it to lower its re-

quest line. The receiver then lowers its acknowledge line

in response to the lowering of the request signal. This

protocol is essentially asynchronous, although actions in

blocks following the receipt of a request or acknowledge

signal are normally not initiated until the positive edge

of the next clock cycle

Again the task for students is to convert their draw

shape to an RTL model, to integrate this into the system

making appropriate changes to the RTL channel descrip-

tions and to simulate the system with the previously gen-

erated test programs so as to observe correct operation

on the screen.

Fig. 7. Communication using Handshaking.

Translation to RTL is the most difficult step in the

whole process, requiring the movement from an abstract

model to a real description of the hardware required.

This stage is thus specifically supported in lectures which

examine in detail the translation of the timed TLM of

the basic system into its RTL representation. For the

computational blocks, much of the functional behavior

in the TLM can be directly ported into Verilog.

Allocating states to the RTL model is far more

complex. This allocation requires consideration of the

hardware and timing required, since allocating too many

parallel or sequential operations to a state is usually not

viable in practice. For example, allocating two additions

to a state will result in an implementation of two adders.

If all other states only require a block to have a single

adder then using two adders for just one state is an

inefficient use of resources. However, the use of just a

single adder would result in an extra state, so affecting

throughput. Similarly, a sequence of actions in a TLM

state may extend over a clock cycle in reality requiring

partitioning into more than one state at RTL. For these

reasons, the number of TLM states used normally ex-

pands at RTL and in the drawing engine, for example,

four TLM states expand to nine at RTL.

Students are encouraged to take the states developed

for their drawing shape in the timed TLM as a starting

point for their RTL design. A major part of the task at

this level is the need for students to consider resource

implications for the first time in the design process. This

exploration of the speed and area trade-offs is again

typical of the design decisions that SoC designers face

in implementing their designs.

In integrating their drawing shape into the system,

again modifications are needed to the command and

video channels. In the former, code must be included

to deal properly with the synchronization required for

moving from one clock regime to another. As previously

explained, data changes from one regime occur indepen-

dently of the timing of the clock in the other regime.

While simulators can synchronize by inspecting the data

state on the new regime clock edge, real hardware may

go into ‘metastability’ – a halfway state between ‘0’

and ‘1’ – if the data change and clock edge are near
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simultaneous, and this state can last an indeterminate

time and have a non-deterministic outcome (i.e., either

‘0’ or ‘1’). Normally hardware in this halfway state

will settle to a valid binary ‘0’ or ‘1’ level if given

an additional time to settle. For this reason, the logic

is given an additional clock period before using the

data from the sending regime and this is coded into the

command channel.

Transfers across the video channel are performed on

a priority basis as before, with different states of the

channel used to effect transfers across it. States are up-

dated on each clock and because the frame store access

is so much greater than the clock period, many states

do little more than effectively provide a delay. However,

extra delays can easily be inserted by just adding extra

states. An extra delay proved to be necessary because the

frame store access was greater than 60ns on the provided

hardware, due to the additional delay introduced by the

wiring between the chips, which required allowing four

clock cycles for the frame store access.

F. Hardware Prototyping

Following a successful simulation of the behavioral

RTL model, the design is ready for hardware prototyp-

ing, which can be viewed as another stage in the veri-

fication process. As time constraints dictate that the full

ASIC (Application Specific Integrated Circuit) route is

not feasible, the student design is mapped onto an FPGA.

This route is also used nowadays by a number of SoC

designers to verify their designs prior to commitment

onto silicon.

The in-house designed board of hardware available

to students [19] is shown in Fig. 8. The microcontroller

comprises an ARM processor (with its own memory) and

an interface to a host workstation. The microcontroller

emulator for the drawing machine system is implemented

on the board’s processor. The frame store is implemented

on the board’s random access memory (RAM). The

RAM and the microcontroller connect to an FPGA.

This general purpose hardware block is configured as

specified by the user to implement specific hardware

functions; the FPGA used is able to provide around

200,000 logic gates. In the design example, it is used

to implement the modules of the drawing machine, i.e.,

the command channel, drawing engine, inquisitor, video

channel, CRT controller and the student’s draw shape.

The monitor shown is driven by the FPGA via a Digital-

to-Analogue Converter (DAC).

When the download of the design from the host onto

the FPGA is complete, the test programs are downloaded

into the ARM processor’s memory and then run on

the emulator. Having been successfully simulated, the

student’s design should run successfully and demonstrate

the benefits of modeling hardware prior to implementing

Fig. 8. Experimental Board.

it. However, if there are errors and on-board debugging

is desired, then the inquisitor has to be activated to return

frame store values to the ARM emulator. Since this is

likely to yield only limited information, a better approach

is to return to the RTL simulation endeavoring to recreate

the fault conditions. This process would be followed by

re-synthesis, download and re-testing on the board, and

demonstrates to students the advantages of implementing

prototype hardware on a reconfigurable FPGA!

VI. ASSESSMENT

A. Learning Outcomes

Assessment of students is based on continual assess-

ment during the time the design runs and on a two-

hour examination at the end. Since the emphasis in the

course is to learn by “doing”, the practical work forms

the larger part of the assessment. Students are expected

to demonstrate their practical work and understanding in

the laboratory sessions as well as to submit short profes-

sional reports. The evaluation is more heavily weighted

towards the demonstration of the practical work.

The examinations are designed to demonstrate those

aspects of the learning outcomes covering knowledge,

understanding and intellectual skills. The practical work

also demonstrates these but also tests the development

of a student’s practical skills. The transferable skills

involving written and spoken communication are mainly

practiced through the written reports and laboratory

demonstrations.

In meeting the learning outcomes, all students suc-

cessfully completed the algorithmic and TLM stages

while most went on to complete the RTL design and

subsequent implementation. The exam marks and written

student feedback confirmed that a large majority of

the students had knowledge and understanding of the

concepts covered in the lectures and in the practical

work.

B. Student Assessment

Official student feedback is measured via a Course

Experience Questionnaire. These are distributed towards

the end of the course and students asked a variety of
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TABLE II
STUDENT ASSESSMENT

Question 2006-2007 2007-2008

The teaching I received was excellent 82% 100%

The material studied was intellectually stimulating 86% 92%

The skills I developed are valuable 90% 92%

The feedback I received was helpful 75% 83%

Teaching and support staff were approachable 93% 100%

Facilities needed for my work were available 82% 83%

The unit content was very relevant to my program 72% 100%

The unit was well integrated with other units on my program 50% 75%

The unit was not unnecessarily difficult 36% 92%

The unit overall was very interesting 90% 92%

questions to which they give an integer score ranging

from +2 indicating strong agreement to −2 indicating

total disagreement. Scores are then averaged to give

mean figures. In Table II, which gives the assessment

over the academic years 2006-2007 and 2007-2008, av-

erage scores have been linearly converted to percentages.

The low score for integration reflects the fact that

most students undertaking the SoC course are straight

Computer Science students and therefore this module

does not integrate well with their other software courses.

Clearly the students in 2006-2007 found the course

difficult and further informal feedback has enabled some

problem areas in moving from the TLM to RTL levels

to be successfully addressed in 2007-2008.

VII. CONCLUSIONS

SoC is a highly challenging topic for including in a

degree course. It includes many difficult concepts and

hardware languages which are unfamiliar to students

and thus represents a large, steep learning curve. Nev-

ertheless, the course described does illustrate that given

a strictly bounded design, the major problems in SoC

design can be demonstrated, with students gaining the

techniques necessary to solve these. These design skills

together with a practical knowledge of industry-standard

tools are directly transferable to firms working in this

area.

However, probably the best advert for the course is

the sense of achievement and enthusiasm that students

get from taking their design from conception down to

implementation. As well as a great sense of satisfaction

from obtaining working hardware, there is also the

perception that designing hardware is fun.

Finally, the authors are also very enthusiastic about

the practical work. Thus, the authors would be happy to

enable other academic institutions to have access to the

code and requests for this should be directed to the lead

author.
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