
HARNESSING JAVA FOR NOVEL CHIP MULTIPROCESSOR ARCHITECTURE SIMULATIONS

Horsnell, M. J. (horsnell@cs.man.ac.uk)
Advanced Processor Technologies Group, University of Manchester, Manchester, UK

Key words to describe the work: Simulation, Java, Chip Multiprocessor (CMP), Serialisation, Object-Oriented

Key Results: A simulation platform for microprocessor architectures written in Java. The simulation platform
allows simulation at varying levels of architectural-model accuracy defined through object-oriented components,
allows simulation state saving through Java language features, and can be hot-started to significantly decrease
simulation time in complex operating environments, and increase productivity when debugging architectural
components, the simulation platform, or compiler generated code targeted at the architecture.

How does the work advance the state-of-the-art?: The ability for a complex simulation platform to save state using
regular Java language constructs, means that the effort required to save and hot-start the simulation platform is
negligible allowing significant time savings for simulations in complex operating environments, for example Java
code execution on top of a Virtual machine running on the simulator.

Motivation (problems addressed): As the number of transistors on a chip continues an upward trend towards Giga-
scale integration, new design paradigms need to be considered to ensure efficient use of the increase in resources.
Chip-multiprocessors are considered a forerunner amongst these paradigms. However, the design space for these
architectures is vast, and simulation is the only viable approach to evaluating such architectures. The overall
motivation of this work is the ability for increased simulation productivity using features of the Java language
applied to microprocessor simulation. The work will help to assess possible designs for the next generation of
microprocessors.

Introduction

A core topic of microprocessor research at present is
the issues associated with Giga-scale integration1 int
architectures anticipated to feasible by 2013 [1].
These architectures provide an approximately 5-fold
increase over current transistor budgets of today's
largest microprocessors, however with this additional
budget come new challenges in the design of next
generation microprocessors.

The majority of current microprocessors designs
employ increasing amounts of available transistors in
building more dynamically scheduled, super-scalar
and deeper pipelined uni-processors, in order to
exploit more instruction level parallelism (ILP). The
application of such design paradigms to future
processors is likely to counter problems[2][3] such as
wire-delay limitations, diminishing benefits from
further ILP exploitation, and increased design time.

An alternative design approach, whereby multiple
processing cores are integrated on a single die, chip-
multiprocessor (CMP), is a viable forerunner. CMPs
can reduce design time through component
replication, overcome wire-delay limitations as the
circuit is partitioned decreasing the critical length of
global clock distribution, and can exploit thread level
parallelism and speculative execution orthogonally to
ILP in order to increase the overall throughput of the
microprocessor.

1 Giga-Scale Integration (GSI) – integrated circuits containing
upwards of 1x109 transistors.

The design space for CMPs however is vast. Standard
evaluation of processor pipelines, caches and memory
configurations is supplemented by coherence,
hierarchy, topology and scalability options which
must also be assessed. The only viable approach to
such assessment is through simulation.

Simulation is an essential tool in ensuring both
functionality and performance of a new
microprocessor design. The execution time of such
CMP simulations can increase exponentially with the
number of components in the system. As with any
such simulation there is a trade-off between speed and
accuracy. In some cases functional simulations may
allow a novel feature to be evaluated, however cycle-
accurate simulation may be necessary when testing
the functionality of new coherence protocols or work
distribution schemes where accurate timing is
required. Compromises in scaling workloads and
machine parameters can also be considered[4].

This paper presents several advantages of using Java
as a language for constructing simulation tools for
evaluating different chip multiprocessor architectures,
in particular the use of hot-starting to remove
constant simulation warm-up time overheads in
complex operating environments.

Novel chip multiprocessor simulation using Java

The simulator being developed as part of this work
advances the work carried out on other simulators[5]
[6][7], by producing a platform which can be

reconfigured to test different architectural structures
using previously built components, and also allows
simulations to occur in parallel across distributed
resources[8]. Recently the simulator has been
extended to allow more efficient simulation through
the application of several Java language features.

Variable Model Accuracy using Inheritance - As
previously discussed there is often a need to run
simulations at varying levels of accuracy. The
simulation platform has been extended to provide a
functional processor model, in addition to the cycle-
accurate model produced previously. The functional
model removes the complexities associated with
pipeline hazards and delays, resulting in an
approximately 10 times speed-up. This model was
achieved through unification of code into a
Processor superclass, from which both
CycleAccurate and Functional are simply
subclasses, with benefits coming from reuse of the
common code and the ability to dynamically change
the accuracy of the processor during the simulation if
a critical stage needs to be evaluated with greater
accuracy.

Hot-starts using Serialisation - Java, as a high-level
object-oriented language allows almost automated
serialisation of classes. When applied to a simulation
platform this allows a rapid method by which the
complete state of the simulation can be saved into a
binary format with very little effort by the
programmer. This binary file can later be reloaded to
allow hot-starting of simulations.

The JAMAICA architecture[9] which is currently
simulated on the platform presented, is being targeted
by a complete port of the IBM Jikes Research VM2.
This VM is bootstrapped into the simulator and
initialises itself such that standard Java class files can
be run on top of the VM on top of the JAMAICA
architecture, used for research into the benefits of
dynamic compilation on a CMP architecture[10]. This
complex operating environment, takes approximately
2 billion clock cycles to get to the point where the
simulator loads the Java test file.

Simulation
Phase

Cycles Execution Time (s)

Cycle-Accurate
(~1.5 MIPS)

Functional
(~12 MIPS)

Bootstrapping ~ 2.0 x 109 1333 166

Test file
Execution.

~ 2.0 x 106

1.33 0.16

Table 1 Execution time spent in simulation phases

Table 1 shows approximate time taken to run the
bootstrapping of the VM compared to the time taken
to run a simple test class. If a batch of tests need to be
run, it can be seen that the ability to hot-start (which

2 VM – Virtual Machine (here referring to a Java VM).

takes less than 3 seconds) on the simulator
considerably reduces the total time spent in simulation
as it removes the bootstrapping phase.
Hot-start can also aid in complex debugging using
the simulation platform, where tracking a bug in either
the architectural model, the simulator or the executing
code requires a large period of execution prior to the
execution of the bug. The simulated state prior to the
erroneous execution can be saved and resumed many
times, until the problem is located without having to
repeat the initial simulation phase. In the case of
running a VM on top of the simulator where dynamic
compilation may cause different in-lining of code and
loading of classes into different areas in memory,
exact state replication can also be achieved using this
saved state.

Conclusion

Simulation is a necessary tool in the evaluation of the
large design space of future GSI microprocessors.
Application of some features in Java, and other high-
level object-oriented languages can provide
considerable benefits when requiring efficient
productivity from simulation. In particular hot-
starting can be used to resume simulation for efficient
batch testing and debugging in complex
environments.

Bibliography
[1] D. Burger, J.R. Goodman. Billion-Transistor Architectures,
IEEE Computer, Sept. 1997, pp 46-49.

[2] M Bohr. Interconnect scaling - the Real Limiter to High
Performance ULSI. In Proceedings of the International Electron
Devices Meeting, pages 241 244. IEEE, IEEE Press, 1995.

[3] D. Matze. Will Physical Scalability Sabotage Performance
Gains? IEEE Computer, pages 37-39, September 1997.

[4] D. Culler, J. Singh with A. Gupta. Parallel Computer
Architectures - A Hardware/Software Approach, Morgan
Kaufmann Publishers, 1999, pp 233-237.

[5] M. Chidester and A.George. Parallel Simulation of Chip-
Multiprocessor Architectures, ACM Transactions on Modelling
and Computer Simulation, 12(3), July 2003, pp 176-200.

[6] D. Burger and T. Austin. The SimpleScalar Tool Set, Version
2.0, University of Wisconsin-Madison, Computer Sciences
Department Technical Report 1342, June 1997.

[7] C. Hughes, V. Pai, P. Ranganathan, S. Adve. Rsim:
Simulating Shared-Memory Multiprocessors with ILP Processors,
IEEE Computer, February 2002, pp 40-49.

[8] M. Horsnell. Cycle-Accurate Distributed Chip Multiprocessor
Simulation, Proceedings of PREP2004,

[9] G. Wright. A single-chip multiprocessor architecture with
hardware thread support, Ph.D. Thesis, University of
Manchester, January 2001.

[10] I. Watson, A. Dinn, C. Kirkham et al. An Investigation of
Dynamic Compilation for Parallelism in a Single-Chip
Multiprocessor. Technical report, University of Manchester,
2003.

