
Self-Timed Full Adder Designs based on Hybrid Input 
Encoding 

P. Balasubramanian, D.A. Edwards and C. Brej 
School of Computer Science, 

The University of Manchester, 
Oxford Road, Manchester M13 9PL, United Kingdom. 

E-mail: {padmanab, doug, cbrej}@cs.man.ac.uk 
  

Abstract—Self-timed full adder designs based on commercial 
synchronous resources (standard cells), constructed using a mix 
of complete delay-insensitive codes adopted for inputs are 
described in this paper. While one of the adder designs 
incorporates redundancy into the logic, the other design does 
not. Comparisons have been carried out with respect to various 
self-timed full adder designs which employ only a single widely 
used delay-insensitive input encoding for both the inputs and 
outputs. It has been found out from exhaustive simulations that 
incorporating redundancy into the logic actually benefits in 
terms of delay, but a non-redundant implementation proves to 
be beneficial with respect to power and area parameters.   

I. INTRODUCTION 
Future deep sub-micron technologies are characterized by 

parametric variations of devices. The latest Semiconductor 
Industry Association’s ITRS design update projects increase 
of parameter uncertainty from a current 10% to 25% by 2020 
[1]. In such a scenario, self-timed (ST) design gathers interest 
as a promising solution. This is mainly because ST circuits, in 
general, guarantee the correctness of operation irrespective of 
delays encountered in the design components or in the 
communicating signal wires, as they have the innate ability to 
absorb the deviations/variations of device characteristics. 
Although it is an attractive alternative to conventional digital 
logic design, it can be noticed that the vast majority of existing 
commercial EDA tools ideally support synchronous circuits. 
Therefore, in order to utilize the sophistication and advantages 
offered by industry-standard EDA tools and synchronous 
resources (standard cells), an attempt was made to realize ST 
logic (especially, a ST full adder design) and also validate 
them using the above in [2]. Additionally, realization of higher 
order C-elements functionality using standard cells was done, 
whilst preserving the property of indication (completion). ST 
full adder designs based on different approaches [3] – [8] were 
also realized in a similar fashion using elements of a standard 
cell library. However, a majority of the above approaches 
consider implementation targeting a widely used delay-
insensitive (DI) encoding scheme, namely dual-rail encoding 
(DRE). This paper considers implementation, using a mixture 
of two well known DI encoding schemes for inputs and 

elucidates the benefits gained by such an approach for the case 
of a robust ST ripple carry adder (RCA) realization.  

II. DATA ENCODING AND HANDSHAKING PROTOCOL 
In this paper, we shall restrict our focus to full adder 

designs adhering to the 4-phase handshake protocol 
employing DI encoding; the robust and classic approach 
rooted in Muller’s pioneering work [9].  

Though 1-of-2 (DR) and 1-of-4 data encodings are the 
well-known DI codes, the DR code has been widely preferred 
owing to its simplicity and the resulting ease of circuit design. 
In fact, it is the simplest member of the general family of DI 
m-of-n codes [10]. In a DRE scheme, a data bit x is encoded 
into two wires, namely x1 and x0, where x1 and x0 are 
identified as true and false bits respectively. A logic ‘1’ is 
represented by x1 assigned a logic ‘1’ and x0 assigned a logic 
‘0’, while a logic ‘0’ is represented in the reverse manner. The 
state of x1 and x0, both becoming ‘0’ is referred to as the 
spacer state and both x1 and x0 are not allowed to become ‘1’ 
simultaneously, as this is an invalid and illegal state. While 
DRE is used to represent only one bit of information, a 1-of-4 
code, on the other hand, can be used to represent two non-
redundant bits of information at a time by asserting only one 
of the four physical lines as logic high, as shown in Table 1. 
However, as in DRE, an all-zeroes state represents the spacer.   

TABLE I.  INPUT DATA REPRESENTATION IN DUAL-RAIL AND 1-OF-4 
ENCODING STYLES 

Single-rail inputs DRE 1-of-4 encoding 
a b (a1 a0); (b1 b0) (i0 i1 i2 i3) 
00 (01); (01) (0001) 
01 (01); (10) (0010) 
10 (10); (01) (0100) 
11 (10); (10) (1000) 

 

It can be noticed from Table I, that for representation of 2 
bits (a, b) of information, a 1-of-4 encoding approach would 
require only half as many transitions as that of a DRE 
approach. Consequently, the dynamic power dissipation of the 
former scheme is very likely to be better than that of the latter, 
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due to reduced switching activity. This phenomenon was 
confirmed with the practical example of an ARM thumb 
instruction decoder in [11].   

Both these coding schemes are known to be unordered 
[12]. A binary coding scheme is said to be unordered, when 
none of its code words is contained in any other codeword. In 
simple terms, the positions of ones in a codeword are never a 
subset of the positions of ones in a different codeword. When 
a DR code and a 1-of-4 code are used to represent exactly one 
bit and two bits of information respectively, they are said to be 
complete [13]. A code is said to be complete if and only if it 
contains all code words, as implied by its definition. Even 
with one missing codeword, it would be labeled ‘incomplete’.      

The 4-phase handshake protocol is also known as the 
return-to-zero protocol, wherein input data alternates between 
a sequence of valid data and a sequence of empty data (all 
zeroes, also called spacer). It is explained through figure 1, 
using a simple DR encoded data bus. Nevertheless, the 
explanation remains valid for encoding using any DI code.  

 

Figure 1.  Four-phase handshake protocol 

The 4-phase protocol consists of the following 4 steps:  

• The DR data bus is initially in the spacer state. The 
sender transmits the codeword (valid data). This 
results in low to high transitions on the bus wires, 
which correspond to non-zero bits of the codeword. 

• After the receiver receives the codeword, it drives the 
Ackout (Ackin) wire high (low).  

• The sender waits for the Ackin to go low and then 
resets the data bus (i.e. it is driven to the spacer state). 

• After an unbounded (positive), but finite amount of 
time, the receiver drives the Ackout (Ackin) wire low 
(high); thereby the system is made ready to proceed 
with the next transaction.     

III. ADDER DESIGNS BASED ON HYBRID INPUT ENCODING 
The hybrid input encoding (HIE) approach comprises of 

two different encoding schemes, adopted for the adder inputs: 
1-of-4 encoding scheme for the augend and addend bits 
combined, and a DRE scheme for the input carry. The 
assignment of 1-of-4 encoding states for the augend and 
addend inputs are as mentioned in Table I. However, a 
different assignment can also be made. The sum and carry 
outputs are encoded in a DR format. Let the augend and 
addend inputs of the ST full adder be identified by a 1-of-4 
codeword as (i0, i1, i2 and i3) and let cin1 and cin0 be the DR 

carry input. The adder’s sum and carry outputs are specified 
by Sum1, Sum0 and Cout1 and Cout0 respectively. The 
general equations governing the DR sum and carry outputs 
would then be given by,   

Sum1 = i3cin1 + i2cin0 + i1cin0 + i0cin1     (1) 

Sum0 = i3cin0 + i2cin1 + i1cin1 + i0cin0     (2) 

Cout1 = i2cin1 + i1cin1 + i0cin0 + i0cin1     (3) 

Cout0 = i3cin0 + i3cin1 + i2cin0 + i1cin0     (4) 

Amongst the different ST design methods proposed [3] – 
[8], [8] is suitable for logic implementation with any generic 
m-of-n codes, while the remaining suit realizations primarily 
targeting a DRE approach. Hence, the proposed adder designs 
would be compared, only with that resulting from [8]. 
Methods [3] and [6] can be used for function block realization 
(asynchronous equivalent of a synchronous combinatorial 
logic circuit), pertaining to strongly indicating or weakly 
indicating regimes; [4] and [8] enable function block 
realization corresponding to strong-indication alone and [7] 
facilitates function block implementation corresponding to the 
weak-indication timing model. Function blocks need to be 
indicating, apart from satisfying the required functionality. 
This property enables them to be transparent to handshaking, 
as implemented by their surrounding latches.  

Function blocks could adhere to strong-indication or weak-
indication timing models: strongly indicating – if no outputs 
(spacer/valid) are produced until all inputs (spacer/valid) have 
arrived, and weakly indicating – if some outputs (spacer/valid) 
could be produced based on even a subset of the inputs 
(spacer/valid). However, in the latter case, at least one output 
(spacer/valid) should not have been produced till all the inputs 
(spacer/valid) have arrived. The above indication criteria have 
been formulated by Seitz in [3]. Though [5] deals with ST 
implementation of Boolean functions, it suffers from certain 
drawbacks. For the worst scenario of all the false outputs of a 
function block evaluating to logic high, when suitable valid 
input data has been applied, all the sum terms of the 
monotonic DR network would have become enabled. When 
spacer is applied, even with a single sum term becoming 
disabled, and with OR-network and CE-network being reset, 
all the false outputs may evaluate to the correct empty state. 
This is a problematic situation, as transitions on the other 
intermediate gate output nodes would not get properly 
acknowledged, thereby giving room for creation of gate 
orphans. Gate orphans are unacknowledged transitions on gate 
output nodes. Though they may not necessarily be hazardous, 
they are undesirable as they can lead to erroneous output 
states. Hence, timing assumptions are necessary to guarantee 
proper ST operation. Moreover, the design method is bound to 
suffer from high power dissipation, since all the sum terms are 
activated for the worst case, leading to high switching activity.  

It is to be noted that all the above methods are bound by 
physical or practical limitations, in that, with increase in the 
number of inputs, either the designs become physically 
unrealizable, mainly because of the fact that there occurs a 
linear growth in the size of the canonical product term which 
is accompanied by an exponential increase in the input state 
space or that the synthesis procedure cannot be expected to 
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terminate in a realistic amount of time, though a practical 
solution is feasible. In general, indicating synthesis solutions 
for combinatorial logic functions are large, more so for 
functions with several inputs. But they inherently consist of 
the attractive features of asynchronous design; low EMI, high 
modularity, elasticity, power consumption only for useful 
activity and robustness, by being tolerant to variations in 
supply, noise, process and temperature variations. Hence, 
indicating synthesis solutions prominently figure in data path 
logic realizations, in that, the resulting circuitry is usually 
iterative; not the case with arbitrary combinational logic. 
Nevertheless, it should be noted that methods [7] and [8] 
would lead to synthesizable solutions, as they incorporate 
speed-independent decomposition.    

A ST full adder design based on [8], conforming to the 
HIE approach, is shown in figure 2. As mentioned earlier, it 
can be classified as strongly indicating, thereby the DR sum 
and carry outputs acknowledge the arrival of all the inputs. 
Henceforth, we shall refer to this as Toms_HIE adder.  

 

Figure 2.  Toms’ ST full adder based on hybrid input encoding 

Two novel ST full adder designs have been proposed in 
this work, based on the HIE approach. One of these does not 
contain logic redundancy and we shall identify it by the 
terminology proposed_HIE_NRL adder; the other design 
encompassing logic redundancy shall be identified as 
proposed_HIE_RL adder, where the acronyms NRL and RL 
expand as non-redundant logic and redundant logic 
respectively.  

 

Figure 3.  Proposed ST full adder design without redundant logic 

Figure 3 shows the realization of the proposed_HIE_NRL 
ST full adder. This adder pertains to weak-indication, wherein 
only the DR sum output acknowledges the arrival of all the 
inputs, while the DR carry output need not. This property 
enables the DR carry to propagate faster from a lower order 
adder stage to its successive higher order adder stage, in the 
cascade. It is also well known that a valid combinatorial 
cascade of strong/weak-indication function blocks is itself a 
strong/weak-indication function block [3].  

The following figure shows the proposed_HIE_RL adder 
design. Similar to the previous one, this full adder is also 
weakly indicating, with the responsibility of indication wholly 
entrusted on the DR sum output.  

 

Figure 4.  Proposed ST full adder design with logic redundancy 

In figure 4, gates C1 and C2 denote 2-input C-elements, 
while gates g1 and g2 represent 2-input AND gates. It can be 
noticed in the diagram, that the logic realized by C1 and C2 are 
equivalent to that of g1 and g2 respectively, for transitions. 
Hence, redundancy is made implicit in the design. This proves 
to be beneficial in two ways. During the spacer phase, all the 
sum outputs could be reset in a parallel fashion, as the DR 
carry output of the kth stage could be reset based on its 1-of-4 
encoded augend and addend inputs, and the DR sum output of 
the (k+1)th stage depends only on the DR carry input from the 
kth stage. However, this unique feature of fast reset could not 
be captured using a static timing analyzer that is 
predominantly used for timing analysis of synchronous 
circuits, and in this work, designs have been implemented 
using synchronous resources and validated using widely used 
industry-standard synchronous tools. There is also a benefit in 
terms of improvement in delay during the valid data phase. 
This would become obvious by comparing the designs 
portrayed by figures 3 and 4; it can be observed that the carry 
propagation path delay is lesser in case of proposed_HIE_RL 
adder than the proposed_HIE_NRL adder. This is further 
substantiated by the results mentioned in the next section.  

IV. SIMULATION MECHANISM, RESULTS AND DISCUSSION 
The ST full adder designs, based on HIE, are analyzed 

using the delay-insensitive version of an n-bit RCA topology, 
depicted in figure 5. As can be seen, the augend and addend 
adder inputs are 1-of-4 encoded, while its carry inputs, sum 
and carry outputs are DR encoded.  
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All the adder’s outputs have been uniformly configured to 
possess fanout-of-4 drive strength, while their inputs are 
configured with the driving capability of a minimum sized 
inverter in the library. Similar delay-optimized completion 
detection (CD) circuits were used for all the ST adders, to 
maintain uniformity. Minimum sized buffer cells were 
provided within all the adder modules, mainly to eliminate 
timing violations, that results from a single acknowledge input 
feeding all the adder outputs, in every stage of the cascade. 
Experimentation has been carried out across the typical, worst 
and best case corners of the high-speed 130nm Faraday 
CMOS process (which is compatible with the 130nm UMC 
CMOS foundry process). Cadence NC-Verilog has been used 
for functional simulation and also to obtain the switching 
activity files for all the gate level simulations, while Synopsys 
PrimeTime and PrimeTime PX have been used for delay, cells 
area and power evaluation respectively, inclusive of wire load 
information. A virtual clock has been used, only to act as a 
remote reference to guide the application of inputs to the ST 
adders at a specific data rate and does not form a part of the 
designs in any way. The minimum support for asynchronous 
logic, offered by synchronous tools has been exploited, by 
avoiding timing loop breaking while performing static timing 
analysis. The inputs of all the ST full adders correspond to the 
input trace of a simple combinatorial benchmark circuit, dc1,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the MCNC benchmark set. The inputs are assumed to arrive 
from the environment and are fed to the adders every 30ns, 
50ns and 20ns for the typical, worst and best case library 
specifications respectively.  

TABLE II.  AREA METRIC FOR DIFFERENT ST ADDERS 

Adder realization 
style 

Cells area 
(μm2) 

Seitz_DRE (Strong) [3] 7100 
Seitz_DRE (Weak) [3] 6276 
Singh_DRE (Strong) [4] 7364 
DIMS_DRE (Strong) [6] 8932 
DIMS_DRE (Weak) [6] 9508 
Folco et al._DRE (Weak) [7] 5476 
Toms_DRE (Strong) [8] 6404 
Proposed_DRE (Weak) [2] 5924 
Toms_HIE (Strong) [8] 4868 
Proposed_HIE_NRL (Weak) 3940 
Proposed_HIE_RL (Weak) 4260 

 

The simulation results pertain to a 32-bit DI RCA, 
constructed using different ST full adder modules. Table II 
lists the area metric for realization of a 32-bit DI RCA based 
on various ST full adder modules. Table III gives the delay 

 
Figure 5. Delay-insensitive (self-timed) version of an n-bit ripple carry adder topology. The target library (130nm Faraday bulk CMOS process) 

features an AND gate with a maximum fan-in of 4 and an OR gate with a maximum fan-in of 3 
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metric of the different ST adders and Table IV lists the power 
components of the adders, for a typical case corner. In a 
similar manner, Tables V and VI and Tables VII and VIII 
specify the design metrics of the various ST adders, across 
worst case and best case library corners respectively. It can be 
observed from the previous tabular column, that amongst all 
the other ST adders, Toms_HIE adder has the best area metric. 
Nevertheless, it is inferior to the proposed_HIE_NRL and 
proposed_HIE_RL adders by 23.6% and 14.3% respectively.  

TABLE III.  DELAY METRICS OF VARIOUS ST ADDERS                     
(TYPICAL CASE – 1.2V, 25°C) 

Adder realization 
style 

Maximum data 
path delay (ns) 

Function block 
delay (ns) 

Seitz_DRE (Strong) 20.54 19.88 
Seitz_DRE (Weak) 11.36 10.71 
Singh_DRE (Strong) 26.01 25.34 
DIMS_DRE (Strong) 22.45 21.79 
DIMS_DRE (Weak) 21.04 20.39 
Folco et al._DRE (Weak) 14.67 14.02 
Toms_DRE (Strong) 17.82 17.16 
Proposed_DRE (Weak) 10.52 9.86 
Toms_HIE (Strong) 17.78 17.12 
Proposed_HIE_NRL (Weak) 14.04 13.38 
Proposed_HIE_RL (Weak) 10.13 9.48 

TABLE IV.  POWER COMPONENTS OF ST ADDERS (TYPICAL CASE) 

Adder  
realization 

style 

Power dissipation components 

Total  
(μW) 

Dynamic  
(μW) 

Leakage 
(nW) 

Seitz_DRE (Strong) 248.57 246.34 2225.66 
Seitz_DRE (Weak) 198.52 196.65 1875.81 
Singh_DRE (Strong) 246.40 244.36 2040.49 
DIMS_DRE (Strong) 186.43 184.28 2147.89 
DIMS_DRE (Weak) 195.67 193.46 2206.59 
Folco et al._DRE (Weak) 183.85 182.27 1579.70 
Toms_DRE (Strong) 186.18 184.40 1785.47 
Proposed_DRE (Weak) 192.21 190.63 1586.49 
Toms_HIE (Strong) 151.46 150.00 1462.99 
Proposed_HIE_NRL (Weak) 160.32 159.08 1242.43 
Proposed_HIE_RL (Weak) 162.91 161.58 1323.54 

TABLE V.  DELAY METRICS OF VARIOUS ST ADDERS                          
(WORST CASE – 1.08V, 125°C) 

Adder realization 
style 

Maximum data 
path delay (ns) 

Function block 
delay (ns) 

Seitz_DRE (Strong) 35.02 33.82 
Seitz_DRE (Weak) 19.62 18.44 
Singh_DRE (Strong) 44.81 43.64 
DIMS_DRE (Strong) 38.70 37.54 
DIMS_DRE (Weak) 36.37 35.22 
Folco et al._DRE (Weak) 25.11 23.94 
Toms_DRE (Strong) 30.39 29.22 
Proposed_DRE (Weak) 18.10 16.94 
Toms_HIE (Strong) 30.30 29.12 
Proposed_HIE_NRL (Weak) 24.12 22.95 
Proposed_HIE_RL (Weak) 17.24 16.07 

 

In Tables III, V and VII, function block delay (FBD) 
specifies the maximum delay encountered for traversal of a 

logic path from the least significant adder stage to the most 
significant stage. Maximum data path delay (MDPD) is the 
summation of FBD and the delay associated with the CD 
circuitry. The CD logic comprises of all the 2-input OR gates, 
used to combine the DR sum and final stage carry outputs and 
the C-element tree, which is used to synchronize (indicate) the 
arrival of all the adder outputs. In Tables IV, VI and VIII, total 
power dissipation denotes the sum of dynamic and static 
(leakage) power parameters. In turn, dynamic power 
dissipation is the gross of switching and internal power 
components. Both delay and power figures of the various ST 
adders report a consistency in all the three evaluation corners. 

TABLE VI.  POWER COMPONENTS OF ST ADDERS (WORST CASE) 

Adder  
realization 

style 

Power dissipation components 

Total  
(μW) 

Dynamic 
(μW) 

Leakage 
(nW) 

Seitz_DRE (Strong) 119.62 114.31 5312.77 
Seitz_DRE (Weak) 95.77 91.24 4529.75 
Singh_DRE (Strong) 119.53 114.57 4957.46 
DIMS_DRE (Strong) 90.48 85.18 5301.35 
DIMS_DRE (Weak) 95.40 89.90 5494.11 
Folco et al._DRE (Weak) 88.79 84.96 3824.22 
Toms_DRE (Strong) 90.28 85.94 4336.19 
Proposed_DRE (Weak) 92.90 88.99 3913.68 
Toms_HIE (Strong) 72.96 69.46 3502.02 
Proposed_HIE_NRL (Weak) 77.02 74.06 2957.59 
Proposed_HIE_RL (Weak) 78.41 75.23 3182.09 

TABLE VII.  DELAY METRICS OF VARIOUS ST ADDERS                           
(BEST CASE – 1.32V, -40°C) 

Adder realization 
style 

Maximum data 
path delay (ns) 

Function block 
delay (ns) 

Seitz_DRE (Strong) 13.47 13.04 
Seitz_DRE (Weak) 7.37 6.95 
Singh_DRE (Strong) 16.99 16.56 
DIMS_DRE (Strong) 14.69 14.27 
DIMS_DRE (Weak) 13.69 13.27 
Folco et al._DRE (Weak) 9.65 9.23 
Toms_DRE (Strong) 11.71 11.28 
Proposed_DRE (Weak) 6.89 6.46 
Toms_HIE (Strong) 11.74 11.32 
Proposed_HIE_NRL (Weak) 9.21 8.78 
Proposed_HIE_RL (Weak) 6.68 6.25 

TABLE VIII.  POWER COMPONENTS OF ST ADDERS (BEST CASE) 

Adder  
realization 

style 

Power dissipation components 

Total  
(μW) 

Dynamic 
(μW) 

Leakage 
(nW) 

Seitz_DRE (Strong) 466.71 465.59 1115.92 
Seitz_DRE (Weak) 373.43 372.49 942.21 
Singh_DRE (Strong) 458.59 457.61 977.70 
DIMS_DRE (Strong) 351.76 350.70 1059.72 
DIMS_DRE (Weak) 367.92 366.84 1083.13 
Folco et al._DRE (Weak) 343.37 342.61 762.67 
Toms_DRE (Strong) 347.86 346.99 861.61 
Proposed_DRE (Weak) 359.57 358.81 758.83 
Toms_HIE (Strong) 283.99 283.28 714.69 
Proposed_HIE_NRL (Weak) 299.99 299.39 604.87 
Proposed_HIE_RL (Weak) 304.70 304.05 648.17 
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We shall first consider the issue with DRE and HIE based 
ST full adder designs separately, and then proceed towards a 
combined comparison. It can be noticed that among all the full 
adder designs based on DRE, the proposed_DRE full adder [2] 
yields the minimum delay values, both in terms of MDPD and 
FBD, across all the three corners. In terms of total power 
dissipation, Folco et al._DRE is economical. Nevertheless, in 
terms of the static power metric, the proposed_DRE adder is 
comparable with Folco et al._DRE adder.  

Among the adders which adopt HIE, Toms_HIE adder is 
found to be power efficient, mainly in terms of total and 
dynamic power parameters. This is evident from the results 
highlighted in Tables IV, VI and VII. Between the two 
proposed full adder designs viz. proposed_HIE_NRL and 
proposed_HIE_RL, the former is found to be better in terms of 
all the power components. This is because of reduced activity 
and lesser number of cells due to absence of redundant logic. 
However, proposed_HIE_NRL adder is expensive than 
Toms_HIE adder with respect to total and dynamic power 
dissipation, on an average, across all the three corners, by 
5.7% and 6.1% respectively. Notwithstanding, with respect to 
the static power component, Toms_HIE adder is expensive 
than both proposed_HIE_NRL and proposed_HIE_RL adders, 
on an average, across all the three corners by 18.1% and 
10.3% respectively. With respect to MDPD and FBD 
parameters, Toms_HIE adder suffers an increase compared to 
the proposed_HIE_NRL adder, on an average, across all the 
three corners by 26.6% and 27.9%, which is considerable. For 
a similar comparison with the proposed_HIE_RL adder, 
Toms_HIE exhibits a heavy delay penalty, reporting 
degradation (increase in delay) to the tune of 75.7% and 81% 
respectively.  

Based on a combined overall comparison between various 
ST full adders adopting DRE and HIE, we find that the 
proposed_HIE_RL adder features the best MDPD and FBD 
values, in comparison with that of the proposed_DRE adder. 
On an average, for all the three cases combined, the former 
reports reduction over the latter by 3.8% (in MDPD) and 4.1% 
(in FBD) respectively. For a comprehensive comparison, the 
reduction in delay should also be simultaneously viewed from 
a power and area perspective, wherein the former proves to be 
economical with less total power consumption (across all the 
library cases) and reduced area occupancy by 15.4% and 
28.1% respectively.  

V. CONCLUSION 
Throughout this article, the term ‘self-timed’ has been 

used to generalize the notions of quasi-delay-insensitivity 
(delay-insensitivity with isochronic fork assumption included 
[14]) and speed-independency. This paper has presented two 
new ST designs for a full adder functionality with HIE – one 
consisting of logic redundancy and the other without any 
redundant logic. While the augend and addend bits of every 
full adder module is 1-of-4 encoded, the input and output 
carries as well as the sum output are encoded in a DR format. 
The motivation being that a 1-of-4 code experiences only half 
the transitions as that of a DR code and therefore it is most 
likely to yield a power efficient solution.  

The designs have been analyzed on the basis of a delay-
insensitive (in fact, quasi-delay-insensitive) RCA. A delay-
insensitive RCA, constructed using only DR encoded full 
adder blocks, would have a similar structure as shown in 
figure 5. The logic has been implemented using the elements 
of a standard cell library and validated across typical, worst 
and best case library targets. Since this work relies on utilizing 
synchronous standard cells for realizing robust ST designs, 
comparison with [15], or improvisations based on it, is not 
possible, as they are based on the requirement of custom 
macros (proprietary NCL macro cells) for a cell library.  

While the proposed adders feature the optimum delay and 
area metrics, the full adder design employing HIE based on 
[8] is found to be somewhat economical in terms of total 
average power and dynamic power parameters. Nevertheless, 
the proposed adders report the least static power in all the 
cases. This is mainly attributable to the less number of C-gates 
that were required. However, in comparison with a standard 
synchronous RCA, where a full adder is constructed using two 
half adder modules, the proposed_HIE_NRL adder (which 
occupies the least area amongst all the ST adders) is found to 
be 2.9× expensive in terms of area. On the other hand, the 
synchronous adder is found to exhibit 30.5% reduced delay 
compared to the proposed_HIE_RL adder (which features the 
least delay), on an average, across all three process corners.        
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