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Abstract—Efficient gate level design methods for robust self-
timed realization of arbitrary size multiplexer and demultiplexer 
function blocks, using elements of a commercial standard cell 
library are discussed in this paper. While the optimal self-timed 
multiplexer implementations correspond to strong-indication, 
the optimal self-timed demultiplexer implementations pertain to 
weak-indication phenomenon. The design methods presented 
are scalable and enable achieving simultaneous optimization in 
power, delay and area parameters. 

I. INTRODUCTION 
Self-timed (ST) logic design, in general, guarantees that 

the required functionality is satisfied irrespective of delays in 
the circuit components or signal wires. Hence, they are 
inherently elastic, comprising the ability to deal with device 
irregularities, which are becoming prominent in ultra deep 
submicron technologies. The latest SIA’s ITRS update on 
design [1] projects parametric variation of device delay to 
increase from a current figure of 10% to 25% by 2020. Design 
blocks reuse (as a percentage of all logic) is anticipated to 
increase from a current figure of 38% to 55% by 2020. Interest 
in ST designs is on the rise, as they feature an innate tolerance 
to variations in supply voltage, temperature and fabrication 
process parameters. In addition, they promise greater 
modularity, less EMI, no clock distribution and clock skew 
problems and eliminate unnecessary power consumption.   

Multiplexers (MUXes) and demultiplexers (DEMUXes) 
are common building blocks of data paths and are used 
extensively in numerous applications including processor 
busses, network switches and digital signal processing stages 
incorporating resource sharing. In this paper, we consider 
efficient asynchronous realizations of MUX and DEMUX 
logic as function blocks, characterized by four-phase 
handshaking protocol and dual-rail input encoding, the robust 
self-timed approach having its roots in Muller’s pioneering 
work of the 1950’s and 60’s [2]. Circuits designed following 
the four-phase protocol DR encoding approach are generally 
quasi-delay-insensitive (QDI), since the class of DI circuits is 
rather small [3]. QDI is as robust as the DI class to variable 
operating conditions and transistor variations [4]. A circuit is 
QDI if and only if the production rule set describing it is stable 

and non-interfering [5]. It is also an attractive design style 
mainly for the simple timing closure and analysis it permits. 
QDI circuit design assumes that both operators and wires can 
take an arbitrary time (finite and positive time) to switch, 
except for certain wires that form isochronic forks [6] 
(weakest compromise to delay insensitivity). The isochronic 
fork assumption has been defined by Martin in [6] as: “In an 
isochronic fork, when a transition on one output is 
acknowledged and thus completed, the transitions on all 
outputs are acknowledged and thus completed”. The 4-phase 
signaling protocol is also known as the return-to-zero protocol, 
wherein input data alternates between valid data and empty 
data (also called spacer). The dual-rail (DR) input encoding 
protocol is a delay-insensitive (DI) protocol, with the DR code 
being the widely used member of the family of DI codes [7].  

A function block is the asynchronous equivalent of a 
synchronous combinational logic circuit [8]. But apart from 
satisfying the requisite functionality, it is required to possess 
the additional attribute of being transparent to handshaking as 
implemented by its surrounding latches. A function block can 
be classified as either strongly indicating or weakly indicating 
depending on how it behaves with respect to the handshaking 
transparency. In case of the former, all the inputs need to 
become valid/empty before valid/empty outputs can be 
produced, while in case of the latter, valid/empty outputs can 
be produced as soon as a subset of the inputs have become 
valid/empty. However, unless all its inputs have not become 
valid/empty, all its outputs should not become valid/empty. 
The above conditions formulated by Seitz [9] ensure that the 
generation of all the primary outputs in a function block 
wholly indicates the arrival of all the input data and also the 
completion of computation within the block.    

II. PREVIOUS WORK AND PROBLEM STATEMENT 
A number of self-timed logic design techniques exist either 

for generic or specific function block design adhering to the 
property of indication [9] [10] [11] [12] [13] [14], employing 
4-phase handshaking and DR input encoding. However, many 
of these suffer from limitations with increase in primary 
circuit inputs. Methods of [9], [10] can conform to both 
strong-indication and weak-indication timing models, but they 
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require at the minimum the generation of all minterms, which 
is O[2n] for ‘n’ inputs, resulting in a huge input space 
consideration. In case of [8], decomposition of multiple inputs 
C-element is often necessitated. This can give rise to 
unacknowledged transitions on gate outputs (usually called 
gate-orphans) within the circuit making it QnDI for naïve 
decomposition, leading to violation of speed-independence 
conditions. Despite a cautious speed-independent (SI) logic 
decomposition, the area overhead severely exacerbates. In [9], 
a self-timed function block design was proposed, but 
decomposition procedures for the monotonic implementation 
of the combinatorial DRN were not put forth, which restricts 
the scalability of this approach. Also, the DRN can evaluate to 
the correct empty state in case of a spacer, signaling the 
completion of computation within the function module even 
with some internal nodes not reset and thereby gate-orphans 
get created. A method to effectively realize function blocks 
using conventional logic gates has been proposed in [12], but 
it overlooks the partial gate-orphans that are generated within 
the circuit, which might be difficult to ascertain. Also, 
adequate care may be required to ensure that they do not 
become critical by extensive timing analysis. [13] presents an 
efficient method, but it necessitates building a library using 
custom-defined standard cells (27 proprietary macros are 
used) for technology mapping. A recent work [14] dealing 
with the synthesis of QDI circuits (using 2-input C-elements 
and 2-input OR gates) corresponding to DR input encoding 
(also, any generic m-of-n code), encompasses a decomposition 
technique incorporating elements of both conventional 
rectangle covering based multilevel logic synthesis and speed-
independent decomposition. Though it is a versatile method, it 
also suffers from the problem of input space explosion as the 
entire input space is to be covered (i.e., all the canonical 
product terms of a function need to be considered).    

It is a proven fact that if individual function blocks satisfy 
strong/weak-indication constraints, then they can be combined 
to form larger function blocks, which also pertain to a similar 
timing regime [9]. This property can be utilized to aid the 
construction of iterative logic circuits, such as MUXes, 
DEMUXes, adders and magnitude comparators. Hence, the 
main issue addressed in this paper is to efficiently realize self-
timed MUX and DEMUX functionality of any specification in 
a robust asynchronous style by adhering to the property of 
indicatability, within the ambit of 4-phase handshaking 
protocol and DR encoding, whilst satisfying the monotonic 
cover constraint [15]. The elements of a commercial standard 
cell library are being used for physical realization.  

III. TERMINOLOGIES AND DEFINITIONS 

A. Support set and Dependency set of a Boolean cube 
The support set S(C) entails the enumeration of all the 

literals that are a function of the cube, while a cube’s 
dependency set D(C) entails enumeration of all its support set 
literals in their actual form for its evaluation to a logic ‘1’.  

For a cube C specified by ab'c'd, its S(C) and D(C) are:  

S(C) = {a,b,c,d}     (1) 

D(C) = {a,b’,c',d}     (2) 

B. Cubes Support Intersection set (CSI), Cubes Dependency 
Intersection set (CDI) and Polarity Eliminated CDI set 
The intersection of the support set of two cubes 

(dependency set of two cubes) is characterized by the literals 
that are common to the support set (dependency set) of both 
the cubes. This is referred to as CSI (CDI). The polarity 
eliminated CDI (CDIPE) set consists of the variables of CDI 
set represented in their uncomplemented form. For e.g. with 
D(C1) and D(C2) specified by {a’,b,c,d} and {a’,b’,c,f} 
respectively, the corresponding CSI, CDI and CDIPE sets are,   

CSI [S(C1), S(C2)] = {a,b,c}     (3) 

CDI [D(C1), D(C2)] = {a’,c}     (4) 

CDIPE [D(C1), D(C2)] = {a,c}     (5) 

C. Covering cube, Covered cube [16] and Cover extent 
We say a cube C1 as fully covering another cube C2, if 

D(C2) is a subset of D(C1). Cover extent (CE) is a measure, 
which basically quantifies the degree of sharing (common 
variables) between the two Boolean cubes C1 and C2. 

CDI [D(C1), D(C2)] = D(C2) and CE = |D(C2)|     (6) 

D. Sum-of-Products and Disjoint Sum-of-Products [17] 
A Boolean formula is said to be in sum-of-products (SOP) 

form if it consists of a disjunction of standard product terms, 
each of which is a conjunction of literals.  

A Boolean equation is said to be in mutually orthogonal or 
disjoint SOP (MOSOP or DSOP) form if and only if it 
consists of an array of conjunctions which are mutually 
orthogonal, i.e. the cubes do not overlap or they are disjoint. 
Every Boolean cube is mutually orthogonal to every other 
Boolean cube in a DSOP. When two Boolean cubes C1 and C2 
are mutually orthogonal, the following inequalities are valid.  

|CSI [S(C1), S(C2)]| � 1     (7) 

|CDI [D(C1), D(C2)]| � 0     (8) 

E. Mutual Orthogonality set and Degree of Mutual 
Orthogonality 
Mutual orthogonality set, MO characterizes or isolates the 

input variables that are responsible for making two Boolean 
cubes (say C1 and C2) mutually orthogonal. It is given by the 
set-theoretic difference of CDI and CSI, of cubes C1 and C2.   

MO [C1, C2] = CSI [S(C1), S(C2)] \ CDIPE [D(C1), D(C2)]   (9) 

The degree of mutual orthogonality (DMO) between two 
primary input cubes C1 and C2, DMO, is an integer measure of 
the number of primary inputs in which C1 and C2 exhibit 
orthogonality. A generalization of the DMO between C1 and 
C2 is then given by,  

DMO = |MO [C1, C2]|     (10) 

F. Speed-Independent Shared Cube 
If and only if, for two mutually orthogonal cubes C1 and 

C2, (11) and (12) are satisfied, then a common cube can be 
extracted from them, which we shall refer to as the speed-
independent shared cube, SISC. Hence, between C1 and C2, 
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DMO is unity. Subsequently, both C1 and C2 can be 
represented in terms of a conjunction involving the SISC. 
Assuming (11) and (12) are satisfied by C1 and C2, let us label 
the SISC extracted from them as C3. Hence, D(C3) is a subset 
of D(C1) and D(C2). Also S(C3) is a subset of S(C1) and S(C2).  

CSI [S(C1), S(C2)] = S(C1) = S(C2)     (11) 

|CDI [D(C1), D(C2)]| = |D(C1)|-1 = |D(C2)|-1     (12) 

The elements of D(C3) are found out using (13). 

D(C3) = CDI [D(C1), D(C2)]     (13) 

CE = |D(C1)|-1 = |D(C2)|-1 = |S(C1)|-1 = |S(C2)|-1     (14) 

The terminologies (some are proposed) mentioned above 
describe speed-independent logic decomposition rules anew 
based on set theory which form the basis of robust ST designs.  

IV. STRONG-INDICATION MULTIPLEXER DESIGNS 
The regularity implicit in MUX functionality can be best 

exploited to facilitate their efficient ST implementations. To 
clarify this, the basic equations governing the true and false 
outputs of a 2:1 MUX are first given. 

y1 = a1s0 + b1s1     (15) 

y0 = a0s0 + b0s1     (16) 

Equations (15) and (16) are minimum MOSOP forms, 
despite being the minimum SOP expressions for a 2:1 MUX. 
It is easy to comprehend that the general expressions for true 
and false outputs of an arbitrary 2n:1 MUX with n select inputs 
correspond to a minimum MOSOP form. Hence, the problem 
now relatively narrows down to effective speed-independent 
logic decomposition. Figures 1, 2 and 3 portray a 2:1 MUX 
implementation based on the methods of [9], [10] and [14] 
respectively. The C-element is indicated by the marking of 
letter ‘C’ within an AND gate, in the diagrams that follow.  

Two design techniques have been proposed at the gate 
level: a strong-indication design using C-elements and OR 
gates (SIDCO) and a strongly indicating design utilizing C-
elements, AND gates and OR gates (SIDCAO). The structural 
block diagram representation of an arbitrary MUX design 
(SIDCO) is shown in figure 4. 

 

Figure 1.  Seitz’s 2-to-1 MUX realization 

 

Figure 2.  DIMS 2-to-1 MUX implementation 

 

Figure 3.  Toms 2-to-1 MUX synthesis 

 

Figure 4.  Block diagram based realization of a generic MUX functionality 

In figure 4, block B1 contains the SI decomposed multi-
level logic realization of a MUX functionality (with m select 
inputs and n data inputs; where n = 2m), implemented in a ST 
fashion, which strictly satisfies the monotonic cover constraint 
(MCC). Block B2 guarantees the arrival of all the DR data 
inputs for both valid data and spacer values. Block B3 is 
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mainly meant to ensure that the strong-indication criterion is 
satisfied by synchronizing arrival of all the data inputs with 
the outputs of function block B1. iy0 and iy1 are logically 
equivalent to y0 and y1. Figure 5 shows the proposed 
realization of a 2:1 MUX logic based on this design style. 

 

Figure 5.  Proposed 2:1 MUX logic (SIDCO)  

An alternative design is possible with AND gates replacing 
the C-elements in the first logic level of block B1. As a result, 
block B2 would now have (2n + 2m) inputs, to satisfy the 
property of indication. This leads to a slightly different 
synthesis solution, as can be seen in figure 6. Since MUX 
logic has only a single output, weak-indication is not possible. 

 

Figure 6.  Alternative realization of 2:1 MUX logic (SIDCAO) 

V. WEAK-INDICATION DEMULTIPLEXER DESIGNS 
The ST realization of data distributor functionality is also 

based on a general design methodology, represented by the 
block diagram illustration in figure 7. However, block B1 
realization involves some complexity, in that a translation of 
the minimum SOP forms of the true and false DEMUX 
outputs into their respective minimum MOSOP forms is first 
necessary, followed by an effective SI decomposition. Thus a 
weak-indication design based on C-elements and OR gates 
(WIDCO) is possible. Also, another logic realization based on 
C-elements, AND gates and OR gates is also feasible 
(WIDCAO), with a slight modification to the overall structure 
shown in figure 7. In this case, block B2 would now consist of 
(2m + 2) inputs. Also iy0

1 is additionally fed to block B3 and 
synchronized with the signal sc of block B2 to produce y0

1, 

though both these are logically equivalent signals. The two 
different implementations of a 1:4 DEMUX are portrayed by 
figures 8 and 9 respectively. DEMUX realizations based on 
other methods have been omitted here for reasons of brevity. 

 

Figure 7.  Block diagram based generic DEMUX functionality realization 

 

Figure 8.  Proposed 1:4 DEMUX logic (WIDCO)  

For direct MUX and DEMUX realizations, extraction of 
SISC constitutes an essential step. In case of MUX logic, they 
are primarily a unique conjunction of the select inputs. In case 
of higher order MUXes, the granularity of the SISC is set at a 
maximum. A parent SISC could then give rise to two off-
springs (child nodes), and these child nodes can act as parent 
SISCs, provided each has two off-springs. This hierarchy is 
extendable for function realization of higher dimensions.  

Throughout this work, the synthesis (mainly logic 
decomposition) of both MUX and DEMUX functionality is 
primarily technology-dependent with focus on delay 
optimization, on the foundation of a base function set 
comprising the following cells: AND2, AND3, AND4, OR2, 
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OR3 and Muller C-element functionalities (CE2, CE3 and 
CE4) described using complex gates (AO222, AO2222 and 
AO12), of the high-speed 130nm Faraday CMOS standard cell 
library. Strongly indicating DEMUX designs are also possible 
based a modification of the above block diagram; nevertheless 
they would only be at the expense of increase in area, delay 
and power metrics and so they have not been considered. 

 

Figure 9.  Alternative implementation of 1:4 DEMUX logic (WIDCAO)  

VI. SIMULATION MECHANISM, RESULTS AND 
CONCLUSIONS 

The simulation set-up for MUX and DEMUX logic are 
depicted by figures 10 and 11 respectively. The primary inputs 
for both the MUX and DEMUX logic are assumed to arrive 
from the environment. The input acknowledge signal from the 
environment (ideally from the succeeding stage logic) is either 
embedded into the data path logic pertaining to the function 
block, where possible, or synchronized with each of the 
outputs of the function block using separate latches.  

 

Figure 10.   Simulation set-up for MUX functionality 

 

Figure 11.  Simulation set-up for DEMUX functionality 

The input sequences used for simulation represent testing 
of the MUX and DEMUX DR outputs for all unique input 
combinations. The input patterns are fed to the MUX and 
DEMUX circuits every 4ns. The maximum data path delay is 
the actual propagation delays encountered while traversing the 
longest path from a primary input signal of the current stage 
function block to the inverted acknowledge signal generated 
out of it, after crossing the output latches. This signal is in turn 
meant to be fed back as the acknowledge input for the 
previous stage. Though forward latency specifies the actual 
worst case combinational delay encountered within a function 
block, the maximum data path delay gives the summation of 
forward latency and the delay associated with the CD circuit. 

TABLE I.  SIMULATION RESULTS FOR DIFFERENT MUX DESIGNS 

MUX  
size 

Logic 
realization  

method 

Total  
power 
(�W) 

Path  
delay 
(ns) 

Cells 
area  
(�m2) 

 
 
2:1 

Seitz [9] 23.14 0.75 155 
DIMS [10] 17.88 0.88 242 
Toms [14] 21.39 1.00 167 
SIDCO 27.58 0.81 130 
SIDCAO 28.98 0.94 118 

 
 
4:1 

Seitz_tree 104.65 1.33 393 
DIMS_tree 51.82 1.65 670 
Toms 56.14 1.75 577 
SIDCO 44.24 1.05 317 
SIDCAO 54.76 1.21 224 

 
 
 
8:1 

Seitz_tree 231.58 2.15 836 
DIMS_tree 121.88 2.41 1526 
Toms_tree 130.90 2.48 1265 
SIDCO 78.82 1.40 748 
SIDCAO 87.54 1.40 429 
SIDCO_SIDCO_tree 150.08 1.48 654 
SIDCAO_SIDCO_tree 95.12 1.38 431 
SIDCAO_SIDCAO_tree 112.45 1.51 461 

 
 
 
16:1 
 
 
 
 

Seitz_tree 349.15 2.60 1818 
DIMS_tree 345.13 2.82 3334 
Toms_tree 312.34 3.28 2837 
SIDCO 138.99 1.74 1315 
SIDCAO 160.85 1.63 1014 
SIDCO_SIDCO_tree 367.38 1.59 1429 
SIDCAO_SIDCO_tree 201.08 1.60 953 
SIDCAO_SIDCAO_tree 232.92 1.70 929 

 
 
 
32:1 
 
 
 
 

Seitz_tree 718.62 3.07 3674 
DIMS_tree 716.99 3.58 6854 
Toms_tree 649.60 4.00 5653 
SIDCO 257.82 2.08 2464 
SIDCAO 273.06 1.87 2160 
SIDCO_SIDCO_tree 765.41 1.92 2838 
SIDCAO_SIDCO_tree 400.06 1.83 1863 
SIDCAO_SIDCAO_tree 486.85 2.17 1865 

 

A 2-input NOR gate at the output of block B3 performs the 
function of completion detection (CD) for MUX logic as 
shown in figure 10, while for the DEMUX logic a 
conventional CD circuitry (composed of OR gates and a C-
element tree) is required. The simulations have all been 
performed using Cadence and Synopsys tools on a Linux 
platform, targeting the high-speed 130nm Faraday (UMC) 
CMOS process for a typical PVT corner. The recommended 
supply voltage of 1.2V was used, at an ambient temperature of 

177

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:47 from IEEE Xplore.  Restrictions apply. 



25�C. The MUX and DEMUX designs of different approaches 
exhibit fanout-of-2 output drive strength, while the inputs 
possess the driving strength of the minimum sized inverter in 
the cell library. Appropriate minimum sized buffer cells were 
used for the logic realizations so as to eliminate timing 
violations. Power, delay and area metrics for the MUX 
functionality are given in Table I and those for the DEMUX 
functionality are mentioned in Table II. Total power 
dissipation is the summation of dynamic (switching + internal) 
and leakage power components. Path delay refers to the 
maximum delay encountered in the data path, as explained 
before, and cell area indicates the combined area of data path 
logic, output registers and CD circuitry. 

TABLE II.  SIMULATION RESULTS FOR DIFFERENT DEMUX DESIGNS 

DEMUX  
size 

Logic 
realization  

method 

Total  
power 
(�W) 

Path 
delay  
(ns) 

Cells 
area  
(�m2) 

 
 
1:2 

Seitz [9] 37.11 0.90 144 
DIMS [10] 30.86 0.97 135 
Toms [14] 30.99 0.98 135 
WIDCO 32.35 1.28 123 
WIDCAO 40.41 1.16 137 

 
 
1:4 

Seitz_tree 74.50 1.35 298 
DIMS_tree 69.30 1.52 385 
Toms 75.27 1.63 327 
WIDCO 77.73 1.62 329 
WIDCAO 79.21 1.50 278 

 
 
1:8 

Seitz_tree 160.18 1.87 713 
DIMS_tree 156.43 2.28 1033 
Toms_tree 161.94 2.34 688 
WIDCO 166.43 2.16 810 
WIDCAO 162.77 2.02 574 

 
 
 
1:16 

Seitz_tree 416.99 2.62 1304 
DIMS_tree 418.46 2.90 1813 
Toms_tree 435.21 2.92 1523 
WIDCO 360.10 2.76 1460 
WIDCAO 362.14 2.47 1228 
WIDCO_WIDCO_tree 610.12 2.74 1443 
WIDCAO_WIDCO_tree 386.92 2.52 1384 
WIDCAO_WIDCAO_tree 408.85 2.56 1145 

 
 
 
1:32 
 
 
 

Seitz_tree 850.62 3.03 3052 
DIMS_tree 979.64 3.73 4514 
Toms_tree 902.41 3.65 3076 
WIDCO 704.49 3.24 2649 
WIDCAO 700.59 2.92 2414 
WIDCO_WIDCO_tree 1381.89 3.20 3431 
WIDCAO_WIDCO_tree 864.39 2.83 3369 
WIDCAO_WIDCAO_tree 822.40 3.00 2394 

 

For the MUX and DEMUX logic, tree structures are 
essential for the other methods [9] [10] [14] to facilitate delay-
optimized implementations for MUXes (DEMUXes) with 4 
(8) inputs and more, as direct realizations may not be feasible 
or would incur heavy area and considerable delay and power 
penalty. This is because of the exponential increase in input 
space by O(2n), but both direct and tree type structures are 
practically feasible based on the proposed approach. A 4:1 
MUX is formed with two 2:1 MUXes in the first level and a 
2:1 MUX in the second level; an 8:1 MUX with two 4:1 
MUXes in the first level and a 2:1 MUX in the second level; a 

16:1 MUX with four 4:1 MUXes in the first level and a 4:1 
MUX in the second level and a 32:1 MUX with four 8:1 
MUXes in the first level and a 4:1 MUX in the second level, 
to achieve delay optimized implementations. It is the converse 
for DEMUX logic realization based on tree structures. In case 
of MUX logic, SIDCO_SIDCO tree refers to the combination 
where a MUX based on SIDCO was used for the first and 
second levels of the tree. SIDCAO_SIDCO tree refers to the 
combination where a MUX based on SIDCAO was used for 
the first level of the tree alone. With a SIDCAO utilized for 
both the first and second levels, a SIDCAO_SIDCAO tree 
structure results. Based on similar lines, WIDCO_WIDCO, 
WIDCAO_WIDCO and WIDCAO_WIDCAO tree structures 
can be obtained for DEMUX logic. The above mentioned 
logic tree cascades for MUX and DEMUX designs constitute 
block B1 of figures 4 and 7 respectively. Nevertheless, block 
B2 would require modification for SIDCAO_SIDCAO and 
WIDCAO_WIDCAO tree structures. The internal signals of 
Seitz, SIDCAO_SIDCAO and WIDCAO_WIDCAO tree 
structures are carefully indicated to preserve gate-orphan 
freedom. The proposed MUX and DEMUX design methods 
enable direct (cumbersome with other approaches) and tree 
type realizations, which are better than those of other methods 
in terms of power, delay and area; especially with higher 
orders, evident from the values listed in Tables I and II. 
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