
component count and reduced energy consumption over its
2-phase equivalent.

This result opens up the issue of 2-phase versus 4-phase
asynchronous design. The present asynchronous ARM’s
interfaces at asynchronous boundaries have been routinely
designed in a 2-phase protocol. From the results shown here
it seems likely that for future versions of the asynchronous
ARM many design areas, if not all, will be predominately 4-
phase.
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out for worst case conditions. Table VI shows the timing
results obtained for a 32-bit datapath latch constructed using
single-phase transparent latches and with the appropriate
output loading on thenAin andRout signal wires.

The results show the minimum cycle time for the 4-phase
micropipeline control circuit, this being the sum of the prop-
agation times shown. Fig. 15 shows how the cycle time was
derived, beginning at stage n,Rin, with timing figures shown
for each component. The inner loop, between stage n and
stage n-1, shows the reset loop which setsRin low after an
nAin acknowledge signal.

The figures in Table VI show a major performance
improvement over those of the 2-phase micropipeline con-
trol circuit of Fig. 10 (see Table V), even though a reset

TABLE VI
4-PHASE MICROPIPELINE CONTROL DELAYS

Path Delay

Rin ↑ to Rout↑ 4.0nS

Rin ↑ to nAin ↓ 3.2nS

nAout ↓ to nAin ↑ 3.8nS

nAin ↑ to Rin↑ (nAout↑ to Rout↑) 1.7nS

Cycle Time 12.7nS

Fig. 14.  4-Phase bundled data interface protocol
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Fig. 15.  4-Phase control circuit cycle time
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phase, where all control signals must return to zero, is now
required. Forward propagation of an event is of the order of
the n-type single-phase transparent latch delay shown in Table
IV, which is equivalent to that of a fast-forward 2-phase latch
control structure. Minimum cycle time however has been
reduced to just 12.7nS compared with 19.1nS and 16.8nS for
the normal and fast-forward versions of the 2-phase micropi-
peline control circuit, respectively. It would seem therefore
that the 4-phase control circuit offers greater benefits over its
2-phase equivalent in both performance and component count
and area. However, here the main area of interest in asynchro-
nous logic is in its power saving features, so energy figures for
both circuits must also be compared.

By adding the total nodal capacitance switched (ignoring
intermediate nodes on stacks and external loading capaci-
tance) for the latching and passing of a single data packet, an
approximate comparison of energy used in each control cir-
cuit can be made. Adding the switched node capacitance for
the 2-phase micropipeline control circuit, shown in Fig. 10,
gives a total switched capacitance figure of 5.20pF, for the
passing of a single data packet. For the 4-phase micropipeline
control circuit, shown in Fig. 12, the total switched capaci-
tance for the passing of a single data packet is 4.21pF. This fig-
ure shows that the 4-phase micropipeline control circuit will
have an energy consumption 20% lower than that of its 2-
phase control equivalent.

These results suggest that the construction of a 4-phase
micropipeline based on the circuit shown in Fig. 12 will have
a greater performance, lower energy consumption and
reduced control area and component count over an equivalent
length 2-phase micropipeline based on the circuit shown in
Fig. 10.

V.  CONCLUSIONS

The design of the asynchronous ARM microprocessor has
shown the feasibility of constructing a complex commercial
microprocessor architecture using Sutherland’s micropipeline
approach. However, analysis of the resulting design has
shown that there are many areas of this design where perform-
ance improvements can be made. This paper has considered
the basic micropipeline structure employed in the asynchro-
nous ARM and has looked at alternative design methods to
see how this structure, fundamental to the whole design
approach, can be improved.

The introduction of single-phase transparent latch struc-
tures, rather than the more conventional pass-transistor trans-
parent latch approach originally adopted, has been shown to
reap benefits in control speed and component count at the cost
of increased latch size and slower data propagation speed.
These latch structures have however been shown to have the
potential for significant power savings, this being the original
project aim for the design of the asynchronous ARM micro-
processor.

A more fundamental design issue is raised with the com-
parison of performance of a 4-phase micropipeline control
approach with that of a 2-phase approach. A 4-phase control
circuit, optimised for single-phase transparent latch struc-
tures, was found to have improved performance, reduced



The C1 gate has a reset low signal,Cdn, this being
required for initialisation. This gate has the following pro-
duction rules:-

IF In1•In2•In3 THEN Out → low,
ELSE IF In1 THEN Out → high,
ELSE no change inOut.

Similarly the production rules for C2 are:-

IF In2 THEN Out → low,
ELSE IF In1•In2 THEN Out → high,
ELSE no change inOut.

The C2 output signal,nOut, provides an early inversion
of Out. From the above production rule it can be seen that
reset is not required for C2 as on initialisation of C1,In2 of
C2 will be reset low forcingOut of C2 low, as required.

Therefore after initialisation the optimised 4-phase con-
trol circuit will haveRin andRout low, nAin andnAout high,
andEn high, meaning the corresponding datapath latch cir-
cuit will be transparent.

A valid request to the control circuit will be signalled by
Rin going high. This will fire the gate C1, forceEn low thus
closing the data latch and generate an acknowledge back to
the sender, signalled bynAin going low. The output of C1
going high will also fire C2, which has been primed by
nAout being high. This then generates a valid request out,
Rout going high, signalling that data is ready to the next
pipeline stage.

The firing ofRout then primes the C1 gate by settingIn3
low, this interlock will be explained later. C1 then acts as a
rendezvous for the resetting of the input request,Rin, and a
valid output acknowledge,nAout going low, which signals
that the latch data has been consumed by the following stage.
After this rendezvous the latch is reset to its transparent state
with En going high,nAin is reset high andRout reset low.
The input stage is therefore now ready to accept new input
data requests, whenRin goes high the next latching action
will occur.

New data can therefore reside in the latch stage even
though the output acknowledge signal,nAout, has yet to
reset thus allowing adjacent latch stages to hold data. A valid

Fig. 12.  Optimised 4-phase micropipeline control circuit
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Rout cannot be generated untilnAout returns high due to the
interlocks in C2. If the interlock betweenRout and C1 did not
exist then in this condition it would be possible for input
requests to carry on cycling at the pipeline input, thus losing
data. This interlock ensures that a validRout must be gener-
ated, as well as a validnAout, before C1 can be reset and thus
making the latch transparent.

This interlock enforces a timing constraint on the latch cir-
cuit and thus this circuit cannot be deemed truly delay-insen-
sitive. On resettingRout to zero the low signal toIn3 on the
gate C1 will be removed disabling the upper stack. This how-
ever must occur beforeRin is reset after new data has been
latched into the pipeline stage. If this was not the case then
input data into the latch would be lost before being passed on
to the next pipeline stage. It can be seen that for this to occur
Rin must first go high, thus latching new data, and then low,
that is twice around the input loop. Compared with the internal
inversion in C2 from the C1 outputto the C1 input stack, this
is a much longer data route. Thus by keeping these compo-
nents closely coupled this phenomenon can be avoided.

Fig. 14 shows the basic bundled data protocol sequence for
passing one bundle of data through a 4-phase micropipeline
control stage. Note that the acknowledge signals,Ain and
Aout, are shown non-inverted for clarity.

C. Performance of the Optimised 4-Phase Micropipeline
Control Circuit

Observing the circuits shown in Figs. 10 and 12, one obvi-
ous benefit of the 4-phase micropipeline control circuit is the
reduced component count. Comparing standard cell layout for
both these circuits shows that the 4-phase control circuit area
is half that of its 2-phase equivalent.

Again SPICE simulations have been run on extracted lay-

Fig. 13.  Unbalanced C-gate transistor circuits
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ARM chip, all asynchronous control has been based on a 2-
phase, bundled data, transition signalling interface protocol,
whether the asynchronous block elements be a micropipe-
line latch stage or a 32-bit by 32-bit multiplier. To construct
efficient latch structures for datapath design some form of 2-
phase to 4-phase conversion is required for their control,
with a corresponding 4-phase to 2-phase conversion to
return back to the 2-phase transition signalling interface. The
exclusive-OR gate andToggle, shown in Figs. 6, 8 and 10,
basically perform this 2-phase to 4-phase and 4-phase to 2-
phase conversion, respectively.

The use of a 4-phase data bundled interface would
remove the need for these elements. The 4-phase protocol
however requires a reset phase where control signals must
return to zero. This reset phase may affect performance and
also make the control at the asynchronous interface more
difficult to follow than the 2-phase transition interface,
which can be considered somewhat cleaner.

Other asynchronous design methodologies such as that
adopted by van Berkel [17] use only 4-phase handshake pro-
tocols and are based on fully delay-insensitive approaches.

A. 4-Phase Micropipeline Control Circuit

Fig. 11 shows a simple 4-phase micropipeline circuit.
Here C-gates are used to drive the latch control signal,Lt, of
a single-phase transparent latch directly. The signal,Ltd, is
used to detect latch completion.

On initialisation all latch stages will be transparent with
all control signals low. WhenDin is valid a request will be
generated on the pipeline input withRin going high. The first
stage C-gate will be primed after initialisation and thus the
latch signal,Lt, will go high latching the input data.

After latch completion,Ltd will go high, this being
steered to the second stage C-gate and back to the sender via
Ain. This signals that the data has been latched and can be
removed, and that the reset phase, returningRin to zero, can
begin.

The second stage will then latch as the first, with the sec-
ond stage latch completion signal being forwarded to the
next stage C-gate and being fed back to the first stage input
C-gate. This will rendezvous with the resetting ofRin, set-
ting the first latch stage transparent and on completion, reset-
ting Ain low and completing the 4-phase handshake
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Fig. 11.  Simple 4-phase micropipeline structure

protocol.
This simple 4-phase micropipeline circuit behaves in a

very similar manner to that of the Sutherland micropipeline
circuit shown in Fig. 4. However this circuit has the following
restriction; a latch can only be occupied if the following adja-
cent latch is transparent. Comparing the component count
with that shown in Fig. 10 this would at first appear to be a
small sacrifice, in the simple 4-phase micropipeline each stage
requires only a C-gate and inverter buffer to drive a 32-bit
datapath latch constructed of the n-type single-phase transpar-
ent latches shown in Fig. 9.

However, if the pipeline backlogs, which will eventually
occur if data is fed into the pipeline at a greater rate than data
is removed, this property will mean that only every other pipe-
line stage can be occupied, effectively halving the pipeline
depth. Therefore to obtain the equivalent pipeline depth to that
of a 2-phase transition signal controlled micropipeline, the
number of pipeline stages would need to be doubled, doubling
the area occupied, pipeline latency and cycle time.

This simple micropipeline approach is therefore undesira-
ble for the micropipeline structures used in the asynchronous
ARM. The following section looks at the design of a micropi-
peline control circuit which, although not fully delay-insensi-
tive, could be used under certain engineering constraints to
build micropipelines with a 4-phase bundled data interface.
This implementation allows the simultaneous occupation of
adjacent pipeline stages thus allowing full occupation of all
pipeline stages when a pipeline becomes backlogged.

B. Optimised 4-Phase Micropipeline Control Circuit

Fig. 12 shows an optimised 4-phase micropipeline control
circuit which overcomes the problem described above of the
simple micropipeline circuit of Fig. 11.

The control circuit shown has been designed to enable
direct comparison with the 2-phase transition signal circuit
shown in Fig. 10 and therefore has enough drive capability for
a 32-bit datapath latch constructed using n-type single-phase
transparent latches. Note that the acknowledge signals,nAin
andnAout, are inverted. This circuit uses C-gates with unbal-
anced input stacks to provide the required interlocks for the 4-
phase control to enable adjacent latch stages to hold data
simultaneously. Fig. 13 shows the transistor circuits for gates
C1 and C2.



single-phase transparent latch (ignoring external output
loads). This figure suggests that replacing pass-transistor
transparent latches with single-phase transparent latches on
the asynchronous ARM datapath will result in a 30%
increase in dynamic power related to datapath data flow
based on the1/2CV2 formula.

We have already seen that a 32-bit wide datapath con-
structed using single-phase transparent latches has effec-
tively half the capacitive control loading of its pass-
transistor equivalent. If we consider the energy for latching
a single 32-bit data value where all bits change state, with
the latch then returning to a transparent state, at a supply
voltage of 5V, we obtain the following;

Pass Transistor Latch:-
latch control = 52pJ
datapath = 124pJ
total = 176pJ

Single-Phase Latch:-
latch control = 26pJ
datapath = 160pJ
total = 186pJ

This assumption gives remarkably similar total figures
for the two latch styles. However, it is highly unlikely that all
data bits will change for every data value as data flows
through the datapath pipelines. Assuming that, on average,
half the data bits will change gives energy figures of 106pJ
for the single-phase latch structures compared with 114pJ
for the pass-transistor structure tilting the balance in energy
saving in favour of single-phase latch structures. This figure
may well be further improved on for a particular application,
for example in an incrementing loop only one bit will toggle
in 50% of all data changes.

A. Micropipeline Implementation for Single-Phase Trans-
parent Latch Structures

The use of single-phase transparent latches for datapath
registers greatly simplifies the required control circuit. Fig.
10 shows the control circuit for the n-type single-phase
transparent latch style.

On initialisation the latch will be transparent withEn
high. An inversion is applied to the input of theToggle cir-
cuit to correct the polarity of the first, and subsequent,
events. This inversion is hidden within theToggle circuit
design and produces no extra delay over a non-inverted input

T
O

G
G

L
E

x4

C

x1

Rin Ain

RoutAout En

Fig. 10.  Single-phase latch micropipeline control circuit

Toggle design.
The circuit operates in the same way as that shown in Fig.

6, but benefits in speed due to the simplified driver buffer cir-
cuit and removal of the C-gate. A fast-forward version can
again be implemented by wiringRout directly from the output
of the input C-gate, however, the single-phase transparent
latch data delay is more than twice that of its pass transistor
equivalent and some form of delay line may be required to
meet the bundled data constraint.

SPICE simulation results under worst case conditions of
extracted layout of the single-phase micropipeline control cir-
cuit are shown in Table V, with appropriate output loading and
full loading for a 32-bit single-phase datapath latch on theEn
line included.

The results show estimated values for a fast-forward ver-
sion of the single-phase latch micropipeline control with a
request in to request out figure of 4nS, which is of the order of
the data in to data out delay of the n-type single-phase trans-
parent latch design.

These figures show a considerable improvement over those
shown in Table II. Both request forward propagation time and
cycle time for the normal pipeline structure have been reduced
by 30%, using single-phase latch structures.

The simplified control circuit also has the added benefit of
being more energy efficient as there are now fewer nodes to
toggle as data flows through the pipeline control circuitry.

IV.  4-PHASE MICROPIPELINE CONTROL

So far, and also in all design areas of the asynchronous

TABLE V
SINGLE-PHASE LATCH MICROPIPELINE CONTROL DELAYS

Path
Normal
Delay

Fast-Forward
Delay

Rin to Rout 6.3nS 4.0nS

Rin to Ain 6.3nS 6.3nS

Aout to C-gate primed 6.5nS 6.5nS

Cycle Time 19.1nS 16.8nS



tion with the performance of the actual silicon. To achieve
performance goals set for future versions of the asynchro-
nous ARM microprocessor, significant improvements in the
above figures will be required.

III.  SINGLE-PHASE TRANSPARENT LATCH STRUCTURES

From the control circuits shown in Figs. 6 and 8 an
improvement in cycle time could be achieved by removing
the C-gate which detects the changes on both latch enable
wires and connecting thenEn signal directly to theToggle.
Although this is not a purely “delay-insensitive” implemen-
tation, as theToggle may possibly be activated before theEn
line has fully switched, one could argue that safety margins
would be adequately met.

The use of single phase latches would legitimately
remove the need for this C-gate and also simplify the drive
buffer circuits as only one phase would be required. The use
of single-phase latch designs has been extolled by Yuan and
Svensson [15] whose true single-phase transparent latch
structures have been shown to produce high-speed CMOS
latch designs with clock speeds of the order of 200MHz [16].
Fig. 9 shows static versions of Yuan and Svensson’s true sin-
gle-phase transparent latch structures.

Two versions of single-phase latch structures are shown;
a p-type latch, which is transparent whennEn is low, and an
n-type latch, which is transparent whenEn is high. When
transparent, input data will propagate through the latch
structures to their outputs. When the latch control switches,
for examplenEn goes high for the p-type latch, input data
flow to the inverter and weak feedback data retention circuit
is disabled by the double input stack and data is stored. Fur-
ther changes on the input signal will therefore have no effect
on the stored data.

A weak pull-down transistor is connected to the data
input node of the second transistor stack on the p-type latch.
When this stack is disabled in the latched state this transistor

Fig. 9.  Single-phase static transparent latch structures
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prevents this node from drifting high and spuriously changing
the latched data state by turning on the n-type pull-down tran-
sistor in the second transistor stack.

The weak pull-up transistor in the n-type latch performs a
similar function, preventing the second stack data input node
from drifting low.

Compared to the conventional pass-transistor latch shown
in Fig. 5 the single-phase transparent latches have a greater
transistor component count (almost double). For comparison,
the n-type single-phase transparent latch has been laid out
within the asynchronous ARM datapath pitch, using mini-
mum size transistors on the latch enable line and identical size
transistors for the inverter output driver as used in the asyn-
chronous ARM datapath pass-transistor latches. Table III
shows a comparison of the capacitive loading of the latch con-
trol lines for a 32-bit wide datapath register.

The single-phase transparent latch structure has half the
effective control load capacitance of its pass-transistor equiv-
alent on its latch enable line, due to the removal of the require-
ment of complementary lines and use of minimum size
transistors. For the pass-transistor latch circuit, any further
reduction in the size of the pass circuit transistors will result
in increased edge times on its internal node, thus decreasing
the circuit performance. This reduction in capacitance will
have significance for the energy consumption of the two latch
styles as will be shown later.

Table IV shows comparative worst case SPICE simulated
results for the two latch types with similar output load. As
expected the single-phase transparent latch has a slower data
throughput than that of the pass-transistor latch design.

By comparing the data route node capacitance (ignoring
intermediate nodes on stacks) of the two latch styles an
approximation of their respective energy consumption can be
calculated. Summing the nodal capacitance for the pass-
transistor latch circuit gives a total capacitance of 0.31pF
compared with a total nodal capacitance of 0.40pF for the

TABLE III
LATCH CONTROL CAPACITIVE  LOADING FOR 32-BIT

DATAPATH REGISTER

Latch Control Capacitance

Pass Transistor Latch En
nEn

0.93pF
1.15pF

Single-Phase Latch En 1.04pF

TABLE IV
COMPARISON OF LATCH DATA PROPAGATION DELAYS

Path Delay

Pass Transistor Latch: Data in to Data out 1.4nS

Single-Phase Latch: Data in to Data out 3.7nS



Any depth of pipeline can easily be constructed by cas-
cading these latches and control circuits.

A variation on the control circuit shown in Fig. 6 is shown
in Fig. 8. Here theRout signal is directly wired from the out-
put of the input C-gate. For this circuit to meet the bundling
constraint the latch data throughput must be faster than the
Rin to Rout propagation time. This control circuit must
therefore be used with care to ensure that this constraint is
met. Note that the original control circuit shown in Fig. 6 has
a large safety margin which easily meets the bundling con-
straint.

The benefit this circuit has over the original control cir-
cuit is that the input to output request propagation delay is
faster, giving a lower latency latch circuit. The latch cycle
time is also reduced though the input acknowledge event
must still wait for the latch to close to ensure that the latch
set-up and hold times are not violated.

B. The Asynchronous ARM Micropipeline Performance

To analyse the performance of the asynchronous ARM
micropipeline control circuits SPICE [14] analyses have
been performed on extracted layout from the design for
worst case conditions (Vdd=4.6V, slow-slow process corner,
at 100˚C temperature), the design being implemented on a
1µm, double layer metal CMOS process.

Table I shows the simulated delay through a single data-
path latch element with appropriate output loading.

Table II shows the micropipeline control simulated delay,
again with appropriate output loading and full loading
capacitance for a 32-bit datapath latch on theEn andnEn
lines.

These results show that once valid data is presented at the
latch input this data will be propagated to the latch output in
1.4nS. For a normal micropipeline control circuit the request
forward propagation time is actually 9.1nS, more than 7nS

TABLE I
DATAPATH LATCH DELAY

Path Delay

Data in to Data out 1.4nS

Fig. 8.  Asynchronous ARM fast-forward micropipeline control circuit
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behind the data for a single micropipeline stage.
However in many cases, some form of data processing

takes place between micropipeline stages and it is thus possi-
ble to “hide” some of this processing delay within the micro-
pipeline latch control timing. Any cases where the data
propagation due to data processing is longer than, or of the
order of, the control forward propagation delay will require
extra delay in the form of matched path elements or a delay
line, to ensure adequate safety margins.

Where a pipeline has no processing between stages the
fast-forward micropipeline control circuit can be used to
achieve minimum latency.

The minimum cycle times for micropipelines constructed
using the control circuits of Figs. 6 and 8 are also shown in
Table II. The minimum cycle time possible is the sum of the
forward event propagation delay (Rin toRout), the latch delay
for the next pipeline stage (Rin to Ain) and the latch recovery
time to prime the C-gate ready for the next input data event
(Aout to C-gate primed).

One of the main concerns of the present asynchronous
ARM design is the cycle time of the micropipeline latch
stages. A micropipeline constructed with the normal latch
control stages has a cycle time under worst case simulation
conditions of 27.5nS, giving an effective maximum frequency
of operation of 36.4MHz. A micropipeline constructed with
the fast-forward style control stages has a cycle time of
20.4nS, giving an effective maximum frequency of operation
of 49.0MHz.

The performance predictions of SPICE simulations carried
out on various areas of the design have shown good correla-

TABLE II
MICROPIPELINE CONTROL DELAYS

Path
Normal
Delay

Fast-Forward
Delay

Rin to Rout 9.1nS 2.0nS

Rin to Ain 9.1nS 9.1nS

Aout to C-gate primed 9.3nS 9.3nS

Cycle Time 27.5nS 20.4nS



with the single instance in the conventional latch. The total
gate capacitance loading on theC, P, nC andnP lines will
therefore be four times that of the total gate capacitance
loading on theEn andnEn lines; the former will however
change state only once per data transfer whereas for the con-
ventional latch structure, two state changes are required. The
conventional latch therefore offers considerable energy sav-
ings, switching half the gate capacitive load on its control
wires each cycle, compared with the capture-pass latch.

The conventional transparent latch approach leads to a
very efficient 32-bit wide datapath implementation. How-
ever the required control for this latch requires a 4-phase
protocol, compared to the capture-pass style approach which
uses a 2-phase protocol. Therefore to meet the interface pro-
tocol required for the 2-phase transition signalling approach,
extra components are required over the Sutherland micropi-
peline approach to implement the 2-phase to 4-phase con-
versions. Fig. 6 shows the micropipeline control circuit
implemented on the asynchronous ARM, including the buff-
ering circuits required to drive the full 32-bit wide datapath
registers.

The 2-phase transition signal protocol is preserved with
Rin andAin performing the latch input handshake protocol

OutIn

wk

wk

CnC P nP

Fig. 5.  Pass transistor and capture-pass latch structures

CMOS capture-pass implementation

Conventional pass-transistor transparent latch

wk

OutIn

En

nEn

andRout andAout performing the latch output handshake pro-
tocol. The control signalsEn andnEn are used to drive the
latch enable lines of the 32-bit datapath registers.

This circuit introduces two new event control blocks. The
exclusive-OR gate acts as a merge for events, an event on
either of its inputs will generate a corresponding event on its
output. TheToggle circuit acts as an event steer; after initiali-
sation the first event is steered to its dot output, the second to
the blank output, the third to the dot and so on with input
events being steered to alternate outputs.

After initialisation the latch will be transparent with all
event lines low. An event onRin will therefore propagate
through the primed C-gate, exclusive-OR and drive buffer cir-
cuitry closing the transparent latches. To sense that these
latches have fully closed thenEn and invertedEn lines are
connected to a C-gate. When both latch control signals have
changed state an event is propagated through the C-gate and
Toggle generating an output requestRout, stating that the latch
output data is now valid, and an input acknowledgeAin, stat-
ing that the input data can be removed. Any subsequent input
requests will now be stalled by the input C-gate.

An output acknowledge onAout signals that the latch data
has been consumed, this event propagating through the exclu-
sive-OR and drive buffer circuitry to open the latch. The C-
gate again detects that both latch control signals have changed
state, the subsequent event being steered through theToggle to
its blank output to prime the input C-gate ready for the next
input request. This signals that the latch is now transparent
and therefore the cycle can begin again. Fig. 7 shows a timing
diagram illustrating the above.

Fig. 6.  Asynchronous ARM micropipeline control circuit
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and wiring. Once the data bundling constraints are met the
micropipeline approach can be considered delay-insensitive.

This basic concept of a ‘2-phase bundled data protocol’
can be expanded to build FIFO structures known as micropi-
pelines. Sutherland’s approach describes the use of a cap-
ture-pass latch as a data storage element. Fig. 3 shows the
basic structure of a capture-pass latch.

The capture-pass latch is transparent until an event occurs
on itsCapture line. This causes the latch to hold any data that
was on its input line,Din, at that time. TheCapture Done
event signals that the capture operation has completed.Dout
now represents the captured data, any change of data onDin
will have no effect on this value. An event onPass signals
that the latch contents have been consumed and that the latch
can return to its transparent state, ready for the next data
value and input event. The eventPass Done signals the com-
pletion of the pass operation.

Capture-pass latch structures can be chained to form a
FIFO or micropipeline structure with the use of the Muller
C-gate [13] to ensure correct operation of the bundled data
protocol or handshake control. The Muller C-gate acts as an
AND function for events. Each input of the Muller C-gate
must receive an event before an event is propagated to its
output. Fig. 4 shows a basic micropipeline structure.

Here the Muller C-gates are shown with an inversion at
one of their inputs. On initialisation all C-gate outputs will
be zero, the inversion therefore primes the C-gate for firing
on the first event received onRin. When valid data is pre-
sented atDin an input request will be generated by the
sender in the form of an event onRin. This will cause the first
stage to capture the data. On completion of the capture an
acknowledge is returned to the sender via an event onAin.

Din Dout

Capture

Pass
Capture
Done

Pass
Done

Fig. 3.  Capture-pass data storage element
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Fig. 4.  Sutherland micropipeline structure
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The sender can now prepare the next data for the pipeline.
This event is also propagated forward down the pipeline

through a delay element to the C-gate controlling the second
capture-pass stage. The delay element represents any required
control delay to ensure that the data is valid at the data input
of the second stage prior to a capture event being issued.

As the second stage C-gate will be primed after initialisa-
tion a capture event will be generated and thus the data will be
latched. On Capture Done the second stage latch will forward
an event to the next stage and also send an event back to the
preceding stage to signal that the input data can be removed.
This event activatesPass on the first stage latch thus returning
it to its transparent state and, on completion, thePass Done
event primes the input C-gate ready for the next input event.
This process continues down the pipeline until an output
request is generated atRout.

Further data can be input into the pipeline; however, the
pipeline will gradually fill if the data is not removed from the
output and will eventually stall at the input C-gate at the first
stage after four data elements have been latched. New input
data atDin with a corresponding event onRin cannot progress
until the first stage capture-pass latch becomes transparent
which is similarly stalled on the second stage and so on. An
acknowledge event from the receiver onAout signals that the
data onDout has been consumed thus enabling the pipeline
data to progress a stage further and generate a newRout event
with its correspondingDout. This describes the basic First-In
First-Out property of micropipelines.

A. Micropipeline Implementation in the Asynchronous ARM

One of the main areas of design in the asynchronous ARM
which incorporates the micropipeline technique is the 32-bit
wide datapath. The datapath is a high density custom layout
cell design where transistor count and density are at a pre-
mium. For this reason the building of latch circuits based on
the capture-pass approach was considered too costly in area
and transistor count and a more conventional latching circuit
structure was chosen.

Fig. 5 shows the latching structure chosen, a pass transistor
transparent latch structure, along with a proposed CMOS cap-
ture-pass latch structure. Note that this capture-pass imple-
mentation has four transmission gate structures compared



Abstract— An asynchronous implementation of the ARM
microprocessor has been designed and fabricated based on
Sutherland’s Micropipeline approach. Reviews of this work
have shown that considerable performance improvement may
be possible in a number of key design areas. This paper
assesses the effects of different design styles on the micropipe-
line latch structures used.

 The original design has latch structures based on pass-
transistor transparent latches. An evaluation of the use of sin-
gle-phase transparent latch structures is given plus the appli-
cation of 2-phase and 4-phase control techniques.

I.  INTRODUCTION

The present increase in awareness of power dissipation of
high performance CMOS microprocessors has led to an
upsurge of interest in asynchronous design as a low-power
technology. From high performance processors having a
power consumption of 20-30 Watts to the growth in con-
sumer demand for hand-held battery-powered equipment,
the power issue is now one which cannot be ignored.

Asynchronous design is not new [1-6] but has largely
been neglected by contemporary digital designers who
instead have opted for the clocked, globally synchronised,
approach. With the observation that synchronous logic
design is beginning to reach serious limits with regard to
clock distribution and skew, asynchronous design (where
global synchrony is abandoned) would seem to offer signif-
icant benefits, being free from these design problems. Also,
by their very nature, asynchronous circuits only use energy
when doing useful work.

To investigate whether an asynchronous approach would
offer significant advantages in the design of RISC micro-
processors over more conventional methods, an asynchro-
nous implementation of the ARM processor [7] has been
designed and fabricated [8,9]. The asynchronous methodol-
ogy applied to this design was based on Sutherland’s
“Micropipelines” [10], this being chosen over other asyn-
chronous methodologies as being the most practical, with
the right balance of engineering cost and performance.

Resulting silicon has been proved to be functional, exe-
cuting programs generated by standard ARM development
tools such as the assembler and C compiler. Performance fig-
ures, however, from this first prototype implementation do
not show any major benefits over the equivalent synchro-
nous design [11]. Evaluation of the design has shown that

considerable performance improvements may be possible in a
number of key design areas. The micropipeline latch design
style chosen for the asynchronous ARM implementation is
considered as an area where improvements can be made.

II.  M ICROPIPELINES

The micropipeline approach uses bundled data with a 2-
phase transition signalled handshake protocol to control data
transfers, see Fig. 1.

The interface between sender and receiver consists of a
bundle of data which carries information (using one wire for
each bit) and two control wires;Request from the sender to the
receiver carries a transition when the data is valid;Acknowl-
edge from the receiver to the sender carries a transition when
the data has been used. The protocol for this sequence is illus-
trated in Fig. 2. This defines the sequence in which events
must occur, there is no upper bound on the delays between
consecutive events.

Other asynchronous design styles such as dual-rail encod-
ing, where each Boolean is implemented on two wires to
allow the timing information to be communicated for each
data bit, are considered to be delay-insensitive [12]; that is
they are insensitive to variations in the delays of logic gates

sender receiver
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Data

Fig. 1.  A two-phase bundled data interface

Fig. 2.  Bundled data interface protocol
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