
Interfacing Real-Time Spiking I/O with the SpiNNaker
neuromimetic architecture

Sergio Davies⋆, Cameron Patterson, Francesco Galluppi, Alexander D. Rast, David Lester, and Steve B. Furber

APT group, School of Computer Science
The University of Manchester, Manchester, U.K.

{daviess,pattersc,galluppf,rasta,dlester,sfurber}@cs.man.ac.uk

http://intranet.cs.man.ac.uk/apt/projects/SpiNNaker/

Abstract. This paper describes a closed-loop robotic system which calculates its position by means of a
silicon retina sensor. The system uses an artificial neural network to determine the direction in which to
move the robot in order to maintain a line-following trajectory. We introduce a pure “end to end” neural
system in substitution of typical algorithms executed by a standard DSP/CPU. Computation is performed
solely using spike events; from the silicon neural input sensors, through to the artificial neural network
computation and motor output. At the end of the experiment the robotic system using these methods was
able to follow a line consistently on a plain background.

Key words: SpiNNaker, Silicon Retina, Actuators, Spiking neural network, Closed-loop system, spike-
based computation

1 Introduction

Artificial spiking neural network (ANN) simulation has been widely investigated in the recent past, with many
attempts being made to simulate networks in real-time and with increasing biological realism. ANNs have been
widely used to interface with sensors, revealing features and details which are then used for specific purposes
e.g. [3] [10]. However these designs typically use spiking ANNs as central processing intelligence, while sensors
and actuators remain in the analogue domain. Consequently a conversion is required between the analogue
values of sensors and actuators to the spiking inputs required by the ANN. An example of such a system is the
Kephera robot [3], where after some training the controlling neural network demonstrated object avoidance. In
this Kephera study a NIOS 16-bit processor implemented on an FPGA was used both to mediate between real
world sensors and actuators, and to implement the neural network cells. In a similar way, the robot DARWIN V
[10] was able to present complex behaviours based on the perception of the world through non-spiking sensors
which were pre-processed into spikes for consumption by the neural network. This robot evolved to the point
of being able to discriminate between objects captured with its vision system sensors. Few attempts have been
made where computation is solely performed by means of spikes in closed-loop systems, where the ANN is
a “cortical simulator” between sensors and actuators. The system introduced in this paper is designed as an
extendable end-to-end spiking test platform, with the simple initial classical aim of having a robot follow a line.
In the future, the same platform can be further developed to explore other (more complex) neural algorithms.
The approach of using a full spiking system has many advantages when compared with more familiar robotic
implementations. These include more frugal power consumption which is a key factor in low-power embedded
applications, better tuned temporal response as real-world stimulus drives the ANN rather than the beat of a
synchronous clock, and that spiking ANNs act as a natural noise filter due to the behaviour of the neurons.

2 System description

SpiNNaker is a massively parallel biologically inspired computing platform for modelling ANNs in real-time
[9]. In its largest configuration a SpiNNaker system scales to ∼1 billion real-time neurons. Here we describe a
closed-loop system developed as a proof-of-concept for interfacing SpiNNaker hardware with discrete devices in
the real world. We use a silicon retina [7] mounted on a self-propelled 6-axis 3-wheeled robot (fig.1).
Architecture of the closed-loop system: The system is outlined by the blocks in fig.1. The retina outputs
spike events which are translated to SpiNNaker format spike packets, addressed to the correct input neuron in
the ANN. The SpiNNaker board performs the neural network computation and outputs motor spike events on
its Ethernet interface that the PC converts into commands to control the wheels of the robot. As the motor
controller for the robot accepts only input vectors, the Host PC translates SpiNNaker output spike rate-codes
into acceptable values for motor control.

⋆ All the authors are with the APT group at The University of Manchester

7

Volume 11, No. 1 Australian Journal of Intelligent Information Processing Systems



(a) Architecture of the system. Solid lines repre-
sent native spike paths.

(b) Plan view of the robot,
retina and line.

Fig. 1. Schematic and photograph of the robot with mounted retina

The SpiNNaker test board: Four SpiNNaker “test” chips reside on one board [6], each chip (fig.2) having two
ARM 968-E processor cores, with tightly coupled instruction and data memories, timer, interrupt and custom
DMA controllers and an interface to an external SDRAM chip. One core per chip is used to simulate ∼1,700 LIF
[8] or up to 1,000 Izhikevich neurons [5], and the other for system control and communication, giving potentially
4 times this number of neurons per test board.

(a) Schematic diagram of the
SpiNNaker architecture

(b) Physical die layout of the test
SpiNNaker chip

Fig. 2. Schematic and plot of the SpiNNaker two core test chip

The silicon retina: The silicon retina is inspired by the biological processes that take place in the eye [7]. Light
intensity changes are captured by each pixel on the sensor and generate discrete spiking events, the sensitivity
of which can be adjusted by the user. The sensor is able to generate sub-millisecond responses to changes in
individual pixels, and is formed of a matrix of 128x128 elements, totalling 16,384 spike sources. Each spike event
generated by an individual pixel is represented by an AER (Address Event Representation) packet including
the co-ordinate of the pixel emitting the event and the polarity of the event.

Robot actuators: In this environment the actuators are represented by the wheel motors of a robot (fig.1).
The robot has three wheels (placed with radial symmetry) each attached to an independently controlled motor.
The commands used in this environment set the robot speed in three directions: forward – backward (y axis),
left – right (x axis) and rotate (clockwise – anticlockwise).

3 Model implementation

Sub-sampling input spikes: The silicon retina’s USB interface limited the spike rate sent to the host
computer to 120,000 events per second. Further, the DVS128 retina has 16,384 elements, too many for a 1:1
SpiNNaker input map on the test board when using LIF (tests show the SpiNNaker test board with 4 chips can
model up to 6,896 LIF neurons [8]). A relevant method of reducing the data flow must therefore be employed,
without losing information relevant to the line-following task. We identified and studied the following reduction
methods:

– Sub-sampling over space (e.g.: blocking/pixelating). This reduces the number of unique input neurons re-
quired, so that all the events received in a region drive a specific neuron. We considered uniform (e.g. 16x16

8

Volume 11, No. 1 Australian Journal of Intelligent Information Processing Systems



- fig.3a), and non-uniform methods (fig.3b - with better central image resolution as per a biological eye).
This method drops no spikes, but adds categorisation.

– Sub-sampling over space and time (e.g.: only using pixel coordinates which are exact multiples of 4). This
drops spiking information that might have been useful in coherent detection of line edges over any noise.

– Windowing (e.g. a thin slot over the full image width - fig.3c). Instead of using the full ‘image field’ this
reduces the number of input spikes by using a high resolution subset conformed for directional decisions.

(a) Uniform 16x16 block
grid

(b) 16x16 foveated out-
put grid

(c) Slotted / Windowed
view 64x8

Fig. 3. Sub-sampling the Input Spikes

In our SpiNNaker line-following system we chose space sub-sampling, block pixellating the image down to 8x8
pixels to give a resolution of 16x16 blocks across the full frame (fig.3a). This categorisation into 256 sub-samples
is repeated for both spike event polarities, totalling 512 input neurons.

Neural Network Architecture: The neural network couples the sensors with actuators; we used a Leaky
Integrate-and-Fire (LIF) [2] feed-forward network organized into 3 layers. The input layer is composed of 2
16x16 matrices combining the input for both polarities, and is connected to a 4x4 sub-sampler layer where units
are in competition through lateral inhibition. Each neuron in the sub-sampler maps a 4x4 receptive field in both
input matrices. The more frequently cells in the sub-sampling neuron’s receptive field fire, the more likely that
the sub-sampling neuron fires, inhibiting other sub-sampling neurons - a Winner Take All (WTA) mechanism.
Finally, the output layer stimulates the actuators (fig.4), and is designed to maintain the most salient stimuli
in the central portion of the visual field. Outputs are also in competition, in order to achieve better stability.

Fig. 4. The Neural Network used. 512 input neurons from the retina feed into a hidden sub-sampler layer, and then to
a competitive output layer to give the robot direction.

The neural network was generated with a PyNN script [1], and uploaded to the SpiNNaker chip through an
automatic software process [4], taking advantage of PyNN’s ability to represent 2D network information.

Spike rate to motor speed conversion: The robot interfaces to the SpiNNaker board through a PC
which converts the spiking rate of the output neurons to the speed of the robot in the corresponding direction.
To interface the neural network with the robot we used three output neurons: forward, left and right. The con-
version uses an internal state variable which holds the current speed for each direction and its last received spike
timestamp. The internal state variable decays every millisecond, and when it differs from the actual robot speed
beyond a threshold, a new command is sent to the robot to alter its speed. The transfer function is described by
the graphs in fig.5. The closer two spikes are, the greater the increase of speed in the corresponding direction.

9

Volume 11, No. 1 Australian Journal of Intelligent Information Processing Systems



Both parts of the algorithm (increasing and decreasing) rely on parameterised linear rate-coding functions to
permit fine tuning of the behaviour.

Fig. 5. Impulse response function to spikes generated by a motor neuron. The state variable decays linearly with the
time, while the output speed sent to the robot is quantized. The closer together the input spikes, the steeper the increase
in robot speed on that axis.

4 Results

In an ideal situation, the robot would sit on the central axis of the line moving forward, however, the silicon
retina output relies on changes in intensity of each pixel. In such a case the line would become invisible as
no changes in intensity would be detected. To avoid this problem we added an element of jitter in the robot
movements, as well as exploiting inherent mechanical vibration, in order to maintain visibility of the edges of
the line. The robot has the silicon retina mounted on top towards the front (see fig.1), with some perspective
created by slightly angling back the mounting.

Neural Network Activity: Fig.6 analyses the results extracted from 5 seconds of a recorded simulated

Fig. 6. 5 seconds simulated network activity (a) input neurons’ activity: during the trial the most active neurons are the
ones corresponding to the edges of the line (b) subsampler activity: the most active neurons are the ones in the center
of the visual field (c) output neurons’ activity

run, and we used these results to tune network parameters. At the beginning of the trial the robot is placed on
top of the line (slightly to the right side). Fig.6a shows the mean activity rate of the input neurons, fed by the
silicon retina: it can be seen that the most active neurons are those along the line edges (column 7 and 11) as
the robot moves forward. The rest of the input layer is subject to random noise. Fig.6b shows the mean activity
in the sub-sampler layer: as the WTA mechanism takes place, we can see that the most active neurons are the
ones where the input is more salient (2,2 - 1,2 - 2,1). According to the activity in the subsampler layer and the
map described in fig.4, the output forward neuron is the most active. The right neuron is more active than the
left because the robot is positioned slightly on the right, and the network is attempting to compensate for this
drift in order to keep the line in the central portion of the visual field. The successful line-following outcome at
the end of this research is also recorded in an Internet published video.1

1 http://www.youtube.com/watch?v=ZQ7FdQ_VJNg

10

Volume 11, No. 1 Australian Journal of Intelligent Information Processing Systems



5 Discussion

The approach taken by the system presented in this paper represents a solution complementary to classical
approaches to robot control offering alternative benefits rather than attempting to compete feature-for-feature.
The closed-loop system presented is formed by interfacing the spiking neural network with sensors and actuators:
the whole system runs in real-time and interacts with the outside world exclusively by means of spikes. The
simulated ANN receives real-time input from a peripheral sensory input processor, and it outputs spikes to
control the movements of the robot, c.f. the motor neurons in the cortex.
Using spiking interfaces between the ANN and the I/O devices places this design in contrast to previous line-
following implementations. Two simple passive conversions complete the interface. All spikes from the retina are
delivered as spikes to the SpiNNaker board via a lookup table between silicon retina output spikes (from USB)
to SpiNNaker board input spikes. A spike-rate to linear vector conversion between SpiNNaker motor neurons
and robot wheels handles the output. Such a system demonstrates the feasibility of integrating “cortical” chips
such as SpiNNaker with spiking sensors and actuators in time-critical real-world simulations.

6 Conclusions

This paper has covered an alternative approach to the classic robotic line following problem using a fully
spike-based technique that delivers potential improvements to power utilisation, input filtering and temporal ef-
ficiency. We have described an autonomous closed-loop system using a dedicated programmable neural network
simulator chip to emulate the cortical areas of the brain. We used our extendable framework to demonstrate
the ability of the SpiNNaker system to interface with the real world through spiking sensors and actuators
using only neural algorithms to execute the assigned tasks. In this implementation we used a fixed network
topology and fixed synaptic weights, thus the behaviour of the neural network is statically defined. In future
work, learning algorithms and synaptic plasticity will enable the robot to understand the pattern of inputs, to
follow and search autonomously. In addition a larger scale SpiNNaker chip is currently in preparation which
has 18 cores per chip, with enhanced on-board resources. This chip will be used to scale the platform to much
larger systems, including the machine expected to scale beyond 1 million processors. This research is a first step
towards a long-desired research goal: autonomous robotic systems using bio-inspired spike-based signalling to
permit real-time action and adaptation in highly dynamic environments.

Acknowledgements We would like to thank the Engineering and Physical Sciences Research Council (EP-
SRC), Silistix, and ARM for supporting SpiNNaker research. We would also like to thank Jörg Conradt, Tobi
Delbruck and all at the Telluride Neuromorphic Cognition Engineering Workshop 2010.

References

1. Andrew P Davison, Daniel Brderle, Jochen Eppler, Jens Kremkow, Eilif Muller, Dejan Pecevski, Laurent Perrinet,
and Pierre Yger. PyNN: A common interface for neuronal network simulators. Front Neuroinformatics, 2:11, 2008.

2. Peter Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural
Systems. The MIT Press, 1st edition, Dec. 2001.

3. D.Roggen, S.Hofmann, Y. Thoma, and D. Floreano. Hardware spiking neural network with run-time reconfigurabile
connectivity in an autonomous robot. In Proc. 2003 NASA/DoD Conf. Evolvable Hardware, pages 189–198. IEEE
Press, 2003.

4. Francesco Galluppi, Alexander Rast, Sergio Davies, and Steve Furber. A general-purpose model translation system
for a universal neural chip. Submitted to ICONIP 2010 - 17th International Conference on Neural Information
Processing.

5. X. Jin, S. B. Furber, and J. V. Woods. Efficient modelling of spiking neural networks on a scalable chip multiprocessor.
Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International
Joint Conference on, pages 2812–2819, September 2008.

6. X. Jin, F. Galluppi, C. Patterson, A. Rast, S. Davies, S. Temple, and S. Furber. Algorithm and software for simulation
of spiking neural networks on the multi-chip SpiNNaker system. Neural Networks, 2010. IJCNN 2010. (IEEE World
Congress on Computational Intelligence). IEEE International Joint Conference on, 2010.

7. Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128x128 120dB 15us Latency Asynchronous Temporal
Contrast Vision Sensor. IEEE J. Solid State Circuits, 43:566–576, 2008.

8. A. D. Rast, F. Galluppi, X. Jin, and S. Furber. The Leaky Integrate-and-Fire Neuron: A platform for synaptic model
exploration on the SpiNNaker chip. Neural Networks, 2010. IJCNN 2010. (IEEE World Congress on Computational
Intelligence). IEEE International Joint Conference on, 2010.

9. Alexander D. Rast, Xin Jin, Francesco Galluppi, Luis A. Plana, Cameron Patterson, and Steve Furber. Scalable
event-driven native parallel processing: the SpiNNaker neuromimetic system. In CF ’10: Proceedings of the 7th ACM
international conference on Computing frontiers, pages 21–30, New York, NY, USA, 2010. ACM.

10. O. Sporns, N. Almássy, and G. M. Edelman. Plasticity in value systems and its role in adaptive behavior. Adaptive
Behavior, 8(2):129–148, February 2000.

11

Volume 11, No. 1 Australian Journal of Intelligent Information Processing Systems


