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Abstract
This paper argues that economic theory can improve our under-
standing of memory management. We introduce the allocation
curve, as an analogue of the demand curve from microeconomics.
An allocation curve for a program characterises how the amount of
garbage collection activity required during its execution varies in
relation to the heap size associated with that program. The standard
treatment of microeconomic demand curves (shifts and elasticity)
can be applied directly and intuitively to our new allocation curves.
As an application of this new theory, we show how allocation elas-
ticity can be used to control the heap growth rate for variable sized
heaps in Jikes RVM.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection)

General Terms Economics, Measurement

Keywords Microeconomics, Allocation curve, Elasticity, Mem-
ory management, Garbage collection, Java

1. Introduction
The memory behaviour of garbage collected programs is complex.
As well as empirical studies (for instance, [14, 17, 22, 27, 29]),
a wide range of analytical studies exist. Some researchers have
used concepts from other fields as metaphors for various aspects
of memory management. For instance, Baker shows how concepts
from statistical thermodynamics can be applied to regions of the
heap [5]. Clinger and Rojas combine linearly different radioac-
tive decay models of object lifetime distributions to model genera-
tional garbage collection [12]. Stefanović et al. explore well-known
families of distributions using statistical techniques [28]. In this
work, we apply some theory from microeconomics to characterize
program behaviour with different automatic memory management
configurations.

Economic theory has many parallels with the analysis of
garbage collection performance. Both disciplines provide math-
ematical apparatus that attempts to understand, summarize and
modify complex systems with numerous hidden variables.

In this paper, we show how an economic demand curve for a
commodity has a clear analogue in the garbage collection domain.
To the best of our knowledge, this is the first time that economic
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theory has been used in the context of automatic memory manage-
ment. There are two main aims to our work. First, we intend to use
economic theory to improve our understanding of memory man-
agement, by identifying parallels between concepts in each domain.
Second, we aim to apply economic theory to control and optimize
memory management behaviour.

The main contributions of this paper are:

1. the allocation curve as a graphical characterization of how a
program interacts with GC for a range of fixed heap sizes.

2. an empirical investigation to show that the allocation curve has
a standard shape across many Java benchmarks, for different
garbage collection algorithms.

3. allocation elasticity to characterise the sensitivity of an appli-
cation to changes in heap size.

4. the application of allocation elasticity to manage the growth
of variable size heaps for Java benchmarks executing in Jikes
RVM.

2. Microeconomics Background
Microeconomics studies interactions in a single market, i.e. relating
to the supply and demand of a single commodity. The market may
be affected by product scarcity or regulation. The theory considers
the quantity demanded by buyers and the quantity supplied by
sellers at each possible price per unit. This is known as supply and
demand analysis.

A demand curve is a graph that shows the relationship between
the price of a certain commodity, and the quantity that consumers
will purchase at that given price. The negative slope of the curve is
due to the law of demand, which states:

If all other factors remain equal, the higher the price of a
good, then the less people will demand that good.

In other words, the amount demanded of a commodity and its price
are inversely related, other factors remaining constant. Figure 1
shows an example demand curve. By convention, the price p is
specified on the vertical axis and the quantity q is given on the
horizontal axis. Note that microeconomists plot the independent
variable (e.g. the price) on the vertical axis and the dependent
variable (e.g. the quantity demanded) on the horizontal axis, in
contrast to the usual mathematical convention.

The demand curve was adopted and popularized by the British
economist, Alfred Marshall, in his 1890 textbook Principles of
Economics. Since then, it has become one of the most well-known
aspects of microeconomic theory.

The relation between price of a good and its demand may
vary. A movement refers to a change along a demand curve. If
the price of a commodity changes, then the quantity demanded by
a consumer will also change. Note that the demand relationship
remains constant. Rather an individual consumer has moved from
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Figure 1: An example demand curve for a commodity

one point to another, along the demand curve. In other words,
a movement occurs when a change in the quantity demanded is
caused only by a change in price, and vice versa.

A shift in a demand curve occurs when the quantity of a com-
modity demanded by consumers changes even though price re-
mains the same, i.e. the demand is influenced by some other factor.
An example may be the relative scarcity of alternative products.
Shifts in the demand curve imply that the original demand rela-
tionship has changed. Graphically, the demand curve is shifted in
relation to the axes.

Demand elasticity E measures the sensitivity of the quantity q
demanded to changes in price p. It can be calculated as:

E =
%change in quantity
%change in price

=
dq

dp

p

q
(1)

Demand for a product is inelastic if consumers will pay almost any
price for that product, e.g. life-saving drugs. Inelastic demand is
denoted by a steep gradient in the demand curve (a large change in
price hardly changes the quantity demanded). On the other hand,
demand for a product is elastic if consumers will only pay a certain
price, or a small range of prices, for the product. For instance, as
the price of a particular foodstuff increases, consumers may turn to
substitute foods instead. Elastic demand is denoted by a shallow
gradient in the demand curve (a small change in price causes a
dramatic change in the quantity demanded). Note that the elasticity
of a good is not necessarily constant for all points on the demand
curve.

3. Garbage Collection Analogy
We suggest that there are connections between microeconomics
and memory management, and that these may enable us to gain
a better understanding of memory management, and give us new
techniques to analyse and optimize it. We introduce the allocation
curve as a new graphical representation of a program’s allocation
activity and interaction with the garbage collector. The allocation
curve incorporates several existing measures, and adds new infor-
mation. The allocation curve is the analogue of the demand curve
from microeconomics. Given a particular program, the allocation
curve shows the relationship between the size of the heap used by
that program, and the number of garbage collections required dur-
ing the programs execution.

We relate the heap size to the price variable from the demand
curve. In terms of program execution, the two standard costs are
time and space. In terms of memory management, the primary cost
is space. Thus it seems reasonable to treat heap size as the analogue
of price, which is the independent variable in the demand curve,
plotted on the vertical axis.

We relate the number of GCs to the quantity variable from the
demand curve. A GC enables re-use of memory, which represents
consumption of resource, in some sense. Thus it seems reasonable

Heap

size

Number of GCs
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total
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Figure 2: An example allocation curve for a program

to treat number of GCs as the analogue of quantity, which is the
dependent variable in the demand curve, plotted on the horizontal
axis.

The allocation curve will have the same shape as the demand
curve if programs’ allocation behaviour satisfies something equiva-
lent to the law of demand. Recall that this microeconomic law states
that ‘quantity and price are inversely related’. It is well-known that
the number of GCs required by a program, given an appropriate
scheduling of collections, is inversely correlated to heap size. We
therefore summarise this relationship with the analogous law of al-
location:

If all other factors remain equal, the larger the heap size,
then the fewer GCs required.

It makes intuitive sense that heap size should be inversely related
to the number of GCs, since a larger heap will require fewer GCs
for the same schedule of allocation.

Figure 2 shows the graph for an example allocation curve. The
amount of memory required for successful program execution is
given on the vertical axis. The number of garbage collections that
occur during program execution is given on the horizontal axis. A
point (x, y) on the allocation curve indicates that y is the minimum
heap size for which the program may successfully complete execu-
tion with not more than x garbage collections, i.e. given an ideal
scheduling of GCs. Obviously slightly larger memory sizes might
enable the same program execution to complete with the same num-
ber of GCs. Garbage collection is chaotic in the formal sense that
small changes in GC schedules can lead to large changes in the
number of GCs required and the work that they must do, and hence
to large changes in program performance [8]. Thus, in order to plot
the perfect allocation graph, it would be necessary to execute a pro-
gram with not only all possible different fixed heap sizes but also
for all possible GC schedules, and to monitor the number of GCs
required in each case. We describe our experimental method used
to collect the empirical data presented and to compute approximate
allocation curves in the following sections.

The two extreme points of the allocation curve are interesting.
The leftmost point on the curve, when the number of GCs is 0,
indicates the total amount of memory allocated by the program
during its entire execution. This is equivalent to the heap size
required for successful execution without a garbage collector, such
as the NoGC policy in Jikes RVM / MMTk.

The furthest point on the right of the allocation curve, when the
number of GCs tends to +∞, indicates the minimum heap size in
which this program will execute. This is equivalent to the high-
watermark of the live data set throughout program execution, the
max livesize metric [24].

The shape of the allocation curve is related to the uniformity
of object death rate. For instance, if a program constantly allocates
only short-lived objects for its entire execution, then the allocation
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(d) hsqldb
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Figure 3: Allocation curves for selected DaCapo benchmarks using a full-heap mark-sweep collector

curve will have a constant negative gradient. Each GC is ‘worth’
as much as every other GC, since it removes the same amount of
short-lived objects. On the other hand, if a program has a significant
amount of long-lived objects, then the allocation curve will decay
to an asymptote, as it reaches the point where extra GCs do no
useful work since remaining objects are still live.

Taking g as the number of GCs, and h as the heap size, then
it is important not to confuse the gradient dg/dh of the allocation
curve with its elasticity, E.

E =
%change in number of GCs

%change in heap size
=

dg

dh

h

g
(2)

Section 5.4 investigates the empirical properties of allocation
elasticity. In summary, it is a measure of the sensitivity of the heap
size to the number of GCs, and vice versa.

4. Related Work
The garbage collection literature contains many empirical and an-
alytical studies of memory behaviour. The scope of the empirical
studies ranges from low level analysis of the proportions of differ-

ent kinds of objects in the heap and proportions of heap loads and
stores [14], to studies of nursery survival rates and object mortality
(e.g. [7, 22, 29]), to selection of garbage collection algorithms for
different programs [15, 26, 27].

Stefanović et al. explored analytical object lifetime distribution
models using statistical techniques to compare the models with ob-
served behaviour for a large number of Java and Smalltalk pro-
grams [28]. They concluded that none of the well-known distribu-
tion families they investigated were entirely satisfactory. Baker of-
fered a radioactive decay model of object lifetimes as an example
of a distribution that cannot benefit from generational garbage col-
lection. Although Baker expected a generational collector to per-
form neither better nor worse than a non-generation collector on
this model, Clinger and Hansen calculated that younger-first gen-
erational collection would perform worse [11]. Clinger and Rojas
argued, however, that a linear combination of these models (for
young, intermediate and older objects) was adequate to model sim-
ple generation collectors [12].

Several studies have explored models and mechanisms to con-
trol program performance by varying parameters such as heap size.
Vengerov provides an analytic model for the throughput of pro-



grams running on Sun’s generational throughput collector [31].
The analysis is used to improve performance, not by varying over-
all heap size, but by adjusting the relative sizes of spaces in the
HotSpot collector and the tenuring threshold (the number of minor
collections that an object must survive before it is promoted) used.

Most other related work has investigated how to vary heap sizes
to avoid paging (e.g. [1, 9, 13, 19, 20, 33, 34]. Yang et al [33, 34]
employ reuse distance histograms and a simple linear model of the
heap required; they require a modified virtual memory manager.
The Page-level Adaptive Memory Manager attempts to discover
the optimal heap size for a number of applications running on
a machine, taking advantage of program’s phase behaviour [35].
Grzegorczyk et al use allocation stalls as a warning of impending
GC-induced paging [19]. Hertz et al introduce the time-memory
curve, the shortest running time of a program in any heap size for a
given amount of physical memory [20]. They use a ‘whiteboard’
to allow programs to exchange page fault and resident set size
information in order to coordinate collections.

Few authors have used analogies to describe garbage collection.
Baker presents an analogy between abstract statistical thermody-
namics and garbage collection, equating energy with information
in the heap: the mutator adds information/entropy by allocating and
mutating objects [4]. The ‘temperature’ of the heap is the change
in information resulting from the addition of one unit of ‘energy’,
or equivalently the marginal cost to recover one unit of storage.
From this, Baker shows that the weak generational hypothesis re-
quires a younger generation to be ‘cooler’ than an older generation.
Grossman discusses the similarities between garbage collection and
transactional memory [18]. He argues that transactional memory
provides solutions to the problem of safe concurrent programming
with shared memory in the same ways that garbage collection does
for programming with dynamic memory.

The only discussion of economics and dynamic memory man-
agement that we are aware is from Wilson et al [32]. They sug-
gested that allocators that make poor use of memory might have
incurred a real economic cost of over one billion US dollars world-
wide in 1995 (on the assumption that there was $30 billion of RAM
at stake: 100 million PCs, each with 10 MB of memory at $30 per
megabyte). Interestingly, this monetary value has hardly changed
in 15 years. Although there are more than a billion PCs today [16],
say each with at least 512 MB of RAM, memory prices have plum-
meted to about $40 per GB.

5. Empirical Allocation Curves
This section presents empirical data from real-world Java appli-
cations, running on a state-of-the-art virtual machine. Our exper-
imental results confirm that, over a wide range of Java programs,
for two different GC algorithms, the allocation curves generated do
have the properties we suggested in Section 3.

Empirically observed allocation curves are specific to a partic-
ular runtime system and garbage collection regime. For our exper-
iments, we analyse Java benchmarks from the DaCapo suite [6],
version 2006-10-MR2, using the default input sets. We execute
Java code on the Jikes RVM system, v3.1.0 [2, 3] which is config-
ured for an x86-64 Linux distribution. We use the replay compila-
tion facility of Jikes RVM [21]. We record the latest compilation
options for each method on a steady-state iteration of each bench-
mark. Then we re-execute each benchmark with this compilation
profile data and take GC measurements on the second iteration of
each benchmark execution. Since all optimizing compiler activity
should occur in the first benchmark iteration with replay compi-
lation; this is not included in our allocation data collection. As a
caveat, we note that the overall heap size has to be sufficiently large
for the optimizing compiler to operate correctly in the first iteration,
which may somewhat inflate the overall memory requirements.

First we generate allocation curves for a simple full-heap col-
lector, in Section 5.1. Then we switch to a generational collector,
and generate more allocation curves in Section 5.2. We show that
allocation curves can be shifted in the same way as demand curves,
in Section 5.3. We discuss the concept of elasticity in Section 5.4
and show how some benchmarks are more elastic than others.

5.1 Full-Heap Collection
For this initial set of allocation curves, we use a full-heap collector
for the sake of simplicity. The actual GC algorithm is MarkSweep
from the MMTk framework, and the Jikes RVM configuration is
FastAdaptiveMarkSweep.

In order to generate the allocation curve, we iterate over a num-
ber of fixed heap sizes, from 35MB to 500MB for all benchmarks.
Note that we ignore explicit System.GC calls from the application
code, since these cause spikes in the allocation curve. Strictly they
are ‘unnecessary’ collections. At each fixed heap size, we execute
each DaCapo benchmark and record the following data into a log
file:

1. whether the benchmark completed execution successfully.

2. how many GCs occurred during benchmark execution.

3. the fixed size of the heap.

From the log files, it is possible to determine the minimum heap
size for each number of GCs. This gives the information required
to plot the allocation curve for each benchmark. The use of replay
compilation avoids that part of the GC noise which is caused by the
non-determinism of standard adaptive compilation.

Figure 3 shows the allocation curves for the DaCapo benchmark
executions with a full-heap collector, using the experimental setup
outlined above. Note that we omit analysis of the chart and eclipse
benchmarks, since these do not execute properly on our test system.

In all cases, the empirical allocation curves generally obey the
law of allocation. There are a few exceptional points that are not
monotonically decreasing, due to unfortunate scheduling of GCs.
Some benchmarks (fop and hsqldb) have a max livesize of the same
order of magnitude as total allocation. There are few points on
these curves. Other benchmarks (notably jython and xalan) have
a pronounced ‘knee’ in the allocation curve, with a long tail as
number of GCs tends to +∞. Such benchmarks allocate very large
amounts of short-lived data (in relation to their max livesize).

5.2 Generational Collection
We now switch to using a generational collector, which is the stan-
dard algorithm for most high-performance automatic memory man-
agement systems [23]. The insight underlying generational GC is
the weak generational hypothesis [30] that most objects die young.
By default, objects are allocated into a frequently collected nursery
space, with the expectation that most objects will die after a small
number of nursery collections. Long-lived objects are promoted to
the less frequently collected mature space. This concentrates GC
activity on an area of the heap that has the highest density of short-
lived objects, thus improving the efficiency of the GC algorithm.

This second empirical investigation has two aims:

1. to determine whether allocation curves are general enough to
work with more complex GC algorithms such as generational
collection.

2. to determine whether an allocation curve for a program has a
similar shape across different GC algorithms, i.e. is an alloca-
tion curve invariant to the GC regime?

Since our allocation curve framework only uses a single variable
to measure ‘number of GCs’, we must relate minor (nursery) GCs
and major (full-heap) GCs numerically. The admittedly simple
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Figure 4: Allocation curves for selected DaCapo benchmarks using a generational collector

solution we adopt is to weight nursery GCs according to the size
of the nursery in relation to the total size of the heap. For instance,
say we have a fixed heap of size X, and we fix the nursery to occupy
10% of X. This allows us to calculate that a nursery GC is worth
0.1× a full-heap GC.

In order to generate the allocation curve for generational GC, we
use the GenMS collector from MMTk, with the FastAdaptiveGenMS
configuration for Jikes RVM. We iterate over a number of fixed
heap sizes, from 35MB to 500MB for all benchmarks, setting the
fixed-size nursery to occupy 10% of the overall heap size. As be-
fore, we execute each DaCapo benchmark and record the appro-
priate data into a log file. We find minimum heap size for each
number of GCs. Figure 4 shows the allocation curves for some
DaCapo benchmark executions, using this setup.

The allocation curves are less smooth, since we are equating ten
minor collections with one major collection which is not really fair.
This accounts for the spikes, for instance in hsqldb.

However, generally the allocation curves have the same basic
shape as for full heap collection. Overall, the allocation behaviour
appears to follow the law of allocation outlined above. It is not the
case that individual benchmarks have similar curves for both full

heap and generational collection. In most cases they are markedly
different.

5.3 Shifting the Allocation Curve
In microeconomics, the demand curve for a commodity may shift.
This means the curve maintains its shape, but is translated along the
p or q axis. A shift occurs when there is a change in a factor that
influences the required quantity of that commodity, other than the
underlying price. For example, an increase in the sales tax would
raise the unit price of a commodity, which shifts the demand curve
up the p-axis without changing its shape.

An equivalent scenario may happen in memory allocation. Sup-
pose that objects become uniformly larger, perhaps as a result of
an increased number of object header words. In effect, the object
header is a ‘tax’ on the benchmark memory usage, imposed by the
VM. Then the allocation curve is shifted upwards, as more memory
is required for the same number of objects, although garbage col-
lection is correspondingly able to recycle the additional memory at
the same rate, since objects die at the same rate as previously.

Figure 5 shows the allocation curves for selected DaCapo
benchmark executions, using the same FastAdaptiveMarkSweep



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  2  4  6  8  10  12  14  16  18

he
ap

 s
iz

e 
(M

B
)

number of GCs

large objects
normal objects

(a) antlr

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140

he
ap

 s
iz

e 
(M

B
)

number of GCs

large objects
normal objects

(b) bloat

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0  1  2  3  4  5

he
ap

 s
iz

e 
(M

B
)

number of GCs

large objects
normal objects

(c) fop

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0  1  2  3  4  5  6

he
ap

 s
iz

e 
(M

B
)

number of GCs

large objects
normal objects

(d) hsqldb

 0

 100

 200

 300

 400

 500

 600

 0  5  10  15  20  25  30

he
ap

 s
iz

e 
(M

B
)

number of GCs

large objects
normal objects

(e) luindex

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  50  100  150  200  250  300  350  400  450

he
ap

 s
iz

e 
(M

B
)

number of GCs

large objects
normal objects

(f) lusearch

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  100  200  300  400  500  600

he
ap

 s
iz

e 
(M

B
)

number of GCs

large objects
normal objects

(g) jython

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  10  20  30  40  50  60  70  80  90  100  110

he
ap

 s
iz

e 
(M

B
)

number of GCs

large objects
normal objects

(h) pmd

 50

 100

 150

 200

 250

 300

 350

 400

 0  50  100  150  200  250

he
ap

 s
iz

e 
(M

B
)

number of GCs

large objects
normal objects

(i) xalan

Figure 5: Allocation curves for selected DaCapo benchmarks, showing the curve for standard objects, and for objects with larger headers.

configuration as before. In each graph there are two allocation
curves. The lower curve is for the standard Jikes RVM object
model. The upper curve is for a non-standard object model, which
includes an additional (empty) payload of four 32-bit words in ev-
ery object header. Note that the upper curve, for larger objects,
generally follows the same shape as the lower curve, only it is
shifted up the vertical axis.

For some benchmarks, the large object allocation curve is only
slightly higher than the normal object allocation curve. For in-
stance, the gap is around 10MB for the lusearch benchmark. How-
ever, other benchmarks have large gaps between the curves. For
instance, there is a distance of over 50MB for the hsqldb bench-
mark. This variation can be explained by the average size of ob-
jects in each benchmark. In a heap with many, comparatively small
objects, the increased overhead for larger object headers is more
pronounced than in a similar sized heap with fewer, comparatively
larger objects.

5.4 Elasticity
Microeconomists use elasticity to describe how relative changes in
one variable affect another variable. Demand elasticity measures

how much the quantity demanded changes when the price changes.
Demand elasticity can be computed at any point on a demand curve.
Equation 1 gives the formula for computing demand elasticity.

We introduce allocation elasticity as a measure of how the num-
ber of GCs g changes when the heap size h changes. Allocation
elasticity can be computed at any point on an allocation curve.
Equation 2 gives the formula for computing allocation elasticity at
a point. However, we cannot use this formula for our empirical al-
location curves since the curve is not analytically differentiable. In-
stead, we use arc elasticity, which estimates the elasticity between
two points (g0, h0) and (g1, h1) on the curve. Equation 3 gives the
arc elasticity formula, which follows directly from the analogous
arc elasticity for demand in microeconomics.

E =
(h1 − h0)

(h1 + h0)

(g1 + g0)

(g1 − g0)
(3)

Elasticity is always negative for curves that are monotonically
decreasing. Because of this, economists generally ignore the sign.
However we retain the sign since some of our empirical allocation



currElasticity = −1.
numGCs since last heap expansion
heap size change at last expansion

.
heap size before last expansion

numGCs from start to last heap growth
(4)

Figure 6: Formula to compute the current elasticity during execution with a variable size heap

curves are slightly choppy, causing allocation elasticity to turn
positive occasionally.

Elasticity varies along the allocation curve, as can be seen from
Figure 3. These graphs plot the arc elasticity between adjacent
points on the allocation curve. Since the allocation curve is not
entirely smooth, and the points are not equidistant on either the
g or the h axis, the elasticity is spikey. However it can be seen
that elasticity is generally negative, except for points where the
allocation curve does not decrease monotonically.

An allocation curve (or portion of the curve between two points)
is said to be inelastic if |E| < 1. This is indicated by a steep
slope in the allocation curve. The intuition behind this is that a
small change in the number of GCs gives rise to a large change
in the heap size, since the heap space is overprovisioned: heap size
� livesize so we are simply wasting space, although reducing the
GC work required. For example, consider the allocation curve for
the xalan benchmark in Figure 3(i), which clearly exhibits inelastic
properties near the left hand side of the curve, as the number of
GCs tends to 0.

Conversely, an allocation curve (or portion between two points)
is said to be elastic when |E| > 1. This is indicated by a shallow
slope in the allocation curve. A large change in the number of GCs
causes relatively little change in the heap size. The intuition behind
this is that heap size ≈ livesize so most GCs are not able to recycle
much memory. For example, consider the allocation curve for the
bloat benchmark in Figure 3(b), which tends to show increasingly
elastic properties when h > 55MB.

6. Controlling Heap Growth using Elasticity
So far in this paper, we have applied microeconomic theory to char-
acterize Java benchmark allocation behaviour. We have improved
our understanding of garbage collection using the analogy with de-
mand curves. However in this section, we go a step further. We
use the microeconomic concept of elasticity to improve GC per-
formance, by controlling the expansion rate for a variable size VM
heap.

Often, a Java application is executed with a variable size heap.
This may happen if the dynamic memory requirements of the
application are not quantified ahead-of-time. In such cases, the VM
user may simply specify an initial and a maximum heap size or may
use the system’s defaults. During the application execution, the VM
may vary its heap size to any value up to the maximum limit.

In Jikes RVM, the HeapGrowthManager class is responsible for
controlling the size of a variable heap. The default implementation
uses a simple heuristic to determine whether the heap size should
vary. The heuristic is based on the current GC load (i.e. the amount
of time spent on the nth GC in relation to the total execution
time since the end of the (n − 1)th GC) and the current live
ratio (i.e. the proportion of data on the heap that is not garbage,
after the nth GC). These two values are used as indices in a two-
dimensional lookup table of empirically determined heap growth
ratios. Generally, if the live ratio and the GC load are relatively
high, then the lookup value v is greater than 1, which causes the
heap to grow to v times the current heap size. The heuristic is
recomputed after every GC invocation. The lookup table values
are determined solely by experimental tuning. The Jikes RVM
developers report that the heuristic is ‘somewhat stable and makes
reasonable decisions.’ However there is some sensitivity to the

values, i.e. if they are perturbed significantly then variable heap
size decisions are affected.

The main problem with the default heap growth heuristic is
that it is opaque. It is not exposed to the VM user, and even if it
were, cannot be explained or modified simply. Instead an expert
VM programmer has to tweak the lookup table ratio values, and
recompile Jikes RVM each time she wants to evaluate a change.

We investigate an alternative heuristic for heap growth manage-
ment, based on the allocation elasticity of the executing applica-
tion. When Jikes RVM is initialized, the user may specify a target
elasticity value E as a command line option. The VM or bench-
mark documentation would have to provide some guidance on the
range of suitable elasticity values, or the user would have to conduct
experiments to determine an appropriate value. As the application
executes, its current allocation elasticity is computed after each GC
event, according to the formula in Figure 6. If the magnitude of the
current elasticity exceeds that of the target E, then the heap size
increases. Otherwise the heap size remains constant. The equation
in Figure 6 computes the arc allocation elasticity between the start
of application execution and the current time.

A large (negative) E value means that many GCs have to occur
at the current heap size before the current allocation elasticity
exceeds the threshold. This slows down the rate of heap growth.
On the other hand, a small (negative) E value means that few
GCs occur before the (negative) allocation elasticity falls below the
threshold, which means the heap can expand rapidly.

The motivation for allowing the user to supply a target elasticity
value ahead-of-time is to provide a limit on the rate of heap expan-
sion. It enables the user to control how readily the VM can acquire
new heap space.

To evaluate this elasticity-based heap expansion policy in Jikes
RVM, we measure execution times for the same DaCapo bench-
marks as earlier, specifying various E values between 0.1 to 10.
All benchmark executions take place in a modified version of Jikes
RVM 3.1.0, FastAdaptiveMarkSweep configuration. The evalua-
tion platform is a lightly loaded Intel Core i7/920 machine clocked
at 2.67GHz, with 6GB RAM, installed with x86 64 Linux 2.6.27.

For each benchmark/elasticity combination, we schedule 10
executions. We gather timing data from the second iteration of
each benchmark execution, with replay compilation. As earlier,
Jikes RVM is configured to ignore explicit System.GC() requests
from the application. We report arithmetic means for times, with
standard deviations, over the 10 runs.

The heap growth policy is to commence benchmark execution
with a 25MB heap, and to expand the heap by multiplying its size
by a fixed growth ratio after each GC when the current elasticity
exceeds the target elasticity, E. This is an exponential heap growth
model. Alternative growth models, such as linear, are possible
within the same framework.

Figure 7 shows execution time results for selected DaCapo
benchmarks, with variable sized heaps controlled using the elastic-
ity heuristic outlined above. The E value is varied along the x-axis,
note the log scale. The execution times are measured on the y-axis.
Confidence intervals are one standard deviation either side of the
arithmetic mean, for each result. We evaluate three different heap
growth ratios: 1.1, 1.3, and 1.5. (The lookup table in the default
HeapGrowthManager implementation has ratios in the same range
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Figure 7: Execution times for selected DaCapo benchmarks using a full-heap collector, with variable sized heap based on elasticity heuristic,
for several elasticity values and growth ratios

for heap expansion.) A larger heap growth ratio will cause the heap
to expand more rapidly.

We compare the performance of our new elasticity heuristic for
heap growth with the default Jikes RVM policy. In Figure 7, the
horizontal line in each benchmark’s graph shows the execution time
with the default policy. For the default policy, we start with the
same initial heap size of 25MB.

For most benchmarks, the graphs are fairly flat when E < 1.
Above unit elasticity, the execution time increases sharply. This is
because the heap growth is restricted, which causes more GCs to
occur, which degrades the application execution time. For some
benchmarks, such as jython and xalan, the default policy gives
comparable performance with our new elasticity heuristic when
E < 1. For other benchmarks, such as antlr and hsqldb, elasticity-
based heap growth out-performs the default policy when E < 1,
particularly for higher growth ratios.

Figure 8 shows the expanded heap sizes at the end of appli-
cation execution. Some high-elasticity hsqldb configurations give
OutOfMemory errors, since the heap grows too slowly to support
the program’s allocation schedule. It can be seen that low target

elasticity and high growth ratio values lead to comparatively larger
heap sizes, causing fewer GCs. Figure 8 also reports the final heap
size with the default heap growth policy, shown as a horizontal
line. In general, the default policy expands the heap to roughly the
same size as when 1 ≤ E ≤ 2, although this range is benchmark-
specific, and also dependent on the growth ratio.

The data in Figure 8 explains why the default policy for antlr is
slower than the elasticity-based policy when E < 1. In this range,
the heap size with elasticity-based growth is significantly larger
than with the default policy, for all growth ratios. Hence fewer GCs
are incurred in the larger heaps, so overall application execution
time is reduced. Basically, on an allocation curve, the elasticity-
based policy picks a point to the left of the default policy—giving
larger heap size, and better execution time. In contrast, consider
the xalan benchmark, for which the elasticity-based policy does
not outperform the default. The allocation curve for xalan in Figure
3(i) is inelastic for large heap sizes. So even though elasticity-based
policy selects a larger heap size than the default policy, the number
of GCs is generally not reduced.
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Figure 8: Final heap sizes for selected DaCapo benchmarks using a full-heap collector, with variable sized heap based on elasticity heuristic,
for several elasticity values and growth ratios

In summary, the elasticity-based heap growth policy is more
flexible than the default Jikes RVM heap growth policy, since our
new heuristic can easily be tweaked to change the rate of heap
growth. There is a range of elasticity values for which the heap
growth is roughly equivalent to the default policy. However for
very low E values, the heap expands more rapidly. For very high
E values, the heap expands more slowly. This user control of the
heap growth rate may be particularly useful in a server environ-
ment where multiple applications / VM instances are running con-
currently and competing for physical memory.

As always, there is a tradeoff between heap size and execution
time. A larger heap has fewer GCs, which improves the application
execution time. However the allocation curves show that there
are diminishing returns for increasing the heap size. Consider the
highly inelastic part of an allocation curve as the number of GCs
tends to 0. The heap size grows dramatically here, but the number
of GCs (and hence the execution time) hardly varies.

Our new elasticity-based heuristic allows us to find a happy
medium in the tradeoff between heap size and execution time.
Ideally, the heap size should be somewhere near the knee of the

allocation curve. To the left of the knee, application execution time
does not improve significantly. To the right of the knee, application
execution time is comparatively slow, due to the large number of
GCs.

7. Conclusions
This paper has drawn a novel analogy between microeconomics
and memory management. In particular, we have introduced the
allocation curve as a graphical model for an application’s interac-
tion with the GC. This model is derived from the demand curve in
microeconomics. There are some convincing parallels between de-
mand curves and allocation curves, such as movements and shifts.

We have generated empirical allocation curves for a set of stan-
dard Java benchmarks, and discussed their properties. We define
allocation elasticity and use it to give a new perspective on con-
trolling heap growth in Jikes RVM. Elasticity-based heap growth
is easier to configure and evaluate than the default lookup-table
implementation. In the standard version of Jikes RVM, the only
mechanisms for limiting the heap growth are: (i) to specify a max-



imum allowable heap size; or (ii) to alter the coefficients in the
HeapGrowthManager matrix, and recompile the VM. Our elastic-
ity alternative is potentially helpful as a middle-ground between
these two extremes, since it allows the users to specify how quickly
they want the VM to respond to changes in application allocation
behaviour. So far, we have only considered how to use elasticity to
increase the heap size. However we expect it would be a straight-
forward extension to handle heap shrinkage in the same framework.

With regard to future work in this area, we have only just
scratched the surface of microeconomic theory. Other interesting
concepts that may have analogues for memory management include
supply curves, monopolies and competition.
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