
Distributed Configuration of Massively-Parallel Simulation on
SpiNNaker Neuromorphic Hardware

Thomas Sharp, Cameron Patterson and Steve Furber

Abstract— SpiNNaker is a massively-parallel neuromorphic
computing architecture designed to model very large, bio-
logically plausible spiking neural networks in real-time. A
SpiNNaker machine consists of up to 216 homogeneous eighteen-
core multiprocessor chips, each with an on-board router which
forms links with neighbouring chips for packet-switched inter-
processor communications. The architecture is designed for
dynamic reconfiguration and optimised for transmission of
neural activity data, which presents a challenge for machine
configuration, program loading and simulation monitoring
given a lack of globally-shared memory resources, intrinsic ad-
dressing mode or sideband configuration channel. We propose
distributed software mechanisms to address these problems and
present experiments which demonstrate the necessity of this
approach in contrast to centralised mechanisms.

I. INTRODUCTION

LARGE-SCALE high-fidelity simulation of biological
neural networks is a vision of research in computational

neuroscience which has recently become feasible due to con-
tinuous fulfilment of Moore’s law [3] and data resulting from
progressive improvements to techniques in neuroanatomy
[1], [16]. The inherent parallelism in neural information
processing has allowed researchers to exploit multi-core
computers with relatively little concern for the problems
of, for example, shared data structures and synchronisation
which arise in many computational problems. However, the
huge scale of machines afforded by continually decreasing
hardware costs presents a new set of infrastructure concerns
quite different from those found with small-scale parallelism.
In modelling systems on massively-parallel architectures we
are concerned not only with the achievable ratio of real to
simulated time but also the potentially significant overhead of
simulation preparation, the limits of observable state during
simulation and the presentation of data upon termination.

This paper presents software protocols for the initialisa-
tion, control and monitoring of a massively-parallel spiking
neural network simulator, extending in part previous work
on the subject [12]. In particular we address the problems of
configuration of a flexible machine in the absence of fixed-
topology command and control hardware typically found in
large-scale computing architectures. We present experiments
performed on novel neuromorphic hardware and infer from
our results the necessity of a distributed approach to sim-
ulation configuration and observation in massively-parallel
architectures.

The authors are with the School of Computer Science, The Univer-
sity of Manchester, Manchester, M13 9PL, UK. Email: {thomas.sharp,
cameron.patterson}@cs.man.ac.uk, steve.furber@manchester.ac.uk.

Fig. 1. A possible SpiNNaker machine topology. The host machine is
represented by the graphic of a desktop computer. Processing nodes are
denoted by blue dots, which are enmeshed in a triangular interprocessor
communication fabric (inset). A subset of processing nodes, in red, form
Ethernet links with a host machine. Communication between blue nodes and
the host must traverse both the Ethernet and interprocessor communication
channels.

II. SURVEY OF NEUROMORPHIC HARDWARE

The Blue Brain project at École Polytechnique Fédérale
de Lausanne [13] is perhaps the most prominent project con-
cerning large-scale neural simulation, having exploited some
eight thousand processors of an IBM Blue Gene/L machine
to model a cortical ‘column’ at ion-channel resolution. The
scalability of the Blue Gene/L architecture to as many as 216

processors [5] promises to support the project’s intentions to
model a number of laterally-connected columns in parallel
and thereby simulate entire cortical hemispheres. Izhikevich
and Edleman approach the same challenge using commodity
hardware in a 60 processor Beowulf cluster and models of
greatly lesser fidelity [9] supported by the argument that the
computationally significant dynamics of neuron activity may
be preserved in even relatively simple models [8], [7].

SpiNNaker is a massively-parallel neuromorphic archi-
tecture (figure 1) designed to model very large, biologi-
cally plausible spiking neural networks in real-time. The
SpiNNaker project has typically followed Izhikevich and
Edleman’s approach in the development of neural simulation
software [11] whilst sharing the design considerations with
the hardware used by the former project of power con-
sumption, scalability, reliability and efficient interprocessor
communication [5]. The nodes of both Blue Gene/L and
SpiNNaker are application specific integrated circuits, the

former of which consists of two IBM Power PC cores
running at 700MHz supported by dedicated floating-point
units, whereas the latter incorporates eighteen ARM 9 pro-
cessors (without hardware floating-point support) clocked at
200MHz. In both nodes, a processor may be selected to
administrate chip functions such as communication, which
in SpiNNaker we term the ‘monitor’ processor. Both archi-
tectures are designed to scale to 65,536 nodes arranged in a
toroidal interconnect which supports both point-to-point and
multicast communications and both architectures communi-
cate with a host machine via a subset of nodes which have
Ethernet interfaces. However, Blue Gene/L is distinguished
by dedicated hardware which translates Ethernet frames into
a native control protocol for direct administration of each
node in the machine [6]. Conversely, nodes in a SpiNNaker
machine which do not have an Ethernet interface may only
communicate with the host via the interprocessor communi-
cation fabric to the nearest Ethernet-connected node.

This absence of a dedicated control infrastructure, moti-
vated by considerations of design cost, reliability and flex-
ibility, also ensure that at power-on a SpiNNaker machine
is a mesh of truly homogeneous multiprocessor chips that
are indistinguishable by any form of address. This presents
challenges of how to break machine symmetry to create an
address map, how to load heterogeneous programs and data
to different processors and, once simulation is in progress,
how to deliver monitoring information to the host without
interfering with simulation computation or communication.
The time required to complete these operations in a full-scale
machine is also of concern, since the advantage of real-time
model computation may be negated if the machine suffers
from significant configuration overheads or if the observable
state of a simulation is limited by ‘downlink’ bandwidth. A
survey of the literature suggests these issues are common
to neural simulation hardware: the control and I/O networks
of Blue Gene/L address the problems; the addressing mode
implicit in an Ethernet interconnect solves the first two
problems for a Beowulf cluster and the third is mitigated by
the operating system running on each node [15]; and an early
proposal for massively-parallel neuromorphic hardware also
included a dedicated control infrastructure to address these
issues [10].

III. SPINNAKER HARDWARE

A SpiNNaker machine integrates as many as 216 novel
multiprocessor chips (see figure 2) each consisting of eigh-
teen ARM 968 cores clocked at 200MHz. Each core has
32kB instruction and 64kB data tightly coupled memories
(TCMs) and peripherals for controlling interrupts, interpro-
cessor communication and DMA transfers. Each chip has a
32kB boot read-only memory (ROM), 32kB of shared RAM
and is connected to a 128MB off-chip shared SDRAM used
to store synaptic states. It is important to note that these
memories comprise the only storage immediately available
to processors on a SpiNNaker chip; the architecture does
not have a hardware I/O subsystem with which to load

2Gb/s

Comms NoC
(Input) (Output)

Comms NoC

1Gb/s 8Gb/s4Gb/s

Proc3...

2of7

Enc

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

CpuClk CpuClk CpuClk CpuClk CpuClk CpuClk

Proc0 Proc1 Proc2 ProcN−1ProcN−2 ProcN

System NoC

MemClk

JTAG

Debug

10MHz

Router
control

Decode

Packet Routing Output

Engine Select

PL340 SDRAM I/F

Test
POR

Reset
I/O Port

Ctlr

SystemWatch−
dogRAM

System

ROM

System Ethernet

Ether MII

1Gbit DDR SDRAM

Packet Router

AXI Master AXI MasterAXI MasterAXI MasterAXI MasterAXI Master

CommCtlr CommCtlrCommCtlr CommCtlr CommCtlrCommCtlr

Input

Links

Output

Links

RtrClk

PLL

Clock

MemClk
RtrClk
CpuClkAXI Slave APB Slave

AHB SlaveAHB Master

AHB SlaveAPB SlaveAHB Slave AHB Slave AHB Slave

System AHB

Fig. 2. The SpiNNaker chip. Processors read and write SDRAM and
the memory-mapped registers of the system peripherals over the system
Network on Chip (NoC). For interprocessor communication cores issue
packets via their communications controllers to the router, which aggregates
this input with that from the off-chip links in the communications NoC and
routes packets to the other processors or the output links.

and store program code or simulation data from a globally-
shared resource. A chip-shared system controller is used by
the monitor processor to enable, disable and reset cores,
configure clock signals and manage mutual exclusion op-
erations. Each chip includes an Ethernet interface but only a
proportion (depending on the size of the machine) are wired
to a corresponding PHY controller and 8P8C connector.

Interprocessor communication is handled by an on-chip
router, which aggregates packets from the six interchip
links (see inset of figure 1) and the on-chip processors and
forwards them to one or more of the same. Three routing
subsystems exist for managing distinct patterns of traffic: the
multicast routing system uses the ID of a spiking neuron as
a lookup to a routing table to deliver neural event packets
to one or more cores in the machine; point-to-point packets
are routed from the monitor processor of a source chip to
the monitor of a destination chip anywhere in the machine;
and nearest-neighbour packets are communicated directly
between the monitor processor of a source chip and a monitor
processor on any one of the six immediately-neighbouring
chips. The basic units of interprocessor communication in all
routing subsystems are packets each consisting of a control
byte, a four byte routing key and an optional four byte
payload. Both the multicast and point-to-point subsystems
require that routing tables are configured before use.

IV. PROGRAMMING SPINNAKER

Given the problems listed above (created by the hardware
constrains also discussed) programming SpiNNaker is a non-
trivial task. The primary concern is distributing heteroge-
neous program code and simulation data to chips distant
from an Ethernet interface with the host machine, which

in turn necessitates distribution of system software to every
node in order to establish an address map and administer
communications. Furthermore, some method of monitoring
and debugging simulation execution is required which does
not interfere with the simulation itself.

We describe programming SpiNNaker in three phases:
• node-boot: power-on self-configuration
• system-boot: creation of a unified, addressable machine
• simulation-boot: distribution of simulation code and

data

A. Node-Boot
At power-on each processor in a SpiNNaker chip imme-

diately begins executing the program code stored in the boot
ROM. Because this code is ‘cast in silicon’ at chip fabrication
boot ROM correctness is critical to the function of a full
scale SpiNNaker machine, given that we are only able to
override the boot ROM using a mechanism which scales
poorly to large numbers of chips. To guarantee program
correctness we reduce the boot ROM function to hardware
testing and reception (but not transmission) of more powerful
software. The node-boot process may therefore be described
by following the operation of a single chip in isolation.

Following power-on reset, each core copies the boot
ROM into its instruction TCM and begins a series of tests
on its peripherals such as the communications and DMA
controllers. Failure of any of these tests (an event expected
in smaller fraction than 0.01 of processors, depending on
the quality of the fabrication process) causes a processor
to record an error code in a designated location in system
RAM and disable itself. The remaining processors then race
to be the first to read from a system controller register which
bestows monitor processor status on them. The ‘losers’ of
this race become fascicle processors, so named for their im-
pending role of simulating fascicles of neurons, and configure
themselves to be interruptible only by the monitor processor
before entering a power-saving wait-for-interrupt state. The
monitor processor tests chip peripherals such as the router
and shared memories and likewise self-disables on failure,
thereby consigning all cores on-chip to indefinite wait-for-
interrupt state. This approach follows from the assertion that
a chip cannot take part in simulation if the chip peripherals
are non-functional. Finally, the monitor processor tests for a
PHY chip attached to the Ethernet interface (configuring it
if found), enables interrupts from the Ethernet controller and
router and enters wait-for-interrupt state.

Node-boot does not directly address any of the problems
described in II but it does prepare the monitor processor of
each chip to receive arbitrary programs of up to 32kB in
size. A program is transmitted (by a mechanism discussed
subsequently) to a chip as a series of nearest-neighbour
packets over the inter-chip links, since this routing fabric
is the only one of the three which does not require a
preconfigured address map. Receipt of each packet raises
an interrupt to the monitor which calls a handling function
according to the contents the packet key. A START mes-
sage precedes program loading (figure 3) and denotes in

Fig. 3. Flow through the program loading procedure as prompted by the
receipt of nearest neighbour packets.

its payload the number of blocks in which the impending
program is transmitted. Subsequently, a BLOCK START mes-
sage precedes one or more BLOCK DATA messages, each of
which carries a payload containing four bytes of program
code. These payloads are stored by the monitor in system
RAM and are marked off as ‘received’ in an array created
for the purpose. A BLOCK END message concludes a block
and carries with it a payload containing a 32 bit cyclic
redundancy checksum with which to validate the block. In
response, the monitor uses the DMA controller to copy the
block (simultaneously generating a checksum for comparison
using the DMA controller hardware) from system RAM to
a location in data TCM determined by the block ID. Finally,
following a number of blocks depending on the image size,
a CONTROL message prompts the monitor to run a routine
in ROM which copies the program binary from data TCM
to instruction TCM and begin its execution. For the sake of
protocol simplicity, and by extension program correctness,
acknowledgements are not transmitted by the boot ROM in
response to received packets but instead the received program
notifies the transmitter of its successful execution. In the
absence of this notification transmission may be repeated.

B. System-Boot

It is intended that the first program transmitted to chips
using this protocol is the system software which will admin-
ister the machine, so execution of the received code begins
the phase we call system-boot.

1) Propagation: System software is transmitted by the
host machine to Ethernet connected chips using a block-
wise protocol similar to the one described previously with
trivial adaptations to account for the difference in payload
size between nearest-neighbour packets and Ethernet frames
and automatic hardware validation of the latter. The first task
of the system software upon its execution is to self-propagate
to each of the neighbouring chips by transmitting the contents
of the monitor processor’s instruction TCM over the nearest-

Fig. 4. A representation of a flood-fill process beginning with the single red
seed chip. The wavefront at each distance from the seed chip is represented
by evolving hues. Blue chips are yet to receive system software and remain
in the wait-for-interrupt state following node-boot.

neighbour fabric, thereby fulfilling the role of the anonymous
transmitter in the previous section. This process, which we
call flood-fill, repeated iteratively and in parallel by each chip
is the mechanism by which system software ‘injected’ into
an Ethernet connected chip is distributed across a machine.

Figure 4 illustrates flood-fill commencing from an
Ethernet-connect seed chip and proceeding across the
nearest-neighbour network to a distance of four links from
the seed chip. The wavefront of a flood-fill in the given
topology touches upon 6n chips where n is the number of
links between the seed chip and the wavefront. Consequently
a flood-fill extending across n links from the seed chip affects

1 +
n∑

i=0

6i = 6
n(n + 1)

2
+ 1 (1)

chips. If we assume that transmission time across each link
is invariant in the size of the wavefront (which we will
subsequently demonstrate) then the time required for flood-
fill is a root term of the number of chips in the machine. This
suggests that flood-fill is an efficient mechanism for distribu-
tion of homogeneous binaries across large-scale SpiNNaker
machines.

Since the boot ROM program does not contain routines
for retransmission of received code, an entire binary must be
received and executed by a chip before self-propagating to
its neighbours. It may be argued that a pipelined approach
to program distribution, in which each block received is
forwarded to neighbours immediately following CRC vali-
dation, is more efficient. Although this is likely true, this
approach requires a more complicated boot ROM program
and it fixes the pattern of transmission. By keeping the
flood-fill transmission (if not reception) mechanism in ‘true’
software, we are able to adapt the routines after chip fabrica-
tion to account for varying machine topologies, component
failures and transmission rates which may vary with wire
length. The same argument is applied to the other system
software functions of address map creation and machine-
wide communications.

2) Machine mapping: The symmetry of the SpiNNaker
machines presented in figures 1 and 4 is broken only by
the location of Ethernet connections to the host machine.
These chips are assigned a socket into which a small read-
only memory may be placed to provide the chips with unique
MAC addresses. The host machine may then choose one chip
as the origin of the 2D machine co-ordinate space (1 byte
per dimension, hence the 216 chip maximum) and send an
Ethernet frame to that chip to inform it of the decision. The
origin chip computes its neighbours’ addresses relative to its
own (for example the Northern neighbour is (x, y + 1) and
the Southwestern neighbour is (x− 1, y− 1) all modulo the
x and y dimensions of the machine) and informs them of
these co-ordinates via nearest-neighbour packet. Each chip
repeats this process until every chip has received an address.

The point-to-point routing table contains a 3 bit entry for
each of the 216 chips which determines whether incoming
packets should be forwarded on one of the six links or
delivered to the local monitor processor. In a machine
with correctly configured point-to-point routes a packet is
transmitted from source to destination by comparison of the
address in its key with the routing tables of each intermediate
chip. Two approaches have been devised to configure the
point-to-point router.

In the first approach the routing table is configured by the
system software immediately upon receipt of a chip address,
for example (x0, y0) configures the router to forward packets
on the Northeast link for chip IDs

Cne = {(x, y) | x > x0, y > y0} (2)

Chips also ping their neighbours using nearest-neighbour
packets to establish link status before configuring routing ta-
bles. Continuing the previous example, if the Northwest link
was found to be dead then routing table entries in (x0, y0) to
all chips Cne would instead point to the North or East links.
However, the absence of a global view of connectivity in this
approach results in routing cycles under certain patterns of
link failure. Furthermore, point-to-point packets transmitted
from the origin to the chip to its immediate Southwest
neighbour traverse the entire machine through North, East
and Northeast links because of the modulo arithmetic used
to compute chip addresses.

In the second approach each chip maintains a hop-count
table with entries for every other chip initialised to infinity.
At regular intervals every chip (x0, y0) transmits a nearest-
neighbour packet to its neighbours

Cd=1 = {(x, y) |D((x0, y0), (x, y)) = 1} (3)

containing the chip ID and a hop-count of one. Chips Cd=1

set the point-to-point route to (x0, y0) to be the link upon
which the nearest-neighbour packet was received, conditional
on the hop-count being less than the entry in the hop-table for
that chip. Upon the same condition, chips Cd=1 increment
the hop-count and retransmit the packet to chips in Cd=2

which look up the hop-table entry to (x0, y0) and undertake
configuration and retransmission accordingly. This approach

Fig. 5. SDP transmission control. State transitions are prompted by
transmitter actions or receipt of acknowledgements and negative acknowl-
edgements from the receiver. Message transmission occurs in sequences
of m packets for which the receiver sends an ‘ack’ on successful receipt
or a ‘nack’ denoting missing packets which are then retransmitted. The
receiver sends a close request upon receipt of the last sequence. Failure of
the receiver to respond at any stage results in timeouts which may terminate
transmission. Entry into q6 denotes successful transmission.

requires that information pertaining to each chip is flooded
across the entire machine but ensures that routing cycles are
obviated, the shortest point-to-point route between chips is
established and irregular topologies are possible.

3) Point-to-point communication: A general command
and control framework (notably absent in SpiNNaker hard-
ware) is implemented by the system software in the form
of the SpiNNaker datagram protocol (SDP). SpiNNaker
datagrams are addressed to the monitor processors of specific
chips or the host machine and contain a command, a number
of arguments and a variable size payload in order to insert,
manipulate and extract programs and data and to control
simulation. The one kilobyte datagrams are comfortably con-
tained within frames transmitted between the host machine
and Ethernet connected chips but must be broken up for
transmission across the point-to-point routing fabric.

SpiNNaker is not immune to the congestion and corre-
sponding packet loss problems which typically affect packet-
switched communication fabrics. Consequently, point-to-
point packets are unreliable fire-and-forget transmissions
which must be acknowledged in order to confirm successful
receipt. This in turn calls for transmission of metadata within
each packet and maintenance of state by the transmitter
and receiver. A simplified representation of SDP trans-
mission control over the point-to-point fabric is shown in
figure 5; reception control is a mirror of this process. SDP
communication begins with negotiation for a connection,
proceeds with transmission of sequences of packets which
are acknowledged by the receiver and is terminated by agree-
ment upon complete reception. Acknowledgements of each
sequence of packets guarantees completeness of transmission
and an optional checksum transmitted at termination may
guarantee correctness of the transmission contents.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6

T
im

e
to

 tr
an

sm
it

im
ag

e
 (

m
s)

Number of links

8kB
16kB
24kB
32kB

Fig. 6. Flood-fill times along a chain of chips. Repeated trials found no
deviation in results hence the omission of error bars. Note that transmission
time varies linearly with both transmission size and the number of links,
supporting the earlier assumption in IV-B.1 that transmission time is
invariant in the distance between seed chip and wavefront.

C. Simulation-boot

Spiking neural networks to be modelled on SpiNNaker
are specified by a researcher at the host machine and are
compiled into data structures representing the neurons and
synapses to be modelled by each processor and tables that
represent their logical connectivity to the multicast routers
[4]. This heterogeneous data (≤128MB) is loaded into the
SDRAM of each chip along with homogeneous simulation
software (≤32kB) using SDP messages sent by the host
machine and propagated according to the protocols described
above. The monitor processor commences simulation by
prompting fascicle processors to copy the simulation soft-
ware and data into local memory and begin execution, during
which SDP messages are used for simulation monitoring
such as reading the spike times or membrane potentials of
subsets of neurons.

V. EXPERIMENTAL RESULTS

A batch of SpiNNaker test chips containing two processors
and all of the hardware discussed in III was produced prior to
fabrication of the full SpiNNaker chip in order to verify the
design. This test hardware was used to develop and debug the
software and protocols described here and finally to address
the concern of machine configuration time.

We arranged a number of test PCBs to create a chain of
links spanning seven chips (the maximum number of serial
connections were were able to fashion) with an Ethernet
connection between the terminal chip and a conventional
desktop computer acting as a host machine. The system
software was seeded by the host machine in the terminal
chip and self-propagated to its neighbour at run-time, as
described in IV-B.1. The neighbouring chip then executed
the system software, thereby propagating the code to its
neighbour, and so on. Using a minimal version of the system
software containing only the self-propagation routines and
padding, we recorded the time required for transmissions of
various sizes across each link. The results, presented in figure

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16

T
im

e
(s

)

Data loaded (MB)

Eth
1 link

2 links
3 links

Fig. 7. Memory loading times using point-to-point SpiNNaker datagrams.
Deviation in results over repeated trials was too small to plot. The disparity
in transmission times to chips at varying distances from the Ethernet
connected chip is almost unobservable in the given range.

6, support our assumption that transmission time for each link
is invariant in the size of the wavefront.

Navaridas et al. [14] give the shortest path between any
two chips in an n-by-n SpiNNaker machine of the given
topology as b 2n

3 c. Taking n = 256 (the largest possible
SpiNNaker machine) and the recorded transmission time
over a single link of thirty milliseconds it is apparent that
system software may be distributed to every chip in a full-
scale SpiNNaker machine from a single Ethernet connection
in around five seconds. Building multiple evenly-spaced
Ethernet connected chips into a machine has the effect of
dividing this result by the number of said chips, given that
flood-fill may proceed in parallel from multiple points.

We rearranged the test PCBs for regular connectivity (the
Northeast link, for example, of any chip would connect only
to the Southwest of another if at all) in order to profile
the point-to-point communications protocols described in IV-
B.3. This limited the maximum distance between test chips
to three hops. In successive trials we transmitted arbitrary
binary files of 16MB in size as a series of 214 ‘load SDRAM’
SDP messages to chips at incremental distances from the
host. We were able to load one megabyte approximately
every 1.1 seconds into the Ethernet connected chip (figure
7) and the same quantity approximately every 1.6 seconds
into distal chips, largely invariant in the distance between
the distal and Ethernet connected chip.

To investigate the transmission rates which might be ex-
pected during simulation, we employed unused processors to
generate background traffic on the network. We then loaded
1kB SDP payloads one thousand times into chips at varying
distances from the Ethernet connected chip and recorded the
time taken for transmission of each datagram. The results of
transmission to the most distant chip, three links from the
Ethernet connected chip, are shown in figure 8. We provide
a control measurement for which background traffic is absent
to account for slight differences in methodology between this
experiment and the last. We find that the maximum rates of

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 211 212 213 214 215 216 217 218 219 220 221 222

T
ra

ns
m

is
si

on
 ti

m
e

pe
r

kB
 (

s)

Background traffic (packets/s)

Fig. 8. Mean memory loading times using point-to-point SpiNNaker
datagrams transmitted across three interchip links with varying background
traffic. The standard deviation across one thousand transmissions exceeds
the variance in transmission times with amount of background traffic.

background traffic which we are able to generate (222 packets
per second, corresponding to approximately 0.9 of the traffic
on the channel during SDP transmission) has no observable
effect on transmission times averaged over trials.

VI. DISCUSSION

We have presented software protocols for the initialisation,
control and monitoring of a massively-parallel spiking neu-
ral network simulator. In particular we have addressed the
problems of configuration of a homogeneous machine in the
absence of command and control hardware typically found
in large-scale computing architectures.

We have approached the problem of rapid machine con-
figuration using a flood-fill mechanism of program distri-
bution. Initial experiments suggest that homogeneous sys-
tem software may be distributed by flood-fill to the 216

chips of a full-scale SpiNNaker machine particularly rapidly.
Application-boot, however, necessitates linear distribution of
heterogeneous data and presents a significant problem: to
load the 8TB of SDRAM distributed across a machine using
SpiNNaker datagrams would take almost a month, assuming
the worst recorded transmission rate of a half kilobyte per
millisecond, which is unacceptable for a real-time simulator.

The experiment summarised in figure 7 shows that loading
time increased significantly between the Ethernet and distal
target chips but was then largely invariant in the hop count to
the latter, suggesting that transmission rates were primarily
affected by the software overhead of the point-to-point SpiN-
Naker datagram protocol. The experiment summarised in
figure 8 supports this argument by showing that background
traffic had no observable effect (at least for the achievable
degree of network utilisation) on transmission rates. We
expect to improve transmission rates by optimising the SpiN-
Naker datagram protocol but the problem will remain that the
distribution time of heterogeneous data scales linearly with
the number of chips per Ethernet connection.

We propose to address this problem by describing spiking
neural networks as populations and patterns of connectivity,

rather than individual neurons and synapses, using a tool such
as PyNN [2]. We hope to achieve sufficient compression in
this approach that a single binary representing the network
for the entire machine might be distributed to every chip
via flood-fill. Should flood-fill proceed at the same rate as
recorded in V we may expect a network description the size
of SDRAM (128MB) to be distributed to 65,536 chips from
a single Ethernet link in around six hours. On the reasonable
assumption that a machine of this size may have many tens of
Ethernet connected chips, this figure is reduced to the order
of minutes. Furthermore, flood-fill across chips in node-boot
transmits the entire binary across each link before proceeding
to the next, improving reliability in the critical boot ROM
software but leaving all chips not on the wavefront idle: sub-
sequent implementations may use ‘pipelined’ transmission,
wherein each chip propagates packets onwards immediately
upon receipt in order to expedite flood-fill.

Configuring SpiNNaker using a high-level network rep-
resentation necessitates a distributed ‘compiler’ running on
each chip to unpack the description into local neuron and
synapse data structures and to compute the routing tables.
We expect that this self-configuration is essential in all
massively-parallel neuromorphic architectures if a second
super-computer is not to be required to compute the routing
tables for the billion-neuron simulations of the first. Although
we currently use PyNN for specification of networks for
compilation on the host [4] we have yet to approach the
problem of on-machine compilation.

Finally, in figure 8 we present the recorded transmission
rates of SpiNNaker datagrams across routers loaded with an
additional ≈ 4·106 packets per second. The SpiNNaker inter-
chip links are capable of delivering thirty million packets to
the router every second but it is intended that the average load
during simulation should be around one tenth of this figure in
order to prevent congestion during peaks in traffic. Assuming
that we will model seventeen thousand neurons per chip
spiking at around 10Hz [11] the average load on the router
of any given chip will be ≈ 3.2 · 106 packets per second,
suggesting that the experiment is a reasonable demonstration
of the rate at which data may be dumped to the host machine
during simulation. So, the simulation monitoring problem in
which we are concerned about the amount of data we can
extract from the machine in a given time is equivalent to the
application-loading problem in which we address the amount
of data we may insert into the machine. Referring again to the
recorded transmission rate of a half kilobyte per millisecond,
we conclude that (per Ethernet connection) we are able to
observe in real-time the complete 32 bit state of 128 neurons
or the spiking of 4,096 neurons assuming one bit per neuron
indicating firing. This is clearly an extremely limited insight
into a machine which may model millions of neurons per
Ethernet connection but the problem is neither unique to
SpiNNaker (BlueGene/L and Beowulf machines would only
acheive an order of magnitude improvement on this figure
under maximum utilisation of their 100Mbit/s Ethernet links
to their hosts) or the primary concern: dumping the huge

volumes of data produced by massively-parallel architectures
to a host only moves the problem of post-processing to a
less capable machine. Consequently, we argue that just as
simulation-boot must be performed in a distributed manner,
intermediate- and post-processing of data must make use
of the same parallel resources required for modelling if the
output of such models is to be useful.

VII. ACKNOWLEDGEMENTS

This work is funded by EPSRC and ARM Holdings. We
would like to thank Mikel Lujan and Luis Plana for helpful
suggestions.

REFERENCES

[1] Tom Binzegger, Rodney J. Douglas, and Kevin A. C. Martin. A
Quantitative Map of the Circuit of Cat Primary Visual Cortex. The
Journal of Neuroscience, 24:8441–8453, 2004.

[2] Andrew P. Davidson, Daniel Brüderle, Jochen M. Eppler, Jens
Kremkow, Eilif Muller, Dejan Pecevski, Laurent Perrinet, and Pierre
Yger. PyNN: a common interface for neuronal network simulators.
Frontiers in Neuroinformatics, 2:1–10, 2009.

[3] Hugo de Garis, Chen Shuo, Ben Goertzel, and Lian Ruiting. A world
survey of artificial brain projects, Part I: Large-scale brain simulations.
Neurocomputing, 74:3–29, 2010.

[4] Francesco Galluppi, Alexander Rast, Sergio Davies, and Steve Furber.
A General-Purpose Model Translation System for a Universal Neural
Chip. In Neural Information Processing, International Conference on,
pages 58–65, 2010.

[5] A. Gara, M. A. Blumrich, D. Chen, G. L.T. Chiu, P. Coteus, M. E.
Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay,
T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and
P. Vranas. Overview of the Blue Gene/L system architecture. IBM
Journal of Research and Development, 49:195–212, 2005.

[6] R. A. Haring, R. Bellofatto, A. A. Bright, P. G. Crumley, M. B. Dom-
browa, S. M. Douskey, M. R. Ellavsky, B. Gopalsamy, D. Hoenicke,
T. A. Liebsch, J. A. Marcella, and M. Ohmacht. Blue Gene/L
compute chip: control, test, and bring-up infrastructure. IBM Journal
of Research and Development, 49:289–301, 2005.

[7] Eugene M. Izhikevich. Simple model of spiking neurons. Neural
Networks, IEEE Transactions on, 14:1569–1572, 2003.

[8] Eugene M. Izhikevich. Dynamical Systems in Neuroscience: The
Geometry of Excitability and Bursting. The MIT Press, 1st edition,
2006.

[9] Eugene M. Izhikevich and Gerald M. Edelman. Large-scale model
of mammalian thalamocortical systems. Proceedings of the National
Academy of Sciences, 105:3593–3598, 2008.

[10] Mark James and Doan Hoang. Design of Low-Cost, Real-Time
Simulation Systems for Large Neural Networks. Journal of Parallel
Distributed Computing, 14:221–235, 1992.

[11] Xin Jin, Steve B. Furber, and John V. Woods. Efficient Modelling of
Spiking Neural Networks on a Scalable Chip Multiprocessor. In Neural
Networks, International Joint Conference on, pages 2812–2819, 2008.

[12] M.M. Khan, J. Navaridas, A.D. Rast, X. Jin, L.A. Plana, M. Luján,
J.V. Woods, J. Miguel-Alonso, and S.B. Furber. Event-Driven Con-
figuration of a Neural Network CMP System over a Homogeneous
Interconnect Fabric. In Parallel and Distributed Computing, Eighth
International Symposium on, pages 54–61, 2009.

[13] Henry Markram. The Blue Brain Project. Nature Reviews Neuro-
science, pages 153–160, 2006.

[14] Javier Navaridas, Mikel Luján, Jose Miguel-Alonso, Luis A. Plana,
and Steve Furber. Understanding the Interconnection Network of
SpiNNaker. In Supercomputing, ICS conference on, pages 286–295,
2009.

[15] Thomas Sterling, Donald J. Becker, Daniel Savarese, John E. Dorband,
Udaya A. Ranawake, and Charles V. Packer. BEOWULF: A Parallel
Workstation For Scientific Computation. In Parallel Processing,
International Conference on, pages 11–14, 1995.

[16] Alex M. Thompson and Christophe Lamy. Functional maps of
neocortical local circuitry. Frontiers in Neuroscience, 1:19–42, 2007.

