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Abstract—Communication-centric design is a key paradigm for systems-on-chips (SoCs), where most computing blocks are

predesigned IP cores. Due to the problems with distributing a clock across a large die, future system designs will be more

asynchronous or self-timed. For portable, battery-run applications, power and pin efficiency is an important property of a

communication system where the cost of a signal transition on a global interconnect is much greater than for internal wires in logic

blocks. The paper addresses this issue by designing an asynchronous communication system aimed at power and pin efficiency.

Another important issue of SoC design is design productivity. It demands new methods and tools, particularly for designing

communication protocols and interconnects. The design of a self-timed communication system is approached employing formal

techniques supported by verification and synthesis tools. The protocol is formally specified and verified with respect to deadlock-

freedom and delay-insensitivity using a Petri-net-based model-checking tool. A protocol controller has been synthesized by a direct

mapping of the Petri net model derived from the protocol specification. The logic implementation was analyzed using the Cadence

toolkit. The results of SPICE simulation show the advantages of the direct mapping method compared to logic synthesis.

Index Terms—Asynchronous circuits, communication protocols, modeling, Petri nets, power and pin efficiency, self-timed circuits,

signal transition graphs, synthesis.
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1 INTRODUCTION

THE International Technology Roadmap for Semiconduc-
tors (ITRS 2001) predicts that, due to the increasing

problems with distributing a clock across a large die, future
designs will be more asynchronous. Self-timed circuits
offer a number of advantages for system design, namely,
low power consumption, electromagnetic compatibility,
greater modularity, and operational robustness. One area
of digital design where circuits with global asynchrony are
seen more as an inevitable technological reality rather than
an optional design discipline is interfacing. Development of
formally sound methods and tools to support design of
communication protocols and interfaces for systems-on-
chip and multichip systems is a difficult problem. The best
way to tackle such a problem in its generic form would be
to attempt an interface design example maximally using
formal techniques. This way is also motivated by the fact
that most future SoC designs will be communication-
driven [2].

There are many ways that information can be commu-

nicated between chips, but a system with a delay-insensitive

(DI) encoding of the transmitted data may be preferred

because it is completely robust to variations of delays

associated with wires [21]. For example, in a DI N-of-M
code, every valid code combination of M bits must have
exactly N bits equal to logical-1. There is an additional
combination, e.g., all-zeros, which is called a spacer. In data
transmission with return-to-zero (level-based) signaling,
each valid combination must be followed by a spacer. The
key property of an N-of-M code, guaranteeing its delay-
insensitivity, is that every transition from a spacer to a valid
combination never passes through another valid combina-
tion. Examples of N-of-M codes, e.g., 1-of-4, 3-of-6, 2-of-7,
have been used in self-timed systems described in [22], [1].

An interchip communication system with an N-of-M
encoding and a possibility of duplex interaction, in which
both communicating agents can transmit their data and at
the same time acknowledge the receipt of the other party’s
data has been proposed in [9]. The use of an N-of-M code is
also combined with a non-return-to-zero (transition-based)
signaling, in which logical-1 and logical-0 bits are associated
with transitions and their absence, respectively, as opposed
to the return-to-zero signaling which would require a
spacer. This system optimizes both power and pin
efficiency in comparison with the system consisting of
two simplex handshake channels. The overall view of the
system with the agents being called Master and Slave is
shown in Fig. 1. The construction of a communication
controller for this system presents an interesting case study
for asynchronous design techniques. This process is
described in this paper.

First, a formal description of the protocol is constructed.
According to the widely accepted notion, a protocol is a
precise set of rules governing the behavior of the commu-
nicating agents. In this paper, the protocol is defined using
the concept of a protocol state machine shown in Fig. 2a. It is
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based on the principle of information hiding, which is
crucial for a compact and unambiguous protocol definition
[5]. The protocol state machine fully abstracts away actions
performed by each agent internally, and only shows actions
that may occur in the interface between the agents.

Second, the communication protocol is formally verified
with respect to its requirement to be deadlock-free and
provide delay-insensitive communication. For this, another
communication model is constructed from the main
protocol machine following the approach from [5]. This
global model is schematically shown in Fig. 2b, includes
separate models of the agents, Master and Slave, together
with the models of the communication channels and the
links with the protocol users (source and destination
processes). Here again, only minimum necessary informa-
tion is included into the system model to hide any irrelevant
internal activity in both parts of the system. As the overall
model requires capturing concurrency, choice and arbitra-
tion, Petri nets have been chosen to represent its behavior
[13]. The use of Petri nets offers a possibility of efficient
formal check of the model. Petri nets capture concurrency in
its natural (causal) form; therefore, model-checking can
employ partial order techniques, avoiding the painstaking
process of generating the full state-space explicitly. An
existing analysis tool based on Petri net unfolding has been
used to prove the deadlock-freedom and delay-insensitivity
of the protocol [16].

Our third task is to design control logic and, thus,
implement the protocol using standard CMOS components
in order to estimate the performance of the communication
scheme and assess a number of trade offs. For example, it is
interesting to determine the penalty in terms of perfor-
mance for the gain in power and pin efficiency offered by
this duplex scheme compared to a pair of unidirectional
handshakes. Another objective is to compare different ways
of deriving asynchronous control logic from the Petri net
specification of the controller.

The implementation section illustrates the process of
constructing a Petri net specification for control logic in
Master and Slave. The Petri net model of each controller is

then translated to a circuit implementation using a method

of direct mapping [23]. The method associates a memory

latch, called a David cell (named after René David, who

proposed an elegant way of one-hot implementation of

asynchronous FSMs with parallel actions, cf. [6]), with each

place in the Petri net. The transitions of the Petri net model

are labeled with the names of operations or commands that

the main controller issues to the send and receive interfaces

responsible for the transmission and reception of the dual-

rail data into and from the m-to-s and s-to-m channels. The

direct mapping approach has the advantages of modularity

and structural transparency between the behavioral model

and the logic structure. It avoids refining the relatively high

level Petri net specification of the controller into a more

detailed form, such as Signal Transition Graph (STG) [15] or

a Burst-Mode State Machine (BMSM) [14]. Although both

the STG-based and BMSM-based modeling techniques and

associated logic synthesis tools, Petrify and Minimalist,

could do the job of implementing the controller specifica-

tions, the complexity of model refinement and logic

synthesis would have been significantly greater.
The main controllers in Master and Slave obtained by

direct mapping are subsequently composed with the send

and receive interfaces. The latter perform protocol actions

as commanded by the controller and in accordance with the

required N-of-M encoding of the channel data. In this

paper, in order to keep the encoding and decoding logic

simple, we consider a 1-of-2 (dual-rail) encoding and non-

return-to-zero signaling for power efficiency. The composi-

tion of the controller and the interfaces is very simple. It is

based on request and acknowledgement handshakes

associated with the commands issued by the main con-

troller. Finally, the performance of the overall system is

studied by SPICE simulation and compared to the system of

two unidirectional handshake channels.
The use of direct mapping from a Petri net specification

is a distinct feature of our design methodology, which

produces results that compare favorably against circuits

obtained by logic synthesis from the Petrify tool [4]. This

design example can be seen as an important benchmark

for future automatic control synthesis tools employing

direct translation techniques [3], [17]. The overall metho-

dology based on formal specification of a protocol, its

refinement as a controller specification and, finally, direct

mapping to logic, guarantees correctness of the design

described in this paper.
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Fig. 1. Overall communication system.

Fig. 2. Basic structures for protocol specification and verification: (a) Protocol state machine and (b) communication system with users and channels.



2 ASYNCHRONOUS COMMUNICATION SYSTEM AND

ITS PROTOCOL

2.1 Bidirectional Communication Scheme

The classic non-return-to-zero (NRZ) dual-rail approach
with acknowledgement requires at least six wires in order
to provide a bidirectional communication channel. Each
direction uses two wires to transmit one bit of data (by
making a transition on wire 0 when transmitting a logical-0
and a transition on wire 1 when transmitting a logical-1)
and one wire to transmit an acknowledgement. Using other
types of DI codes, e.g., N-of-M codes, is also possible; this
may increase the pin-efficiency compared to the dual-rail
code but at the cost of having additional logic to convert the
N-of-M code to normal one and vice versa.

The scheme proposed in [9] optimized the classic dual-
rail mechanism by using only four wires, two in each
direction, and exploiting the data wires in one direction to
carry acknowledges for communication in the other direc-
tion. Namely:

. Four wires are used for bidirectional communica-
tion. A0 and A1 carry data symbols in one direction;
B0 and B1 carry data symbols in the other direction.

. During true bidirectional communication a transi-
tion on A0 or A1 is acknowledged by a transition on
B0 or B1, and vice versa.

. During unidirectional communication the same
protocol applies, but the returned data is void. The
returned value is called an “Ack” symbol.

. The start of valid data is indicated by preceding it
with a “Start” symbol which is acknowledged by an
“Ack” symbol. For example, an “Ack” symbol
response could be a zero and a “Start” symbol a
one. A predefined number of bits following a “Start”
symbol represent valid data.

For a low-power communication system, it is desirable for
us to minimize the number of transitions on wires used to
send a given data value. In particular, we want to avoid
sending transitions when there is no data to send. The
above bidirectional discipline has therefore been enhanced
with a mechanism in which either end of the channel may
initiate communication at any time, including the possibi-
lity of both ends to initiate it at the same time (to within
some tolerance). The latter condition is called collision.
Initiating communication requires the generation of a Start
symbol. In order to resolve collision in the situation when
two Start symbols have been generated independently by
both ends, the following is ensured in the protocol:

. Both ends of the channel know there is a collision in
the system as both will issue a “Start” symbol and
receive a “Start” symbol instead of an Ack symbol.

. One end of the channel must defer to the other. The
end which defers is called the Slave and the other the
Master.

. The Slave defers by retracting its “Start” symbol and
replacing it by an “Ack.”

In a true DI system, true retraction is not possible since,
once the sender has made a transition on a wire, it cannot
make another transition on the same wire until it has had

confirmation (in the form of some sort of acknowledge-
ment) that the first transition has been received at the other
end. Instead of such a single wire retraction, which is delay-
dependent, a special symbol, called “SlaveAck,” is used.
SlaveAck subsumes the Start symbol. In the case of dual-rail
encoding, a SlaveAck symbol is superposition (i.e., union)
of Start and Ack symbols. Thus, the wire that makes a
transition in the Start symbol also does so in the SlaveAck
symbol, and the additional wire which does not make a
transition in the Start symbol makes a transition within the
SlaveAck symbol to indicate a retraction of the Start symbol.
That second wire is also used, on its own, to represent an
Ack symbol.

To sum up, in a dual-rail DI system, 01 can be used for
Start, 10 for Ack and 11 for SlaveAck.

2.2 The Protocol

The full protocol for the above communication scheme is
represented by a state-transition graph in Fig. 3. This graph
depicts an imaginary (protocol) state machine, placed
between Master (M) and Slave (S), which defines permis-
sible signal sequences on the wires connecting Master and
Slave. Serving the purposes of the protocol definition only
(cf. [5]), this machine does not show any behavior that is
internal to Master and Slave. The six major states are Idle,
Slave transmit (Ts), Master transmit (Tm), Retract (Ret), and
two duplex states (TsTm and TmTs). These states together
with minor (transient) states, shown by small circles, are
assigned to four main modes that are Initialization (I), two
simplex modes, Master transmit (II), Slave transmit (III),
and one duplex mode (IV).

For every state in the protocol, certain transmission
events are allowed to take place. For example, when the
protocol is in state Idle, there may either be received a Start
symbol from Slave (S/Start) or a Start symbol from Master
(M/Start). Likewise, when in state Ts, either “S/Data/Last”
or “S/Data/NotLast” symbol may be received from Slave.
The notation “S/Data/Last” indicates that Slave sends its
last data value.

The labeling of these arcs, e.g., m01 or s10, is associated
with the source of the signal (“m” for Master and “s” for
Slave) and the dual-rail encoding of the symbols (Start, Ack,
and bit-data values) and its interpretation, whether it is a
special symbol or a bit value, depends on the current mode
and the state. Thus, s10 (s01) indicates that a transition is
made on wire 0 (1) that comes from Slave. Similarly, m10
(m01) stands for a transition on wire 0 (1) from Master.
When occurring in (coming out or leading into) the
initialization mode, these labels correspond to symbols; in
simplex transmission modes, they are used for a data value
from one side and a symbol from the other side; finally, in
the duplex mode, these labels always correspond to data
values only.

The protocol implicitly has two types of choice in its
states. One such type, nonarbitrating choice, is made in
states Ts, Tm, TsTm, and TmTs. It depends on whether the
transmitted value is last or not. It is assumed, for simplicity
of logic in the controllers, that both the sender and receiver
have the inner (higher level) facilities for counting the
number of data values transmitted and received in such a
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way that they always agree on their decisions about Last
and notLast.

Three states, which happen to be transient, involve
arbitration or dynamic mutual exclusion (note the “mutex”
labels), where the decision of which state must be next is
made nondeterministically within Master or Slave. For
example, let the S/Start signal arrive first in the initializa-
tion mode while Master has just been requested by its client
to start data transmission. The decision between sending
M/Ack or M/Start is made through an arbitration process
in Master. Similarly, when the protocol is in the Master
transmit mode (II) and Slave receives a data value that is
not last just at the time when its client issues a request for
data transmission, Slave must arbitrate to decide whether to
send S/Ack or S/Start. The issue of the implementation of
arbitration will be discussed later.

Note that the use of symbol SlaveAck is illustrated in the
form of a confluent (diamond) structure of state transitions
representing the transmission of both S/Start and S/Ack,
involving both wires s10 and s01. Such a diamond structure
shows an interesting property of this protocol, namely, that
it theoretically does not need another arbitration in Slave,
which would have been symmetric to the one in the Master
when exiting the initialization mode. This is because
whether Slave sends an acknowledgement to M/Start or
retracts it always produces both symbols S/Start and S/Ack.
The latter, transmitted by Slave either in sequence or in
parallel, due to the delay-insensitivity of the channel, are
assumed to arrive in the protocol machine (and Master) in
either order.

3 PROTOCOL VERIFICATION

The correctness of the protocol defined in the previous
section is seen in terms of the following two main properties
that it must satisfy: absence of deadlocks and delay-
insensitivity. Both these properties can be verified by

constructing a formal model of the communication system.
The model of the system consists of the models of Master
and Slave and the dual-rail communication channel. In order
to adequately capture the behavior of Master and Slave,
which may perform some of their actions concurrently, we
use the language of Petri nets [13]. This idea is illustrated in
Fig. 4a. We constructed two Petri net parts for Master and
Slave following the basic protocol in Fig. 3 and inserted two
pairs of places, (m01, m10) and (s01, s10), between those
parts to represent the two-wire channels. Having a place for
each wire in the channel allows modeling a delay between
the source of a particular signal wire event and its
destination. The former is modeled by a transition that acts
as a producer of tokens, e.g., “m01m” indicates sending a
signal event on wire m01 byMaster. The latter is represented
by a consumer transition, e.g., “m01s” stands for receiving a
signal event on wire m01 by Slave. The fact that there can be
several instances of the same event, activated in different
states of the protocol is shown by an index in the transition
label, cf. “m01m/1,” “m01m/2,” etc. Additionally, we may
use the combined consumer transitions, e.g., “s11m,” to
indicate the fact that Master must receive both an event on
“s01” and “s10” (SlaveAck symbol).

The Petri net models for Master and Slave parts are built
by tracing the protocol in Fig. 3 except that we should
adequately model concurrency inside Master and Slave due
to interaction with their respective clients. A fragment of the
Master model is shown in Fig. 4b. It illustrates the arrival of
a request to transmit from the client by the transition
labeled “beginm,” which takes Master from state “IdleM” to
“wantM.” This transition may fire independently of the
arrival of a token in place “s01,” which models the arrival of
a S/Start signal from Slave. The fact that there is an
arbitration in Master, which must decide whether to send
M/Start (i.e., fire transition “m01m/1”) or M/Ack (fire
“m10m/1”), is represented by the mutual exclusion con-
struct in the Petri net with a single token in place “meM.”
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To model synchronism in counting the length of messages
by Master and Slave, we use pairs of places, (“mendM,”
“mcontM”) for the counter which counts bit values
transmitted by Master, and (“sendM,” “scontM”) for
counting bit values received by Master. The lengths of
transmitted and received messages is “programmed” by N1
and N2, respectively, which set the lengths at N1+1 and
N2+1. N1 and N2 also indicate the number of tokens that
are initially put into places “mcontM” and “scontM,” as
well as the weights of the corresponding arcs. For example,
in the case of N1, this arrangement of tokens and weights
allows transitions “nlastm” (standing for the NotLast data
bit value case), which decrement the counter initially set to
N1, to fire N1 times before a transition “lastm” (standing for
the Last data bit) may fire, which also resets the counter
back to N1.

We analyzed the overall Petri net model of the system
using the partial order technique based on the construction
of a finite prefix of the unfolding (cf. [12]) implemented in
the PUNT tool [16]. For this analysis we restricted ourselves
with the Petri net model where N1=N2=1, i.e., each message
consists only of two bit values. This restriction does not
affect the quality of verification because it guarantees that
both the Last and NotLast branches of each choice
concerned with data transmission and reception are
exercised. The tool proved that the net was free from
deadlocks.

We verified the delay-insensitivity as follows. If the
system was not DI with respect to delays in the wires, any
violation would have manifested itself in communication
interference [18]. The latter is a transmission event on a
channel wire that is not acknowledged by a receiving side
and, as a result, another event may occur on the same wire.
This condition is easily detected in the Petri net model by
means of checking whether the places corresponding to
wires m01, m10, s01, and s10 are 1-safe. Indeed, if any such
place is not 1-safe this is equivalent to the occurrence of two
producing actions on such a place (wire) without at least

one consuming action. In its turn, checking whether a given

place is not 1-safe is a trivial test in the unfolding prefix; it
amounts to finding a pair of mutually concurrent instances

of this place. The PUNT tool has proved that the net is

1-safe and, thus, the protocol is DI. The size of the unfolding

prefix used for verification was only 84 transition instances.

4 PROTOCOL AGENT DESIGN

The protocol agent, one in Master and the other in Slave (cf.

Fig. 2b), is divided into three parts, as shown in Fig. 5: main
controller, send interface, and receive interface.

The main controller manages interaction with the send

and receive interfaces according to the protocol described

above. It activates and acknowledges the transmission and

reception of data and control symbols, and controls
forwarding data from the source system, called Sender, to

the output channel, and from the input channel to the

destination system, called Receiver. The controller has no

direct connection to the data path; this is done entirely via
the send and receive interfaces.

The send interface recognizes a request to send data from
the source system and informs the main controller about
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this request using signal TxReq, which starts the initializa-
tion procedure. The send interface carries out the appro-
priate commands of the main controller concerned with
issuing data and control symbols. In doing so, it performs
phase conversion of data bits arriving from Sender in four-
phase RZ dual rail form so they appear in two-phase NRZ
dual rail form in the output channel. It also indicates to
Sender its readiness to transmit the next bit of data. A
counter recording the number of data bits transmitted is
incorporated in the send interface (however, alternative
ways could be explored, such as the provision of a signal
from Sender to indicate the last data bit). The receive
interface recognizes the arrival of data from the input
channel and carries out commands of the main controller
concerned with receiving data and control symbols. In
doing so, it converts data bits from two-phase NRZ to four-
phase RZ form for Receiver. It also maintains a counter to
register the number of bits received.

In order to activate commands of the protocol (see Fig. 3),
such as “transmit a Start symbol,” the main controller
interacts with the interface blocks using handshakes. There
are two main types of handshakes. One is called a push
handshake. It involves performing a transmission action on
the output channel. For instance, for “transmit a Start
symbol,” the main controller uses two handshake signals,
request TxStart and acknowledgement TxStart(ack). For
another command, e.g., “transmit a Data bit,” three
handshake signals are used, TxData for request and TxCont
and TxLast for acknowledgments. The latter are generated
in a mutually exclusive way depending on the value of the
transmission bit counter. Namely, if the bit sent to the
channel is not the last one, the acknowledgement is sent on
TxCont, otherwise on TxLast. A pull handshake involves a
receiving action on the input channel. For example, if the
main controller expects to receive either a Start symbol or an
Ack symbol, it uses the handshake consisting of request R
and acknowledgements RxStart and RxAck. In another
example, let the main controller expect to receive an
indicator of a Data bit arriving from the channel (which is
passed directly to Receive). Here, the data bit can either be
the last in the packet or not depending on the value of the
reception counter. In this case, the pull handshake consists
of three wires, RxData for request and RxLast and RxCont
for acknowledgements.

4.1 The Main Controller

As mentioned above, the main controller follows the
protocol. It does not deal with the actual encoding of data
and symbols in the input or output data channels. These
functions are those of the send and receive interfaces. Such
a distribution of functions allows the reuse of the main
controller logic in designs where different delay-insensitive
encoding is used (cf. M-of-N codes [9]). There are two
versions of the controller, one for Master and the other for
Slave. The difference between them is only in the initializa-
tion part of the protocol. In the sequel, without loss of
generality, when talking about the design of the main
controller we will refer to that of Master.

In order to proceed to the logic implementation of the
main controller, we construct a labeled Petri net (LPN)
model of the controller following the main two consistency

requirements. First, it must produce behavior satisfying the
protocol defined in Fig. 3 seen from the point of view of
Master. Second, it must adequately capture the interaction
between the main controller and the interfaces defined by
the handshakes in Fig. 5. These requirements are met in the
LPN shown in Fig. 6.

An LPN is a Petri net (for formal definitions see, e.g.,
[13]) whose transitions (events) are associated with the
actions or operations of the modeled system, and possibly
some silent (“dummy”) actions. The places of the LPN
correspond to the states that the system may reach in its
dynamic behavior. The notion of a marking in an LPN helps
to identify the current state of the system by means of
tokens in the places. The LPN model can be used as a
behavioral specification of the main controller, from which
we can derive a structural (logic) implementation using the
synthesis technique of direct mapping, as will be described
in Section 5. From the point of view of direct mapping, the
LPN must be 1-safe, which means that, in its operation in
every reachable marking, every place of the net can never
have more than one token. This allows the places of the net
to be treated as memory latches in a logic circuit, i.e., each
place is either set to logical-0 or to logical-1.

Consider the meaning of the LPN model in Fig. 6.
Transitions labeled as “dummy” are internal to the
controller as they do not start any actions in the interfaces.
The behavior generated by the LPN with these dummy
events is equivalent to the behavior defined by the protocol.
The dummy events are inserted in order to satisfy the
requirement of the direct mapping of LPNs into circuits,
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where every cycle in the LPN must have at least three
transitions [23]. An intuitive explanation of the “three
transitions in a cycle” condition comes from the following
fact showing the fundamental (but fortunately resolvable)
mismatch between the mathematical semantics of the net
operation and the physical behavior of the circuit. In a Petri
net, the firing of a transition involves a simultaneous act of
resetting the marking of the input places to zero and setting
the marking of output places to one. In the circuit
implementation of the net, where the places are associated
with memory latches, the resetting and setting of the latches
cannot be performed simultaneously and, hence, some
transient states are possible. This requires extra memory to
be introduced in extremely short cycles.

The nondummy transitions are labeled as follows: For
instance, the TxStart label activates a two-wire push
handshake on the send interface side. Its meaning is that
of a command to “transmit the M/Start symbol.” The R !
RxStart label corresponds to the activation of a two-wire
pull handshake on the receive interface side in order to pull
the expected S/Start symbol. TheR!RxStart AND RxAck
refers to a three-wire pull handshake which pulls the
expected SlaveAck symbol. A number of handshakes
involve three transitions, e.g., RxData, RxCont, and
RxLast, which correspond to pulling the value of the
receive data counter. This is modeled by nondeterministic
choice, with the decision made outside the controller.
Finally, there are two groups of three transitions for the
three-wire handshakes with arbitration blocks, which are
part of the Main Controller logic but they are implemented
outside the logic mapped from the LPN in Fig. 6.

The behavior described by the LPN is cyclic. For
convenience, to avoid cluttering of arcs the LPN is shown
in Fig. 6 in acyclic form using the identifying labels for the
same places (e.g., Idle1, Rx1, etc.). The top place Idle1 is set
to logical one in the initial marking.

4.2 The Send Interface

The send interface consists of a counter, a 4-2 phase
converter and a Tx-adaptor. Its link with Sender is defined
by a standard dual-rail Return-to-Zero (RZ) signaling
scheme, with two data bit wires coming out of Sender
and an acknowledgement signal going back. The counter
controls input signals TxCont and TxLast for the main
controller. It is triggered by the TxData signal of the main
controller. If the currently transmitted data bit is not the last
one, the counter responds with TxCont, otherwise with
TxLast. The counter has to be initialized with the appro-
priate number of data bits in the message. The counter
works concurrently with the other components of the send
interface. The 4-2 phase converter turns an RZ-signal into a
NRZ-signal. That means that every complete pulse on the
input is turned into an edge on the output. The converter
produces an acknowledgement to the Tx-adaptor for every
data bit. The Tx-adaptor is the central component of the
send interface. Here, the data signals from Sender are
received and acknowledged and the TxReq signal is
produced. It also synchronizes control signals from the
main controller and data signals from Sender to generate
signals to the data channels. It provides an additional
handshake between the 4-2 phase converter and the control
signals of the main controller.

4.3 The Receive Interface

Similar to the send interface, the structure of the receive
interface is derived from the definition of the interfaces
between data channels, the main controller and Receiver,
which uses a dual-rail RZ scheme. It consists of a counter, a
Rx-adaptor, and a 2-4 phase converter. In the initialization
phase, any signal which is received and converted into a
four-phase signal is forwarded either to the RxStart input or
to the RxAck input of the main controller. This process is
also valid for the simplex transmission mode. When
receiving data either in the duplex or simplex reception
mode the received data bits are forwarded to Receiver and
the counter gets incremented. The reception of data is
acknowledged by the Rx-adaptor. The counter of the receive
interface is triggered by the Rx-adaptor. It responds to the
main controller with either RxLast or RxCont, depending on
whether the currently received data bit is the last one or not.
The 2-4 phase converter generates a full pulse (RZ-signal) on
the same rail on the output for every edge received on the
corresponding input rail. The pulse generation is synchro-
nized with the handshake with the Rx-adaptor.

5 IMPLEMENTATION OF THE COMMUNICATION

SYSTEM

This section describes the actual implementation of the
communication controller and the send and receive inter-
faces. Two versions of the controller implementation have
been designed and compared. The main version considered
in this paper is based on the direct mapping of the LPN into
logic (it is called the place-to-latch implementation). The other
version was obtained by logic synthesis from a Signal
TransitionGraph refinement of the LPNmodel, using Petrify
[4] (it is called the minimization version). The system designs
were entered, at the gate level, into the Cadence toolkit and
simulated using the AMS CMOS 0:6� process data.

5.1 Implementation by Place-to-Latch Mapping

A detailed description of the place-to-latch mapping
approach can be found in [23], [20], [3]. The direct mapping
method is currently being automated [17]. The roots of this
approach lie in the seminal works of David [6] and Hollaar
[10], who advocated using a modular way (cf. one-hot state
encoding) to derive implementations for asynchronous
state machines, thus avoiding computationally hard logic
synthesis of hazard-free circuits. Today, asynchronous
control logic of reasonable size can, in principle, be
synthesized using economic state encoding and logic
minimization used in the techniques and tools based on
STGs [4] (Petrify) and Burst-Mode FSM [14], [8] (Minim-
alist). They have proved capable of producing robust and
compact circuits. However, the size in terms of gates and
latches is no longer the predominant factor of control logic
designs, where speed, power consumption, and testability
can be far more important.

Automatic logic synthesis often generates logic whose
depth and, hence, latency are unsatisfactory, and requires
human intervention [11]. Direct mapping, whose complex-
ity is linear to the size of the behavioral specification, may
be more advantageous in productivity and very competitive
in quality against logic synthesis [17]. It allows the
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implementation to inherit the topological structure of the
specification, thus making the mapped circuit more
transparent and easier to verify and test than the result of
logic synthesis. The design of the main controller is exactly
the right sort of example where the benefits of direct
mapping can be demonstrated.

The idea of the place-to-latch mapping is illustrated in
Fig. 7, where two typical fragments of the LPN model of the
main controller are shown. A linear fragment in Fig. 7a
consists of two operations, “a” and “b,” activated in series.
Each place of the net is mapped to a David cell, labeled
according to the name of the place, e.g., “x.” The cell is
connected to its left and right neighbors via two hand-
shakes. The control of the operations, “a” and “b,” is
implemented by a simple insertion of the operational logic
into the handshakes between the cells, according to the
position of the “a” and “b” transitions in the LPN. The logic
circuit for David cells used in such a linear fragment is
shown on the right. The STG shown at the bottom of Fig. 7a
depicts the sequence of events occurring in the David cell
when a token arrives in and leaves it. More specifically, after
initialization the cell “x” activates operation “a,” and
request “r1” is generated as logical-0 (active-zero logic is
used throughout this paper). This sets the latch built of gates
“q” and “qb” in the central cell, “y,” to state h1; 0i. After this,
an acknowledgement is sent to the previous cell, “x,” which
causes resetting of the “a” operation and propagation of a
request to the next operation “b.” After that, the latch in the
next cell “z” is set. As soon as it happens, an acknowl-
edgement is produced on “a2” in the form of logical-0. This
forces the latch “q,qb” in cell “y” to be reset back to its
original “empty” state (hq; qbi ¼ h0; 1i), and the “b” opera-
tion is reset making “r2” equal to logical-1. Finally, the latch
in cell “z” is reset and “a2” returns to logical-1. The
fragment is now in its original state awaiting the arrival of a
token in cell “x.” This behavior is free from hazards and is
totally speed-independent with respect to all gate delays.
This is guaranteed by construction and by setting the David
cells corresponding to the initially marked places to the
states in which signal “q” is set to logical-1 as opposed to the
cells associated with empty places, whose initial state is
logical-0.

An example of the implementation of a nonlinear LPN
fragment (“merge”) is shown in Fig. 7b. Here, the token
arrives in the place “z” either after operation “a” or
operation “c,” and then proceeds to operation “b.” The
corresponding David cell requires more complex gates with

three inputs. The reader interested in the logic implementa-
tion of a wider range of David cells for LPNs, e.g., involving
parallelism, arbitration, etc., can refer to [3]. It should be
noted that, in the actual translation of LPNs, not all places
need to be associated with a David cell. For example, as will
be shown below, the places involved in modeling non-
deterministic choice that is made in the environment are not
mapped into latches.

The block diagram of the control circuit that is directly
mapped from its LPN model in Fig. 6 is shown in Fig. 8. It
should be possible to recognize in this diagram the overall
structure of the original LPN, which confirms that the direct
mapping method preserves the topology of the behavioral
model in its implementation. According to this method,
most places (those labeled with crossed boxes in Fig. 6) are
turned into David cells and most transitions are associated
with the actions of the handshakes with the send and
receive interfaces. To help reading the block diagram in
Fig. 8, an arrow indicating the direction of control flow
through David cells are shown in their symbol.

Several key features of the control structure in Fig. 8 are
explained in Figs. 9 and 10. The structure of a generic David
cell, catering for linear, choice, and merge fragments with
several predecessors and successors, is depicted in Fig. 9a.
All cells must have reset inputs, which either put a token
into a cell or clear it from tokens during the reset phase,
according to the initial marking of the LPN (cf. state Idle1 in
Fig. 6). David cells can also be built out of generalized
C-elements and transistor-level circuits [3]. In this work, we
give preference to the use of standard logic gates.

The three-wire handshakes with choice made externally
are implemented in the David cell framework as shown in
Fig. 9b, using C-elements. Consider, e.g., the box with a
three-wire handshake whose signals are named r5, a51, and
a52. The RxData request (connected to r5) is generated by
the controller while in state Rx1 (cell Rx12). The arrival of an
appropriate acknowledgement from the receive interface,
either on RxCont (a51) or RxLast (a52), causes firing of the
relevant C-element and the token is passed to the
corresponding successor cell, either Rx2 or Rx3.

Sometimes, the merge or choice at the LPN can be
multiway. This results in high fan-in at the gate level and,
hence, slows down the operation. Fig. 9c illustrates how a
simple refinement at the LPN level can be performed first
and mapping to David cells applied after that, as described
in the next section. The example shown in this figure
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Fig. 8. Block diagram of the main controller.

Fig. 9. (a) Generic David cells with reset mechanism, (b) branching structure logic, (c) reducing fanin on places.

Fig. 10. Arbitration components: (a) initial action arbiter and (b) simplex-to-duplex arbiter.



explains why a single place, Rx1, in Fig. 6 is mapped to two
David cells Rx11 and Rx12 in Fig. 8.

The arbitration blocks used in Figs. 6 and 8 are
implemented as shown in Fig. 10. There are two points in
the LPN specification where arbiters are required. One is
the initial action arbitration, where the controller decides
whether to enter the Tx or Rx mode from the Idle state. Its
design is shown in Fig. 10a. Here, the so-called Mutex with
Enabling (EnME) is used. It is activated by signal “arb.” The
other arbiter, in Fig. 10b, is activated by signal “sync.” It
makes decision every time new data is received, whether to
remain in the simplex (Rx) mode or switch to the duplex
(Tx) mode because a request for date transmission (TxReq)
has been set.

5.2 Speedup Techniques

In this section, we consider two speed-up techniques taking
into account the conditions of the operation of our main
controller. The first technique is applied at the LPN level
and does not affect the speed-independence of the logic
produced by direct mapping. The second one is used at the
level of the David cell implementation and makes realistic
assumptions about delays in the system.

5.2.1 Place Splitting and Dummy Insertion

As shown above, LPN places can be split in order to avoid
occurrence of large fan-ins in David cells. The key paths of
the token flow during data transmission involve the places
labeled Rx1 and Tx1 in the LPN of Fig. 6. It is easy to
observe that the token fan-in in Rx1 and Tx1 is quite large
because it involves merging the token flow from three
different modes: initialization, simplex, and duplex trans-
fers. The corresponding David cells, Rx1 and Tx1, could
therefore have high-fanin gates. A speed-up may be
expected if each of these places is split into two places
with a lower complexity of the gates in the circuit, as was
shown in Fig. 9c. The result of the place splitting is shown in
Fig. 11, where new merge places Tx12 and Rx12, and
corresponding dummy events are introduced. The reader
can compare this LPN with that of Fig. 6.

Another performance issue is concerned with the
positioning of dummy transitions in the LPN. Remember
that some dummies are inserted into LPN cycles to avoid
loops of less than three David Cells because it may
otherwise lead to a deadlock in the control logic [23]. On
the other hand, it is clear that the presence of a dummy
transition between two places implies extra delay between
the preceding and the following actions. For example, the
presence of a dummy between Tx4 and Tx1 in Fig. 6 means
that there is a delay between the processing of the pull
(R ! RxAck) handshake (before place Tx4) and the push
handshake started by TxData (after place Tx1). This delay is
on the critical path of the protocol and, thus, slows down
the overall communication in the Tx mode. It would be
possible to avoid this effect by changing the position of the
dummy, e.g., by inserting it into a split of place Tx3, which
is between the push and pull handshakes. This would
effectively mean having a “masked” delay, which would
work in parallel with the communication channel and Slave.
Similar transformation can be done with the dummy
between RxTx2 and TxRx1 in Fig. 6, which slows down

the duplex communication. This dummy is shifted into the

split of the RxTx1 place.

5.2.2 David Cells with Early Propagation of Tokens

A number of ordinary David cells, which operate in a

speed-independent fashion, can be replaced by David cells

with early propagation of tokens. Such fast cells reduce the

critical path delay if they are inserted, e.g., between the

reception (pull handshake) and transmission (push hand-

shake) operations in the main controller. In ordinary David

cells, the activation of the next operation cannot happen

until the previous one has finished. The signaling in a fast

David cell involves concurrency, where the active phase of

the next operation maybe overlapped with the releasing

phase of the previous one. This is achieved by exploiting

relative timing in the system. Fig. 12 compares an ordinary

David cell and a fast one for the case of a linear token flow.

The timing diagram on the right shows two timing

assumptions (dotted arrows) that are necessary for safe

operation of the circuit. The TA1 arrow assumes that the

output request, req_out, goes to logical-0 (active state)

before the input request, req_in, returns back to logical-1

(stable state). This assumption is true due to the following

two reasons. First, the logic path from req_in- to req_in+ (it

goes via the previous David cell and the controlled

handshake) is much longer than the delay through an

inverter and a C-element. Second, at the time of the arrival

of a token into the David cell (transition req_in-), signal

ack_out is in a stable state (logical-1) as a result of the

completion of the previous cycle. This assumption is shown

as a TA2 arrow. It holds due to the 1-safeness of the LPN in

which every cycle has exactly one token.

YAKOVLEV ET AL.: DESIGN AND ANALYSIS OF A SELF-TIMED DUPLEX COMMUNICATION SYSTEM 807

Fig. 11. LPN of Master Control after optimization.



Fig. 13 illustrates, in a schematic way (the paths leading

through send and receive interfaces are reduced to simple

C-elements), the usage of a fast David cell in a cycle of three

cells, similar to those controlling Tx, Rx, and duplex modes.

The effect of using fast David cells in such a cycle can be

visualised with some sort of a “stretchable” token, which

can stretch across two or more David cells. In the totally

speed-independent world, such a stretchable token may be

risky. Indeed, the place associated with a fast cell may have

already propagated the front of the stretchable token (active

phase) and started its handshake operation (e.g., pull on R

and RxAck), while the previous cell may still keep the back

of the token releasing the previous handshake operation

(e.g., push on TxData and TxCont). As long as there is an

ordinary slow cell in such a loop, which “cuts” the

stretchable token and prevents its front to reach its back,

the operation is safe. In reality, under the effect of delays,

e.g., the delay through channel and Slave, which creates an

extra path of signal dependency, such a problem should not

happen.

5.3 Implementation of the Send and Receive
Interfaces

Send Interface Implementation. The structure of the send
interface is shown in Fig. 14. The central component of this
interface is the Tx-adaptor shown in Fig. 15. The main
functions of this block are: 1) informing the main controller

about the arrival of data from Sender (via TxReq),
2) synchronising the process of forwarding 4-phased RZ
data signals from Sender to the 4-2-phase-converter with
the handshake associated with the TxData commands from
the main controller, and 3) forwarding acknowledgements
to the main controller when appropriate symbols, Start and
Ack have been sent to the channel. For these functions, the
Tx-adaptor uses two C-elements, three Set-Unset-blocks
(which are C-elements with one of the inputs inverted) and
a number of OR gates for merging mutually exclusive
4-phased signals.

The TxReq signal, which triggers the transmission

process in the main controller, is activated by one of the

data inputs, r0 in and r1 in. Because a request for sending

data from Sender may arrive at the same time with the

transmission of control symbols by the Tx-adaptor, the set

TxReq signal may be released. This can happen due to a

delay between recognizing the assertion of the TxReq signal

and the reaction of the main controller. To avoid conflict, the

release of TxReq is enabled by the TxData signal or by the

TxStart signal. Both signals acknowledge the reception of the

TxReq signal in the controller. TxStart confirms the

acceptance of the first data item in the data packet. The

TxData signal indicates the sending of the other items of the

data packet. The TxData signal latches the data from the

data inputs. Immediately after that, the Tx-adaptor sends an

acknowledgement to Sender and the data is removed from

the channel. No extra handshake functionality is needed

between the counter and Tx-adaptor, which helps these

parts to work safely in parallel. The described method is also

used for controlling the handshakes for TxAck and TxStart.

The appropriate acknowledgement signal, TxAck_Ack and

TxStart_Ack, is asserted after the reception of the control

signal and is released after the arrival of the acknowl-

edgement from the 4-2-phase-converter.
The counter is implemented using ordinary David cells

which form a loop as shown in Fig. 16. The number of
David cells in it is equal to the modulus of the counter. The
position of the currently activated David cell inside the loop
indicates the actual state of the counter. C-elements are
placed between the cells in order to stop the token flow
until the next trigger pulse arrives. As a response to the
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Fig. 12. Comparison between ordinary David cells and cells with fast propagation.

Fig. 13. Illustration of usage of fast David cells.



active level (zero) on TxData, the appropriate output signal

(TxCont or TxLast) is activated. This causes a reset of the

trigger signal (TxData).
The 4-2-phase-converter for a pair of dual-rail signals is

depicted in Fig. 17. It consists of two special elements

(toggles) with completion detection, which are assigned to

the individual rail channels. For the generation of the

completion signal, the individual completion signals of the

toggles are combined using an XOR-gate. As the rail

channels are mutually exclusive, the XOR-gate produces a

completion signal for every transmitted data item.

Receive Interface Implementation. The structure of the

receive interface is shown in Fig. 18a. The generation of

complete pulses (RZ signaling) for every incoming edge

(NRZ signaling) on the individual channel is done using a

combination of a D-Latch and an XOR-gate in the 2-4-phase-

converter, shown in Fig. 18b. The change of the state of the

channel will be directly forwarded to one of the inputs of

the XOR-gate. This causes a logical-1 at the output of the

XOR-gate. The completion signal (ack_in_0 or ack_in_1)

from the Rx-adaptor triggers the adoption of the state of the

channel by the D-Latch circuit. The output of the D-Latch is
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connected to the other input of the XOR-Gate, which
enables the latter to complete the 4-phased RZ signaling
used between the 2-4-phase-converter and the Rx-adaptor.
This circuit does not use any timing constraints. The falling
edge of the pulse is generated only after the acknowl-
edgement of the rising edge has arrived from the
Rx-adaptor, which in turn makes this acknowledgement
only after a “rendezvous” with a request from the main
controller (cf. pull handshake) via one of C-elements in the
Rx-adaptor, as explained below.

The Rx-adaptor is shown in Fig. 19. It has two groups of
C-elements for both signal channels. One group is enabled
when the controller is waiting for a control symbol, RxStart
or RxAck. The other set of C-elements is enabled if the input
signals are interpreted as data. When a control symbol is
expected, the R signal of the main controller is kept asserted
until one of those signals is received (the effect of a pull

handshake). If data symbols are expected, the RxData signal
of the main controller is asserted and the data is forwarded
to the destination system. The counter of the receive
interface is incremented in parallel with this forwarding.

5.4 Implementation by Logic Minimization

The controller built by the direct mapping method has been
compared to the implementation obtained from the logic
synthesis tool Petrify [4]. For that, the LPN was refined to
the level of binary signals that control the handshakes
between the main controller and send and receive inter-
faces. Such a refinement produced an STG with 17 signals,
including inputs and outputs of the handshakes and signals
generated to and received from two arbitration blocks
(described earlier). This STG was then supplied to Petrify
for deriving logic equations for the circuit. The initial STG
specification had a large number of state coding conflicts
(different states having the same binary code). Petrify
resolved such conflicts by inserting additional signals.
Unfortunately, in models like ours, with most handshake
signals having multiple occurrences in the STG, the quality
of the automatic resolution of state coding conflicts was
poor. An interactive way of resolving state coding conflicts
was used, where the designer chose the positions in the STG
for inserting new signals. Some manual decomposition was
applied at the STG level. This resulted in an STG having
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Fig. 17. 4-2 phase converter.

Fig. 18. (a) Receive interface and (b) 2-4 phase converter.

Fig. 19. Rx-Adaptor.



28 signals, for which Petrify produced logic of reasonable
complexity. Some circuit-level decomposition was also
used, relying on timing assumptions, such as long delays
between outputs and inputs due to the path going through
the channel and Slave. The analysis of performance in the
next section shows that the logic synthesis solution worked
significantly slower than the direct mapping solution. Also,
given the amount of manual effort spent on guiding Petrify,
this clearly demonstrates the superiority of the direct
mapping approach in designing this type of controllers.
The reader interested in the principles of STG-based
synthesis can refer to [4]. An STG-based design of a similar
kind of controller is described in [7].

6 ANALYSIS OF THE COMMUNICATION SYSTEM

The functional correctness of the control logic was
guaranteed by using direct mapping and logic synthesis
techniques [4], [23]. The use of David cells with fast
propagation was justified by realistic timing considerations.
In order to assess the performance of our designs, i.e., to
estimate the contribution of the main controller, send and
receive interfaces and channel interconnects toward the
critical path delay, as well as to perform comparisons
between the place-to-latch circuit and the one synthesized
by Petrify, we simulated our circuits using a Spectre
analogue simulator in Cadence. We used standard cells
for AMS-0.6� CMOS technology for practically all logic
components. C-elements were designed in static logic using
transistor meshes [19]. Some cells, such as Mutexes for
arbiters, were custom-designed at the transistor level. We
did not generate the layout of the design, therefore
parasitics within logic blocks have not been extracted. We
also decided to minimize the effect of the channel wires to
the extreme case by assuming that the composite wire
delays in the channel were zero. This assumption puts our
duplex system in the least favored position for comparison
with a pair of ordinary handshake channels in terms of
cycle time, as will be shown below. This helps us to avoid
any bias toward our design and should encourage potential
users to consider various scenarios of the practical use of
this design for on-chip and off-chip interconnects.

The overall functionality of the circuits was checked by
extensive simulations in all major data exchange modes
(Master transmit, Master receive, and duplex). Switching
between the modes has also been simulated. The main
objective of these experiments was to measure the cycle
time of the communication system during the transfer
modes as well as composite delays introduced by key parts
of the logic for subsequent analytic estimates. A typical
experimental setup is shown in Fig. 20, which depicts the
overall system interconnection and the top structure of the
Master unit (Slave is similar). After an initial global reset,
both Master and Slave were started by separate signals in
order to imitate different starting conditions, e.g., to test
possible collision of Start symbols and retraction of Slave. In
order to emulate the source of data, Sender, a toggle block
was used whose function was to alternate between bits
equal to 0 and 1.

The analysis of the simulation results consists of three
main parts: 1) comparison of the solutions obtained by

direct mapping and logic synthesis, 2) comparison of the
duplex system to a pair of ordinary handshakes, and
3) estimation of the cycle time based on component delays.

The simulation results required for part 1 are summar-

ized in Table 1. They represent cycle (round-trip) times for

simplex (one bit sent in one direction) and duplex (one bit

sent in each direction) data transmission. It is clear that the

difference in cycle time between simplex and duplex is

quite small. The total throughput per wire in both directions

lies between 81 and 120 Mbits/s/wire, depending on

whether the design is fully speed-independent or uses

relative timing. Better throughputs could be achieved if we

used M-of-N codes with more effective bits transmitted in

parallel (of course, with some overhead in send and receive

interfaces for encoding, decoding and completion detec-

tion). A figure of 47 MBits/s/wire was reported in [7] for

0:35� technology, where the circuit was designed by logic

synthesis with Petrify. Basically, the performance gain

achieved by the direct mapping solution comes from the

simplicity of the individual elements of its control logic,

which is “thinly” distributed between David cells, forming

effectively a one-hot state register. In complex controllers,

the gain can be significant where the use of minimization

method requires solving a large number of state coding

conflicts and where the same control signals occur in the

Petri net specification in many places.
In part 2, we have constructed and simulated a dual-rail

NRZ handshake channel (with three wires), with the same

Sender and Receiver models, in order to compare two

parallel unidirectional channels against our duplex system.

The cycle time of the ordinary handshake for the same

design technology and zero delay in the channel wires has

been 3.42ns. It is now possible to make comparison in terms

of pin and power efficiency versus performance penalty.

The gain in pin efficiency is 1.5 because two bits of data are

transmitted in the duplex channel by four wires while the

ordinary handshake system uses six wires. The gain in

power efficiency is twofold because for two bits there are

two transitions in the duplex system versus four transitions

in the ordinary handshake system. Thus, the overall gain in

pin and power efficiency is about three times. Now, if we

take the most conservative version of the duplex system

with the cycle time of 12.35ns against 3.42ns, the perfor-

mance loss would be about 3.6 times. For the version with

(very reasonable) relative timing assumptions, the penalty

drops down to 2.4. Taken in trade off with pin and power

efficiency, this demonstrates the benefits of the use of the

duplex system. Moreover, with the use of realistic delays

(e.g., off-the-chip) in wires, the advantages of the duplex

system would be more pronounced.
In part 3, the critical path of the communication system is

estimated by means of the following component-based
analysis. The overall communication is controlled by the
handshakes from the main controller, i.e., the David cell
circuit. These handshakes can be subdivided into five main
types of operation sequences, which involve logic in the
main controller and in the circuits at lower levels of control.
Each type involves a certain path through a number of
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handshakes in the circuit and can be characterized by a
certain delay. These types together with their correspond-
ing delays (obtained from simulations) are as follows:

1. TxData-sequence—1.88ns,
2. RxData-sequence—2.70ns,
3. RxStart-RxAck-sequence—1.51ns,
4. TxStart-TxAc-sequence—3.32ns, and
5. dummy-sequence—0.33ns.

For example, the RxData-sequence involves a handshake
chain at three levels. It starts at the level of the main
controller, which generates a request to the Rx-adaptor level,
which subsequently generates another request to the mod8-
counter level. The data channel is synchronized at the level
of Rx-adaptor. The time delay is the result of adding the time
until the Rx-adaptor is ready to receive signals and the time
from the arrival of a signal on the data channel until the
handshake is complete at the main controller level. Another
example, TxStart-TxAck-sequence, involves the following
three levels. The controller level is connected in parallel to
the Tx-adaptor level and to the 4-2 phase converter. On the
way back to the controller level, the 4-2 phase converter is
connected in series to the set/unset block in the Tx-adaptor
level. The dummy sequence involves only the controller
level (two simple gates) and has therefore a very small delay.

The above sequences can be used as “building blocks”
for computing various delays in the system when perform-
ing simplex or duplex communications. For example, by
tracing the sequence of operations in the main controller
structure (Fig. 8) of Master and Slave, a duplex critical cycle
could be computed out of two TxData-sequences, two
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Cycle (Round-Trip) Times Obtained from Simulations
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RxData-sequences, two dummy sequences, and two com-
munication channel delays (equal to zero). Adding all these
values would give 9.82ns. This would however be an
overestimation of the critical path delay because it does not
take into account parallelism that exists between switching
actions in the system. Fig. 21 shows the segmentation of the
delays in the system, where certain parts of the above
sequences are performed in series and other parts in
parallel with other actions. Let us denote, e.g., the serial
part of TxData by TxData-s and parallel by TxData-p;
similarly, for RxData. The delays of 1.28ns and 1.98ns are
valid for TxData-s and RxData-s, respectively. A more
accurate estimation should therefore be as follows:

tduplex ¼ maxð2tTxData�s þ2tcomm�chanþ 2tRxData�s þ 2tdummy;

tTxDATA þ tRxData þ tdummyÞ
¼ maxð2 � 1:28þ 2 � 0þ 2 � 1:98þ 2 � 0:33;

1:88þ 2:70þ 0:33Þ ¼ maxð7:18; 4:91Þ ¼ 7:18ns:

This value, taken from the delays of path segments, is not
vastly different from the one shown in the simulation table
for duplex interaction. Similar estimates can be derived for
other modes. Note that the dummies were positioned in the
critical path in the above implementation model. Hiding
them according to the technique described in Section 5.2.1
would help reduce the cycle time to 6.52ns.

7 CONCLUSION

The paper presented the design and analysis of a self-timed
duplex communication system. The system offers the
advantages of power and pin efficiency by using a
nontrivial protocol which allows the communicating mod-
ules to send acknowledgements of the received data at the
same time with transmitting their own data. We presented a
formal definition of the protocol using the so-called
protocol state machine. The protocol was formally verified
using a Petri net unfolding analysis tool. We then derived a
logic implementation for the Petri net specification of the
protocol controller, and constructed send and receive
interfaces between the clients, channel, and the controller.
We produced two implementation versions for controller,
one using place-to-latch (direct) mapping from the Petri net
and the other using logic synthesis from Signal Transition
Graphs with the Petrify tool. These versions were entered to
the Cadence toolkit and analyzed by SPICE simulation.
Analysis of performance showed two important results:
1) the duplex system presents a good trade off between pin

and power efficiency gains and performance penalty

against a pair of unidirectional handshakes, and 2) the

direct mapping method, which fits naturally into the design

process based on labeled Petri nets, can give circuit

implementations of relatively complex controllers that are

faster than those obtained with logic synthesis using Petrify.
This paper showed two main techniques for improving

the speed of the controller in place-to-latch version. First,

one can transform the structure of the Petri net by place fan-

in reduction and dummy repositioning. Second, the basic

structure of David cells can be optimised using relative time

assumptions available from the knowledge of the environ-

ment delays. It is also possible to improve the speed of

David cells further by applying transistor-level techniques

reported in [3].
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