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5.  CONCLUSIONS

We have demonstrated the feasibility of designing a full functionality commercial RISC
architecture in asynchronous logic. Micropipelines would appear to offer a good framework for
this design task, as the modularity of the design allows a conventional engineering approach to
be applied with most of the asynchronous complexities being hidden within pre-packaged
‘black boxes’.

Although our chip is rather larger than the clocked ARM6 cell (which has similar
functionality), most of the difference can be accounted to the greater pipeline depth of our
design. A clocked design with a similar depth of pipeline would have an area and transistor
count perhaps only 10 or 20% smaller than our design.

At this stage our design does not outperform its clocked counterpart, but its performance is
within a factor of two in all areas. As this is a first attempt at producing a design of this
complexity in a micropipelined style we are not too discouraged that we have failed to
demonstrate an immediate advantage over the ARM6 (which is the fourth generation
synchronous ARM and is the leader of its class in low-power processing). The engineering of
the micropipelined ARM is very conservative and there are several areas where we expect to
recover more than the factor two disadvantage in future revisions of the design.
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ALU for the carry propagate addition which is required to combine the partial product and
partial carry. When no multiplication is required, the cost of passing the operands through the
multiplier is equivalent to passing them through the multiplexer which would be needed to
bypass the multiplier, so overall this arrangement would appear to be the best compromise for
the target instruction set.

The instruction decode and execute pipe control logic are illustrated in figure 9. Here the
pipeline latches are shaded to highlight the structure. Prefetched instructions are queued before
being passed to the primary decode logic which produces multiple pipeline bubbles for the more
complex instructions, sends appropriate read and write addresses to the register bank for each
bubble and passes information onto the secondary and tertiary decode logic. Note that although
the shaded pipeline latches are aligned to emphasise the matching of the pipeline depths of the
parallel structures, synchronisation only occurs when the pipelines interact, for instance where
‘control 2’ connects into the multiplier and where ‘control 3’ governs the ALU.

4.  THE SILICON

The design as described above has been implemented in silicon using tools from Compass
Design Automation. Sutherland’s event control blocks (plus a few additional basic
asynchronous elements) were added to a standard cell library supplied by Advanced RISC
Machines Limited and the layout produced using hand-crafted full custom design for the
datapath and compiled standard cells for the control areas. Two major control blocks were
implemented as synthesized PLA layout using a modified version of a self-timed PLA generator
from ARM Ltd. The resulting layout is shown in figure 10.

The prototype is in fabrication with GEC Plessey Semiconductors and samples are expected
in the third quarter of 1993. The principle characteristics of the design are shown in table 1,
where the corresponding characteristics of the ARM6 under similar simulated conditions are
also noted for comparison.

Table 1
Characteristics of the micropipelined ARM compared with ARM6

Micropipelined ARM ARM6

Process 1µm DLM CMOS 1µm DLM CMOS

Cell area 5.5mm x 4.1mm 4.1mm x 2.7mm

No. of transistors 58,374 33,494

Performance 9Kdhrystones 14Kdhrystones @ 10MHz

Dissipation 83mW 75mW @ 10MHz



from - potentially much slower - memory). Here write addresses are queued in a fully decoded
form, so each stage of the FIFO contains at most one ‘1’. A column of the FIFO contains all the
information about pending writes to a particular register and a logical OR of the column
provides the lock control. The OR function is not normally permissible across such an
asynchronous structure but is possible here because, as data propagates through the FIFO, a ‘1’
is copied to the new latch before it is removed from the old one and the lock output is glitch-free.

The lock information is used to delay the decoded read word lines (figure 7) until the correct
value is available. Multiple locks on a single register are handled correctly and no arbiter is
required to manage the asynchronous interaction between reads and writes; these proceed
independently when there is no interdependency and the lock mechanism synchronises them
when a dependency occurs.

3.5. The execution unit

The functional units in the execution pipeline are shown in figure 8. The register operands
first pass through a multiplier, which either passes them on immediately or replaces them by
partial product and partial carry outputs from a carry-save multiplication unit. A barrel-shifter
then modifies one of the operands before both are placed into a pipeline latch. The operands are
then combined in the ALU which has a data-dependent delay [8] and a latch to allow a dynamic
structure to operate with pseudo-static external behaviour. A result latch passes the output to its
next destination (either a register or the address unit).

The sequential positioning of the function units is perhaps not ideal for performance.
However the ARM instruction set supports shift and ALU operations in a single instruction,
forcing the barrel shifter to be in series with one of the ALU inputs. Multiplications also use the
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PC register; in the latter case the old value is thrown away and the new one takes over the loop.
The ARM instruction set includes multiple register loads and stores of arbitrary subsets of

the register set. Here the memory targets are sequential addresses, so the incrementer loop is
temporarily usurped to produce these addresses. In this case the PC is held in the PC register,
and the looping value passes through the load/store multiple (LSM) register.

The PC pipeline buffers PC+8 values for pairing with instructions as they go into execution.
When the instruction is a data transfer type, the PC+8 value is further copied into the exception
pipe (X pipe in figure 5) in case a memory fault is detected. Each MMU response causes the
entry at the bottom of the exception pipe either to be discarded (no abort) or copied into the
exception latch (if an abort was indicated). The presence of a value in the exception latch causes
a data abort exception to be raised and the exception entry process uses the X latch value
(accessed as r15) to form the return address.

Note that there is a crucial restriction on the length of the PC pipeline. If it is not at least three
stages shorter than the instruction prefetch pipeline, the prefetch unit can congest the memory
pipeline, potentially preventing a data access from completing and hence causing deadlock. The
PC pipeline is therefore restricted in length to govern the behaviour of the prefetch unit.

3.4. The register bank

The design issues relating to the register bank have been described in detail elsewhere [6,7],
but in summary the unit must handle multiple pending write operations, register locking to
prevent access to stale register values and the asynchronous interaction between read and write
operations. All these issues are resolved in a single regular structure, the register lock FIFO
(figure 6; note that in our design there are two FIFOs to allow internal results to overtake data
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the execution unit and the result written back through a write port. A second write port allows
data to be written into the register bank from memory. The third input port is used to allow the
PC (which resides in the address interface unit) to be available as register 15 as required by the
ARM instruction set

The address interface unit produces sequential addresses autonomously and only requires
input from the execution unit when the address sequence is changed; this may be a temporary
change for a data access or a permanent change for a branch.

Write data are copied from one of the register bank read operand buses and then synchronised
with the appropriate address for issue to memory. Values returned from memory are split into
data and instruction streams and processed accordingly.

3.3. The address interface

The address interface includes a PC word-increment loop (see figure 4). The ARM
instruction set specifies that (in most cases) r15 has the value PC+8 (exposing the depth of the
synchronous pipeline implementation in the original ARM), so for code compatibility that
behaviour is copied here. The first address, 0, is produced in the memory address register. After
passing through the incrementer, the first value offered to the PC pipeline (figure 5) is therefore
4. However the first value is ‘thrown away’, so the first value actually copied into the PC
pipeline is 8. This skew between the PC pipeline and the fetched instruction stream persists and
maintains the alignment of all future instructions with PC+8. The skew causes incorrect pairing
of the instructions immediately following a branch, but as these are not executed this is of no
consequence. Correct pairing is re-established by the time the new instruction stream begins
execution.

The incrementer loop operates autonomously so a new address from the ALU arrives
asynchronously. An arbiter is required to ensure safe interruption of the incrementer loop, and
the precise point where the loop is interrupted is therefore non-deterministic, resulting in the
non-deterministic depth of prefetching beyond a branch. The interruption may be transient (for
a data access) or permanent (for a branch). In the former case the PC value is preserved in the
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opcode fetch bit (to indicate whether an instruction or a data item is to be fetched), a privilege
mode bit and two bits which hint at sequential address behaviour. A second (input) bundle is
used to transfer read data back to the processor.

Note that at this stage no assumption is made about the pipeline depth of the memory
subsystem. Indeed, if the memory includes a cache, the effective pipeline depth may depend on
whether the cache is hit or not. The memory must, however, return results in the same order as
the requests were issued.

As the processor handles memory faults as exact exceptions, it must internally prevent any
state change after issuing a request for data from memory until it knows that the request will
succeed. Therefore a fault/no fault response from the MMU is time critical on data transfers,
and the design employs a dual-rail encoded abort response signal from the MMU. A transition
on one wire signifies ‘abort’, causing exception entry, whereas a transition on the other wire
signifies ‘no abort’, allowing the processor to proceed. (For instruction pre-fetches a Boolean
flag returned with the instruction is sufficient to indicate a successful access; the trap is then
initiated when the instruction enters the decode stage.)

Conventional level sensitive interrupt inputs are provided for compatibility with existing
peripheral chips, though this is not really a satisfactory model for an asynchronous system as
there is no control on the timing of the release of an interrupt line. A system initialisation input
completes the top level interface.

3.2. Processor organisation

The internal organisation of the processor is shown in figure 3. The processor state is held in
the register bank, which has two read ports for operand access. The operands are processed by

registers

execution
unit

address out

data out data in

instr.
decode

r15 values

new
addresses

loaded
data

values

 Figure 3. The processor organisation



2.2. Micropipelines

The asynchronous communications used for this work employ a ‘two-phase bundled data
protocol’. Here information is transferred from the sender to the receiver using a ‘bundle’ of
data presented as a binary value on a set of wires, with two control wires (figure 1). When the
data are valid a ‘request’ event is issued, and reception is indicated by an event on the
‘acknowledge’ wire. A two-phase event is a transition on a wire; there is no ‘return to zero’
phase.

3.  THE ASYNCHRONOUS ARM

3.1. The processor interface

The top level interface is shown in figure 2. The MMU and memory have not yet been
implemented, but are shown here to illustrate the environment in which the processor will be
employed. The processor produces one output bundle containing the memory address, the
‘write’ data (if any) and control bits. The control bits include a read enable, a write enable, an
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functional units on a chip and has the undesirable side effect of causing those units to dissipate
power whether or not they are doing useful work. There is no doubt that the synchronous
approach to logic design has been very effective over the last two decades, and has enabled great
advances to be made in the productivity of designers and their design tools and in the
performance of machines. However there is now a resurgence of opinion suggesting that it may
be time to re-assess the merits of other design approaches. Higher speeds and larger chips are
making the abstraction of global synchrony increasingly hard to sustain even on a single chip,
with the power dissipation making this approach much less attractive. While it is possible to
address the power issue by gating clocks to individual units, this makes the clock skew problem
much worse and is therefore not a long term solution.

Asynchronous design approaches are therefore attracting renewed interest. New approaches
to asynchronous design are overcoming some of the difficulties which had previously been
impediments to cost-effective designs (much of the cost arising in the development rather than
the manufacture of the design). Asynchronous designs tend naturally (in CMOS) to use power
only when doing useful work and interfacing disciplines produce more modular designs with an
inherent potential for component reuse.

For these reasons, the work described here was initiated to investigate whether an
asynchronous approach might not offer significant advantages in the design of a RISC
microprocessor. The particular asynchronous approach adopted is that described by Sutherland
in his 1988 Turing Award Lecture entitled “Micropipelines” [1]. This is one of many possible
approaches to asynchronous design, but was felt to offer the right balance of cost, performance
and engineering practicality. Using this approach we have produced a full implementation of an
existing commercial 32-bit microprocessor architecture (the ARM) with a design cost, die size
and performance approaching that of the equivalent clocked product. Earlier work [2] has
already demonstrated the feasibility of building an asynchronous microprocessor, but we
believe this is the first application of asynchronous techniques to a commercial architecture
which embraces all the practical difficulties such as exact exceptions and backwards instruction
set compatibility.

2.  BACKGROUND

2.1. The ARM

The ARM processor, originally developed at Acorn Computers Ltd in the UK in 1983-85,
was the first commercial RISC and was inspired principally by the original Berkeley [3] and
Stanford [4] work. ARM uses a load/store architecture and a register oriented instruction set [5].
It is characterised by being very small, simple (the original silicon used 25,000 transistors), low-
cost and low-power (the current ARM6 macrocell delivers 100MIPS/Watt) and has been chosen
as the processor for the Apple Newton pen-based computer.

The relative simplicity of the ARM makes it an attractive architecture for re-implementation
in an asynchronous style. The very low power consumption of the synchronous implementation
is perhaps a drawback for our work as it sets a very aggressive baseline to improve upon.
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1.  INTRODUCTION

The power dissipation of high-performance CMOS VLSI microprocessors is becoming an
increasing problem. Even when battery power and portability are not an issue the 20 to 30 Watt
consumption of the latest high-end processors makes it difficult to keep the silicon at an
acceptable operating temperature. At lower performance levels the designers of battery powered
systems must make difficult trade-offs between the processing demands of, for example, hand-
writing recognition software and the minimum acceptable battery life of their products.

The process advances which have caused CMOS to progress from a low power (and low
performance) technology to a high power (and high performance) technology show no signs of
abating and, if new approaches are not developed, state-of-the-art performance in ten years time
will only be delivered at the cost of power dissipations one or two orders of magnitude higher
than today’s. While there are developments which alleviate the problem, such as the trend
towards 3 volt (and later 2 volt) operation, these do not go far enough to remove the possibility
that power dissipation might limit the performance that a chip can deliver.

One reason for the high power dissipation is the almost universal design approach which
imposes global synchrony across a chip. This is achieved by applying a common clock to all the


