
Adaptive Stochastic Routing in Fault-tolerant On-chip Networks∗

Wei Song1, Doug Edwards1, José Luis Nuñez-Yañez2, and Sohini Dasgupta1

1School of Computer Science, University of Manchester, Manchester, M13 9PL UK
2Department of Electrical and Electronic Engineering, Bristol University, Bristol, BS8 1UB UK

{songw,doug,shinid}@cs.man.ac.uk, j.l.nunez-yanez@bristol.ac.uk

Abstract

Due to shrinking transistor geometries, on-chip circuits
are becoming vulnerable to errors, but at the same time on-
chip networks are required to provide reliable services over
unreliable physical interconnects. A connection oriented
stochastic routing (COSR) algorithm has been used on one
NoC platform that provides excellent fault-tolerance and
dynamic reconfiguration capability. A probability model
has been built to analyze the COSR algorithm. According
to the model, the performance may be improved by imple-
menting a self learning mechanism in each router. Thus
a new adaptive stochastic routing (ASR) algorithm is pro-
posed whereby each router learns the network status from
acknowledgement flits and stores the outcomes in a routing
table. Simulation of both algorithms reveals that the ASR
algorithm shows a higher path reservation success rate and
a larger maximal accepted traffic than the COSR algorithm.
The simulations also show that the learning procedures are
accurate and that both algorithms are fault-tolerant to in-
termittent/permanent errors.

1 Introduction

As transistor dimensions continue to shrink, on-chip cir-
cuits are becoming vulnerable to transient, intermittent and
permanent errors [4], especially on long interconnects [9].
The paradigm shift in current multiprocessor system-on-
chip (SoC) designs, that replaces the SoC buses with a NoC
communication fabric, introduces the challenge of provid-
ing reliable communication on unreliable physical intercon-
nects.

Normally there are two ways for a network-on-chip
(NoC) to recover from transient errors: retransmission and
error correction. Considering the low error rate for current
circuit design technology and the large overhead of error de-
tection/correction circuits, retransmission is more power ef-
ficient than error correction [2]. Therefore, short-term tran-
sient errors could be handled in the transport layer (end-to-
end level) and routers only need to provide a reliable path

∗This work is supported by EPSRC grant EP/E06065X/1 and
EP/E062164/1.

in the presence of permanent/longer term intermittent er-
rors. Adaptive routing algorithms have long been utilized
in NoCs with on-line defective interconnects. However,
the turn-model is constrained to avoid deadlocks. In some
extreme cases, an existed path is prohibited by the rout-
ing algorithm. In constrast to adaptive routing algorithms,
the stochastic routing algorithms are always able to find an
available path in the presence of errors.

The stochastic routing algorithm was used in a proba-
bilistic flooding scheme which demonstrated a high mes-
sage arrival rate with the cost of high energy consumption
and long transmission latency [5, 3]. A tradoff to reduce
the energy consumption could be made by constraining the
extra messages flooded, such as the redundant random walk
and directed flooding algorithms [8]. We have proposed a
fault-tolerant and dynamically reconfigurable network-on-
chip (NoRC) platform [7] based on a further constrained
random walk routing algorithm, namely connection ori-
ented stochastic routing (COSR) algorithm. Combining
the reconfiguration technology and the COSR routing al-
gorithm, this platform can a) map tasks onto network nodes
at run-time, including moving a task from one node to an-
other, b) provide delay guaranteed services, c) maintain data
integrity through the frame level error detection and retrans-
mission scheme and d) cope with intermittent/permanent er-
rors.

However, the COSR algorithm tends to reserve long
paths, constraining traffic, increasing the probability of re-
jection and consuming unnecessary channel resources. A
new adaptive stochastic routing (ASR) algorithm is pro-
posed. By adding a routing table in each router, the router
can learn from random walks and then gradually direct ran-
dom walks to shorter paths. This claim is derived from
a probability model and is supported by transaction level
simulations. Simulation results based on faulty networks
also show that both algorithms are fault-tolerant to inter-
mittent/permanent errors.

The remainder of this paper is organized as follows:
section 2 redefines the fault-tolerant dynamically reconfig-
urable network-on-chip platform and the COSR algorithm
described in [7], section 3 analyzes the COSR algorithm us-
ing a probability model and the new ASR algorithm is pro-
posed, section 4 compares the performance of these two al-

978-1-4244-4143-3/09/$25.00 ©2009 IEEE

gorithms on a fault-free network, section 5 demonstrates the
performance when intermittent and permanent errors occur,
and the paper is concluded in section 6.

2 The NoRC Platform

Figure 1 shows a configured 4x4 mesh NoRC with nine
tasks running on the chip. Every network node comprises
a processor element, a network interface and a router. Ap-
plications are divided into several parallel tasks. One pro-
cessor element can run one or multiple tasks according to
the run-time configuration. For simplicity, we only con-
figure one task per processor element in this paper. The
network interface provides its local processor element a bi-
directional channel to the on-chip network. The router is re-
sponsible for forwarding messages to its adjacent routers or
the local network interface and reserve/release the channels
according to the COSR algorithm. Shown in Figure 1, one
task may run on only one node, e.g. tasks {1,2,4,5,8,9}, or
run on multiple nodes, e.g. tasks {3,6,7}. Multiple proces-
sor elements may be configured with the same task if heavy
computation loads are required or the task is important and
a backup is necessary. Nodes identified as task 0 are idle
nodes which are waiting for a configuration.

Figure 1. A 4x4 NoRC

The communications on this platform are connection ori-
ented and function oriented. The target of a message is ad-
dressed by a function identifier (FID) denoting the task that
can consume this message. When a master processor el-
ement sends out a message, namely a frame, the network
interface divides the frame into a sequence of flits. It firstly
encapsulates the FID into a request flit and sends it into the
network. Routers in the network stochastically forward the
request flit and reserve the path until a node matches the
FID or no channel is available in a certain router. An ok-ack
flit is sent back by the network interface of the target slave
or a false-ack flit is bounced back to inform the failure and
release the path. According to the flit received, the master
node sends out all data flits to the reserved path (success), or
re-sends the request flit again after a retry interval (failed).
After all data flits have been received by the slave node, the
communication procedure is terminated by a false-ack flit
bounced back by the slave to release the path and inform
the master.

Suppose the bandwidth of one channel is enough for all
applications, the router in NoRC can be structured as Fig-
ure 2. Except for the routers on the boundaries, each router
is connected with four adjacent nodes (south, west, north

and east) and its local network interface by an input chan-
nel and an output channel. Every input channel is connected
with a flit size input buffer. All input channels and output
channels are fully connected through the crossbar dynami-
cally configured by the arbiter, which is responsible for an-
alyzing the flits arrived. When the crossbar is configured,
the input buffer is able to transmit all received flits directly
to the output channel without interrupting the arbiter. The
paths configured in the crossbar are released automatically
when a false-ack is transmitted.

Figure 2. A simplified router for NoRC

The configuration procedure of the crossbar has two
stages: the forward setup and the backward setup. When
a request flit arrives at the input buffer, the arbiter tries to
connect the forward path to an idle output channel. Be-
cause of congestion, the arbiter may fail to find an available
output channel and a false-ack flit is bounced back. When
a false-ack/ok-ack flit arrives from the backward channel,
the arbiter then configures the crossbar to connect the back-
ward channel. The network interface also has a timeout
mechanism. When no further flit is received by a certain
time interval, both the master and the slave node can send
a false-ack flit to release the path and to avoid deadlocks.
Therefore, when one permanent or intermittent error occurs
on a reserved path, the path is released due to the timeout
mechanism. This transport layer protocol cannot handle the
case when two or more errors happen nearly simultaneously
on a path. An error detection scheme running in the routers
is required but this is not within the scope of this paper.

3 The Adaptive Stochastic Routing Algo-
rithm

3.1 Analyzing the random walks

We intend to build a simple model to analyze the prob-
ability with which a master reserves a path to its slave in a
fault-free and idle mesh in a limited number of hops. We
assume a mesh network with infinite dimensions to elimi-
nate the impact of boundaries, channels are exclusively al-
located and only one active master is assumed to be using
the network. A task may run on multiple nodes but this sig-
nificantly complicates the calculation. Therefore, we only
consider the single slave case.

According to the COSR algorithm, a request flit is for-
warded to all available ports with an equal probability. For
the ith router on a path, the port p̂i is selected. For a possi-
ble path that traverses L routers (hop count L), the event S

Table 1. The success rates when the slave is less than 4 hops away
(∆x, ∆y) (1, 0) (1, 1) (2, 0) (2, 1) (3, 0) (2, 2) (3, 1) (4, 0)

P = P{L ≤ 16} 42.07% 32.32% 24.93% 21.22% 14.98% 16.43% 14.17% 9.60%
Pp = P{L ≤ 16 |p̂ ∈ P} 100.00% 48.39% 49.00% 31.10% 28.53% 24.15% 20.34% 17.94%
Pp̄ = P{L ≤ 16 |p̂ /∈ P} 22.76% 16.25% 16.91% 11.35% 10.46% 8.71% 8.00% 6.81%

denotes that the path is selected by the random walk. Shown
in (1), S occurs when all the routers on the path select the
corresponding port p̂i.

P{S} = P{
L⋂

i=1

p̂i} =
L∏

i=1

1
ai

(1)

where ai denotes the number of available output ports in the
ith router.

Suppose there are Nm possible paths for a maximal m
hops. The probability with which a request flit reaches the
target slave node within the maximal hop count is:

P{L ≤ m} =
Nm∑
i=1

P{Si} =
Nm∑
i=1

Li∏
n=1

1
an

(2)

Since the inifinite mesh network is symmetrical, it is suf-
ficient to describe all location cases by using the relative
address between masters and slaves. The ports in a router
are classified into two sets: P , the ports that may lead to a
shortest path, and P̄ , the ports that definitely lead to a non-
shortest path.

Table 1 demonstrates the results of all the possible slave
locations within a 4 hop neighborhood, which include: P ,
the probability of reaching the target slave within m hops;
Pp, the conditional probability of reaching the target when
the port p̂ selected by the first router may direct to a shortest
path; Pp̄, the conditional probability of reaching the target
when the port p̂ selected by the first router always points to
a non-shortest path. Here the maximal hop count is set to 16
because P{L > 16} is comparatively small and a path that
connects two nodes 4 hop away with more than 16 hops is
too expensive and inviable. Shown in table 1, P decreases
with the master and slave distance. Therefore, reserving a
path gets more difficult when the match slave is far away.
The results also show that, when the selected port p̂ ∈ P ,
the NoC has a better chance to build a path than the ports in
P̄ .

3.2 Learning from the acknowledgements

Obviously, the COSR algorithm reserves long paths even
if most of the network is idle. This consumes extra re-
sources and saturates the network at a low network load.
However, if routers can learn from random walks to iden-
tify the port set P , sending request flits to them has a better
P and may reduce the occupied channel resources. Fortu-
nately, routers indeed can recognize the P-FID relationship

by analyzing the acknowledgement flits.
Let a master (x+δx, y+δy) has its slave running on node

(x, y) and all nodes (a, b) that |a−x|+ |b−y| < |δx|+ |δy|
are idle, from exhaustive searches we find

Pp ≥ Pp̄ (3)

is true for all L ≤ 16 cases. The request flit has a better
chance if it is sent by port set P rather than P̄ .

Considering a router that receives an ok-ack flit with FID
t from port p̂, we define port p̂ as the estimated port that be-
longs to the port set P for FID t. If a router has repeatedly
and successfully reserved a path for FID t through p̂ for
(n − 1) times, we define Pn as the probability of success-
fully reserving a path for the nth time. Furthermore, Cn

is defined as the probability that the estimated p̂ indeed be-
longs to P when the nth reservation succeeds, namely the
confidence of p̂. Because of Pp ≥ Pp̄, we can prove that
the confidence Cn increases accumulatively with the time
n. Re-sending request flits to the port that reserved a path
the last time accumulatively increases the success rate Pn.

Cn ≥ Cn−1, Pn ≥ Pn−1 (4)

3.3 The implementation of the ASR algo-
rithm

Although the results in section 3.2 assume an idle and in-
finite mesh network, the trend should be similar on heavily
loaded, finite and non-regular networks. Channels that are
busy in transmission or suffer from intermittent/permanent
defects are treated as network boundaries to a request flit in
the COSR algorithm. Therefore, in a heavily loaded, finite
and non-regular network, the p̂ estimated by the learning
procedure should point to a shortest path under the current
network status rather than the shortest paths in an idle mesh
network. The learning procedure can adapt to the network
status.

The new adaptive stochastic routing (ASR) algorithm
can be easily implemented in the router structure shown in
Figure 2. All that is required is that the COSR algorithm
running in the arbiter is changed into the ASR algorithm. A
routing table is required in every router to record the esti-
mated P-FID relationship and its confidence. Shown in Ta-
ble 2, a routing table RT has n entries when n different tasks
coexist in the network. Each FID has an table entry. The p̂
field records the estimated port and the C field records the
confidence to this estimation. Since p̂ is denoted by (0..4),
C is converted into a 5-bit integer to record each table entry

in one byte. C = 31 denotes the strongest confidence to
p̂ ∈ P while 0 indicates that the router has no knowledge
about this FID. Therefore, all of the confidence fields in RT
are set to 0 after the initialization stage.

Table 2. A routing table after initialization
p̂ (0..4) C (0..31)

FID1 0 0
FID2 0 0

– 0 0
FIDn 0 0

The ASR algorithm is an improved version of the COSR
algorithm. When a request flit arrives, the router sends the
flit to the estimated p̂ with probability C/32 or to a random
port with probability (1 − C/32). Therefore, the router is
likely to use the estimated port with a strong confidence
while also exploring the network when not so confident.
The estimated p̂ and confidence C are updated by acknowl-
edgement flits. C increases when an ok-ack flit is received
from port p̂ and decreases when a false-ack flit is received
from p̂. When the confidence to p̂ drops to 0, p̂ is set to the
new incoming port of the next ok-ack flit. The new ASR
algorithm is still a stochastic routing algorithm. Since all
routing tables are set to 0 after initialization, the routers use
the COSR algorithm at first and then update routing tables
according to acknowledgement flits. Due to this learning
procedure, the ASR algorithm is adaptable to status changes
and run-time errors.

4 Performance Comparisons on Error Free
NoCs

Both the COSR and the ASR algorithms have been im-
plemented using timed SystemC transaction level models
(TLM). We intend to implement the routers by fully asyn-
chronous circuits to reduce the dynamic power consumption
and the channel latency. Routers and network interfaces are
connected by Chain style [1] asynchronous channels. The
channel latency is set to 6.24 ns/byte to simulate a 3800 µm
Chain channel in a 0.18 µm technology [6]. The router ar-
bitration and internal crossbar latency is set to 5 ns, as it is
set in [7]. For each test case, the simulation runs for 4 ms
with a warm up time of 500 µs. A uniform random traffic
pattern is used in all simulation cases. The configured pro-
cessor elements periodically and randomly generate frames
to all FIDs except the local FID and the idle FID 0 (see sec-
tion 2). Each frame has a 64 byte data field which is divided
into 16 data flits.

4.1 Performance comparisons of COSR
and ASR

Figure 3 shows the comparison results of the COSR and
the ASR algorithms on a 4x4 NoC. A total number of nine

0 1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

A
ve

ra
ge

 F
ra

m
e

La
te

nc
y

(u
s)

Injected Traffic (MByte/Node/Sec)

 COSR
 ASR

(a) The average frame latency

0 2 4 6 8 10 12
0

20

40

60

80

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e
(%

)

Injected Traffic (MByte/Node/Sec)

 COSR
 ASR

(b) The average success rate

Figure 3. Comparison results on a 4x4 NoC

tasks running on this NoC are mapped as shown in Fig-
ure 1. The average frame latency in Figure 3(a) denotes the
time interval since a frame being generated until the end-
of-frame false-ack flit of this frame being received by the
master node. The average success rate in Figure 3(b) is cal-
culated by

Nok−ack

Nok−ack +Nfalse−ack

where Nfalse−ack dose not include end-of-frame false-ack
flits.

Shown in Figure 3(b). The ASR algorithm demonstrates
a 15.59% higher success rate when the network load is
heavy. Moreover, this 15.59% higher success rate allevi-
ates the network contention and decreases the path length,
which together push the maximal accepted traffic from
7.5 MByte/Node/Sec to 10.5 MByte/Node/Sec, providing
40.0% improvement.
4.2 Results of the learning procedure

To demonstrate the accuracy of the learning procedure, a
4x4 NoC mapped as shown in Figure 1 has been simulated
for 4 ms and all estimations in routing tables are extracted
in the end. Since nodes and channels may be reserved for
a long time and these reservations could affect the network
status, an extremely light traffic 1 MByte/Node/Sec is in-
jected into the network to avoid this effect and simplify
the explanations. By analyzing the extracted data, Figure 4
shows the estimated results in a graphic way. The estimated
ports are denoted by corresponding arrows (south: ↓, west:
←, north: ↑, east: → and local: ◦). Ports with compara-
tively strong confidences (C ≥ 16) are drawn by solid and

bold arrows while those with lower confidences (C < 16)
are drawn with dash and slim arrows.

(a) task 1 (b) task 2 (c) task 3

(d) task 4 (e) task 5 (f) task 6

(g) task 7 (h) task 8 (i) task 9

Figure 4. The estimated directions

For all tasks in Figure 4, nearly all slaves for certain
functions, denoted by ◦, are surround by strongly estimated
ports pointed to them except the top left node (0, 0) in Fig-
ure 4(f). However, the estimations around this node are
not wrong and actually explain how the network status can
affect the estimated results. The node (0, 0) with FID 6
should be reserved at the time, since all strong estimations
are pointing to the alternative node (1, 3) and the estima-
tions around node (0, 0) are weak and are directing frames
to the alternative. The routing tables indeed adjust them-
selves to the network status.

The majority of port estimations in routing tables are cor-
rect. For this test case, there are a total number of 144
estimated ports and confidence fields. Of these, 29 ports
do not point to the nearest slave, which leads to an error
rate 20.14%. Note that some erroneous estimations are af-
fected by the changes of the network status and in fact point
to the right directions. The actual error rate is lower than
20.14%. Furthermore, only the strong estimations signif-
icantly change the random walks of the COSR algorithm.
The error rate for strong estimations is just 6.58%. There-
fore, the port learning procedure of the ASR algorithm suc-
cessfully learns the network status from the acknowledge-
ment flits.

5 Performance on Faulty NoCs

As mentioned, the errors in network could be classified
into three categories: transient errors, intermittent errors
and permanent errors. On the NoRC platform, transient
errors are handled by the error detection and retransmis-
sion mechanism in the transport level. Therefore, we only
demonstrate the network performance in presence of per-
manent/intermittent errors. For asynchronous channels like

Chain [1], any intermittent/permanent error causes a line to
be stuck to a certain voltage, which then stops the whole
channel. Therefore, unlike synchronous buses where in-
termittent/permanent errors give erroneous data on a bus,
asynchronous channels are stopped when these errors oc-
cur. In the following simulations, routers detect the inter-
mittent/permanent errors and drop all flits heading to the
defective channels, and the performance of the the ASR al-
gorithm is evaluated.

Figure 5 shows an example of a NoC with intermittent
errors. During the simulation time 1 ms to 3 ms, the west
channel of router (1, 2) is defective. During the simulation
time 2 ms to 4 ms, the whole router (1, 0) is defective. Fig-
ure 6 demonstrates the simulation results of the variations
on the accepted traffic when intermittent errors occur. The
network is loaded with a heavy load of 8 MByte/Node/Sec.
The accepted traffic of the ASR algorithm does not have
a significant variance during the occurrence of intermittent
errors. The accepted traffic of the COSR algorithm has a
drop during 1 ms to 3 ms. The single error on the the west
channel of router (1, 2) has a more severe impact than the
fully defective router (1, 0). Note that the network has two
nodes running FID 7 but only one for FID 1, the single error
of router (1, 2) reduces the reachability of the rare resource
FID 1. The results show that the ASR algorithm has a larger
accepted traffic than the COSR algorithm during errors and
the errors on rare resources have a more severe impact than
redundant resources. Duplicating the resources can allevi-
ate the impact of errors.

Figure 5. NoC with intermittent errors

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

1

2

3

4

5

6

7

8

9

A
cc

ep
te

d
Tr

af
fic

 (M
B

yt
e/

N
od

e/
S

ec
)

Simulation Time (ms)

 COSR
 ASR

Figure 6. Accepted traffic with intermittent er-
rors

Regarding the permanent errors, the NoC in Figure 7 suf-
fers two permanent errors. After 1 ms simulation, the router
(0, 0) is permanently defective and isolates the node (0, 0)

from the network. Later at 2 ms, the router (0, 3) is also
permanently defective and isolates the only node for FID 9.
Without node (0, 3), FID 9 is unavailable for the network,
which would deadlock the network since all nodes are stuck
when requiring FID 9. According to the NoRC platform,
the system level reconfiguration mechanism can detect the
failure and search an idle node to reconfigure it to FID 9. In
this example, the selected idle node is node (2, 0), which is
reconfigured to FID 9 after 2.5 ms.

Figure 7. NoC with permanent errors

Figure 8 demonstrates the simulation results of the vari-
ations on the accepted traffic when permanent errors oc-
cur. The network is also loaded with a heavy load 8
MByte/Node/Sec. Both the COSR and the ASR algorithms
show a slight drop when node (0, 0) is isolated from the
network and drop to zero when the router (0, 3) is defective.
After the system level reconfiguration mechanism reconfig-
ures the node (2, 0) to FID 9, they all return back to normal
after a period of instability. The ASR algorithm shows a sig-
nificant “bounce” after the reconfiguration and it saturates
the network at a larger injected traffic than the COSR algo-
rithm, therefore the ASR algorithm can send out the frame
stuck by failures in burst while the COSR algorithm is al-
ways running at the maximal accepted traffic.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

2

4

6

8

10

12

A
cc

ep
te

d
Tr

af
fic

 (M
B

yt
e/

N
od

e/
S

ec
)

Simulation Time (ms)

 COSR
 ASR

Figure 8. Accepted traffic with permanent er-
rors

In this section, the simulations demonstrate the fault-
tolerant capability of the COSR and the ASR algorithms.
Especially in the second simulation case, both algorithms
recover when an alternative node is configured, which is a
feature that is not easily supported by non-stochastic routing
algorithms. When intermittent/permanent errors occur, the
ASR algorithm shows better accepted traffic performance
than COSR.

6 Conclusion

This paper has proposed a new adaptive stochastic rout-
ing (ASR) algorithm running on the NoRC platform [7].
The ASR algorithm supports function oriented routing, pro-
vides strong fault-tolerance to intermittent/permanent errors
and demonstrates the better path reservation success rate,
average frame latency, maximal acceptable traffic perfor-
mance than the COSR algorithm.

We have designed a simple probability model to analyze
the success rate of the previous COSR algorithm. Accord-
ing to the analyses, we claim that sending a frame in the
direction which has successfully reserved a path can im-
prove the success rate. Both the COSR and the ASR al-
gorithms have been modeled and simulated using TLMs.
The simulation results on error free networks show that: the
ASR algorithm has a 15.59% higher success rate and in-
creases the maximal acceptable traffic by 40.0%, compared
with the COSR algorithm on a 4x4 NoC; the routing tables
successfully adapt themselves to the network status through
the ASR algorithm. On faulty networks, both the COSR
and the ASR algorithms demonstrate fault-tolerance to in-
termittent/permanent errors.

References

[1] J. Bainbridge and S. Furber. Chain: a delay-insensitive chip
area interconnect. IEEE Micro, 22:16–23, 2002.

[2] D. Bertozzi, L. Benini, and G. D. Micheli. Error con-
trol schemes for on-chip communication links: the energy-
reliability tradeoff. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(6):818–831,
June 2005.

[3] P. Bogdan and R. Marculescu. A theoretical framework for
on-chip stochastic communication analysis. In Proceedings
of the International Conference on Nano-Networks and Work-
shops, 2006.

[4] C. Constantinescu. Trends and challenges in VLSI circuit re-
liability. IEEE Micro, 23(4):14–19, July 2003.

[5] T. Dumitras and R. Marculescu. On-chip stochastic commu-
nication. In Proc of DATE, 2003.

[6] S. Hollis and S. W. Moore. RasP: an area-efficient, on-chip
network. In Proc of ICCD, pages 63–69, October 2006.

[7] J. L. Nunez-Yanez, D. Edwards, and A. M. Coppola. Adap-
tive routing strategies for fault-tolerant on-chip networks in
dynamically reconfigurable systems. IET Computers & Digi-
tal Techniques, 2(3):184–198, May 2008.

[8] M. Pirretti, G. M. Link, R. R. Brooks, N. Vijaykrishnan,
M. Kandemir, and M. J. Irwin. Fault tolerant algorithms for
network-on-chip interconnect. In Proceedings of the IEEE
Computer society Annual Symposium on VLSI, 2004.

[9] H. Zimmer and A. Jantsch. A fault model notation and error-
control scheme for switch-to-switch buses in a network-on-
chip. In Proc of CODES+ISSS, pages 188–193, October
2003.

	Start
	NOCS09
	Table of Contents
	Author Index

