
Prime Indicants: A Synthesis Method for Indicating

Combinational Logic Blocks

W. B. Toms, D. A. Edwards

School of Computer Science, University of Manchester

{tomsw,doug}@cs.man.ac.uk

Abstract

Self-timed circuits present an attractive solution to the

problem of process variation. However, implementing self-

timed combinational logic is complex and expensive. This

paper presents a novel method for synthesising indicating

implementations of arbitrary encoded function blocks. The

synthesis method reduces the cost of the implementations by

distributing indication between the individual outputs of a

function block. Covers are constructed by determining the

minimal cost set of Prime Indicants which are required to

indicate all of the input transitions of the function block.

The results of the procedure are demonstrated on a wide

range of combinational logic blocks and show a reduction

in literal count of between 38-99%.

1. Introduction

Process variation is the major challenge currently facing

the VLSI industry. In deep sub-micron technologies, timing

closure for synchronous systems, which are already clocked

at up to 50% below their ideal potential [2], becomes com-

plex. Self-timed circuits [14], whose operation is independ-

ent of any external timing reference, are increasingly being

seen as a solution to the problems of timing closure in highly

variable technologies. The robust timing models employed

by these circuits make them extremely tolerant to variations

within the propagation delays of circuit components. How-

ever, the lack of assumptions about the environment and cir-

cuit components make self-timed circuits difficult to specify,

create and test. In particular, self-timed combinational logic

operations are complex because the validity of an operand

needs to be encoded within the data itself. The cost of encod-

ing the datapath in this manner is significant: each data word

must be transmitted explicitly and, because the logic level of

each wire no longer specifies a data value, the datapath must

transition into a known (spacer) state in between every tran-

sition.

In order to be tolerant to variable delays within circuit

components, self-timed circuits use a process called indica-

tion (or acknowledgement) where the arrival of a set of out-

puts indicates to the environment that the internal gates of a

circuit are in a steady state and the circuit is ready to accept

more input. The aim of the work presented in this paper is to

minimise the cost of implementing a function block by dis-

tributing the indication between all of the outputs of the

block. A cover for each function is constructed from the

prime indicants of the function block; where each prime

indicant is either necessary for the function (a prime impli-

cant) or indicates an input transition not indicated by any

other function. The prime indicants of a function block are

highly dependent on the implementations of the individual

functions and cannot necessarily be constructed from the

prime implicants of each function. The paper presents an

efficient method of computing a low cost prime indicant

cover for arbitrarily encoded function blocks. The method

employs heuristic UCP solvers, with several constraints and

novel cost functions.

1.1 Existing Indicating Synthesis Approaches

A popular method of constructing self-timed datapath cir-

cuits is using an approach called desynchronisation [8][2],

where conventional synthesis tools are used to synthesise a

gate-level network which is then converted into a self-timed

network by expanding each gate into its dual-rail equivalent.

This approach allows large self-timed datapaths to be con-

structed relatively easily. Furthermore, several recent tech-

niques have been developed that significantly reduce the cost

(in area, power and delay) of the initial network by using

techniques such as weak-indication [4][19] and relative tim-

ing [3].

The use of conventional synthesis tools in the desynchro-

nisation flow has several drawbacks. Firstly, it restricts the

self-timed implementations to dual-rail (or in some cases 1-

of-4) encoding and so other lower-power or higher-density

DI-encodings cannot be employed. Secondly, the behaviour

and costs of self-timed networks are significantly different

from those of conventional networks and so optimising a

datapath for one style may significantly increase the cost of

an implementation in the other.

2009 15th IEEE Symposium on Asynchronous Circuits and Systems

1522-8681/09 $25.00 © 2009 IEEE

DOI 10.1109/ASYNC.2009.24

139

Authorized licensed use limited to: The University of Manchester. Downloaded on June 4, 2009 at 04:37 from IEEE Xplore. Restrictions apply.

More recently, a block-level approach to synthesis has been

proposed [5], where datapaths are constructed from function-

blocks connected by encoded channels. As a composition of

indicating blocks is itself indicating [14], each block may be

specified and synthesised independently without altering the

indication of the whole datapath, meaning large self-timed data-

paths can be efficiently created. Furthermore, the block-level

approach alleviates some of the problems of desynchronisation

by allowing much more freedom in the choice of encoding and,

as each block has several outputs, can reduce implementation

costs by allowing indication to be shared between multiple out-

puts of the block. In [5], block-level implementations were

restricted to dual-rail, and the focus of the work was on selecting

the implementation of a block from a restricted set of possible

implementations.

1.2 Hazard-Free Combinational Logic Synthesis

A related topic is that of hazard-free two-level combinational

logic minimisation [11][15]. Unlike indicating logic, hazard-free

logic operates under fundamental mode assumptions: where the

environment uses timing constraints to determine when the cir-

cuit has stabilised. In order to be hazard-free, a logic implemen-

tation must ensure that no glitches occur on the output of a

function during a multiple input change: where the inputs tran-

sition from one function minterm to another. In hazard-free logic

minimisation, multiple input changes from minterm A to mint-

erm B are described by a transition cube, [A,B], which contains

all of the minterms that may be reached during the MIC. The

transition cubes of a specified set of MICs are used to control and

constrain the minimisation of function f to construct a hazard

free cover, F:

• Required Cubes – A transition cube [A,B] where

and ([A,B] may be all or part of a MIC) is a required

cube and must be fully contained within a cube of F.

• Privileged Cubes – A transition cube [A,B] where

and is a privileged cube and must not be intersected

by any cube of F that does not contain A.

Several minimisation techniques have been developed based on

these constraints that can efficiently synthesise two-level haz-

ard-free implementations.

The indicating logic synthesis techniques described in this

paper share similarities with hazard-free synthesis techniques,

but the constraints of indicating logic are different to those of

hazard-free logic. The allowed-transition sets constrain the

MICs within indicating circuits to a small subset of possible

transitions and the encoding of data in self-synchronising codes

greatly simplifies the complexities of ensuring that implementa-

tions are hazard-free. However, the requirement that the output

of a function indicates all input transitions make indicating logic

synthesis complex. The required cubes of the hazard-free syn-

thesis procedure can be constructed by observing the output

value of a function during an MIC, whereas the requirement of

a function to indicate input transitions requires the observation

of individual inputs during MIC.

The structure of the paper is as follows: section 2 introduces

the theory of indication and outlines the requirements of a func-

tion block to be indicatable; section 3 introduces a canonical

architecture for implementing any indicating function, and out-

lines the conditions under which this may be optimised; section

4 introduces the concept of a Prime Indicant and discusses how

a prime indicant cover may be generated; section 5 describes

each of the synthesis algorithms in detail; section 6 presents the

results on a range of sample function blocks; conclusions and

future work are outlined in section 7.

2. Indicating Networks

There are several different models that may be used to

explore the principles of indication. In this paper we employ a

model developed specifically for combinational logic circuits by

Varshavsky [17]. Varshavsky defines indication in terms of mul-

tiple input changes called allowed-transitions sets that occur

within self-synchronising code-systems. In this section Var-

shavsky’s basic model is reviewed and the extensions necessary

to reason about the indication of individual variables are pre-

sented. This augmented model is then used to verify the canon-

ical architecture presented in the section 3.

2.1 Definitions

• A multi-valued variable vi can take on symbolic values from

. Each symbolic value maps to a

unique integer . A binary variable is

one in which .

• A function, f, of n variables is a mapping f: .

In a boolean function .

• Each element in the domain of function f is called a minterm.

• In a boolean function f, the set of minterms for which

is called the on-set, the set for which is called the off-

set and the set for which is called the don’t-care set.

• A multi-valued literal is a binary valued logic function of the

form:

where . If vi is a binary variable then is written as

, is written as and as . The notation is

used to denote either or (but not).

• A product term is a Boolean product (AND) of literals. A

cube is the set of minterms which can be described by a prod-

uct term.

• Product y contains product x () if the cube of x is a sub-

set of the cube for y.

• An implicant of a (boolean) function is a product term which

contains no minterm of the functions offset.

• A prime implicant is an implicant contained in no other im-

plicant of the function.

• A cover of a function is a set of implicants which contains all

the minterms of the on-set and no minterms of the off-set.

f A! " 1=

f B! " 1=

f A! " 1=

f B! " 0=

Pi #0 #1 $ # Pi 1–% % %& '=

Pi 0 1 $ Pi 1–% % %& '=

Pi 0 1%& '=

P1 $ Pn((Pf)
Pf 0 1 *% %& '=

f 1=

f 0=

f *=

vi
S 1 if vi S*

0 otherwise +
,
-

=

S Pi. vi
1& '

vi vi
0& '

vi vi
0 1%& '

vi* vi
˜

vi vi vi*

x y.

140

Authorized licensed use limited to: The University of Manchester. Downloaded on June 4, 2009 at 04:37 from IEEE Xplore. Restrictions apply.

2.2 Transition Sets

Transition Sets (TS) occur between the values of a set of

binary variables (). Each value is described in

terms of binary vectors, called combinations. Like a multiple

input change in hazard-free logic each TS, (a-b), also has an

associated transition cube [a,b], which contains all possible

combinations reached between a and b. Furthermore, each TS

has two associated products:

• transition constant term – the product of the variables which

do not change in the TS:

:

where:

• transition variation term – the product of the variables that

change in the TS:

:

where:

There exist several important properties of transition sets and

their combinations:

• The internal transition cube, (a,b), of a TS contains all of in-

termediate combinations between a and b ().

• A transition set is regular if no variable changes value more

than once in the transition set (a monotonic MIC).

• Combinations a and b are adjacent (w.r.t. variable vj) if

. For each TS (a-b), the set N(a,b) contains all

the combinations adjacent to b in [a,b]. For each

an adjacent TS, (ai,b) may be constructed. The number of el-

ements in N(a,b) is equal to the number of variables in

.

• Two combinations, a and b, are comparable if the variables

in the transition variation term are either all uncom-

plemented or all complemented. If a and b are incomparable,

 contains both complemented and uncomplemented

variables and there exists a pair of variables, vi and vj, who

transition in opposing directions during the TS. Therefore,

the values of vi and vj differ within each combination (i.e.

) and between each combination (i.e.

).

2.3 Self-Synchronising Code Systems

A code system, Z, contains an alphabet of values for a set of

variables, V. For each value , the code system defines a

subset of values Z(a) which may appear after a. A TS is called

an allowed-transition set (ATS) if the following conditions are

satisfied:

Definition 2.1 Transition set (a-b) in code system Z is allowed

if the following properties are satsified:

•

•

• (a-b) is regular.

• for all intermediate combinations .

A code system in which all transition sets are allowed is

called a self-synchronising code system (SSC). In an SSC the

completion of an ATS (a-b) can be determined by the presence

of the value b on the code system variables regardless of the

order or timing of intermediate transitions.

In two-phase SSCs, all ATS occur between a data value, d,

from the set, D, of all valid data values and a spacer, s, from the

set of all spacer values, S, and so . In this paper only

two-phase code systems with a single spacer value () are

considered. In order to ensure that all transition sets are allowed,

the combinations in D are all incomparable with each other but

comparable to the spacer value. The set of data values is there-

fore equivalent to a DI-code [18].

In the remainder of the paper, we use (a-b) (and also (k-l)) to

denote an arbitrary (d-s) or (s-d) ATS. We use (a/b) to denote

either (a-b) or (b-a).

2.4 Combinational Logic

Combinational logic function blocks consist of p variables: A

set of n inputs, , and a set of m outputs,

. A TS, (a-b) on code system X,

causes a subsequent TS, (k-l), on code system Y. The operation

of the block is determined by two multi-valued functions:

• where

 = { }

 = { }

F maps data values to data values

• where

 = { }

 = { }

G maps spacer values to spacer values .

As only single spacer code systems are described in this paper

 for all function blocks.

Example 2.1 A is a combinational logic block with 4 inputs (n

= 4) and 2 outputs (m = 2). The input code system X consists of

V v1 ! vn" "# $=

% a b"& ' (j
j 1=

n

)=

(j

vj if aj bj 0= =

vj if aj bj 1= =

1 if aj bj*
+
,
,
-
,
,
.

=

/ a b"& ' 0j
j 1=

n

)=

0j

vj if aj 1 b, j 0= =

vj if aj 0 b, j 1= =

1 if aj bj=
+
,
,
-
,
,
.

=

a b"1 2 a b"# $–

/ a b"& ' vj
˜=

a
i
N a b"& '3

/ a b"& '

/ a b"& '

/ a b"& '

ai aj bi bj*"*
ai bi aj bj*"*

a Z3

a Z b Z a& '3, 3

a b*

t Z a& '4 t a b"& '3

Z D S5=

S 1=

X x1 v1 ! xn" " vn= =# $=

Y y1 vn 1+ ! ym" " vp= =# $=

F PDX: P
D
Y6

PDX (0 d0
X (1" d1

X ! (
D
X

1–
" " d

D
X

1–

X
= = =

PDY (0 d0
Y (1" d1

Y ! (
D
Y

1–
" " d

D
Y

1–

Y
= = =

D
X

X3 D
Y

Y3

G PSX: P
S
Y6

PSX (0 s
X

=

PSY (0 s
Y

=

S
X

X3 S
Y

Y3

G X
0# $

& ' Y
0# $

=

141

Authorized licensed use limited to: The University of Manchester. Downloaded on June 4, 2009 at 04:37 from IEEE Xplore. Restrictions apply.

four data values and a single spacer:

Code system X contains eight TS:

For transition :

,

and

The output code system, Y, consists of two data values and a

single spacer:

Code system Y contains four TS:

For transition :

,

and

F(X) is defined as follows:

Therefore, the TS , and on X

cause the TS on Y and the TS on X causes the

TS on Y.

Varshavsky defined the requirements for an indicating imple-

mentation to be constructed for a function block:

Definition 2.2 In order for a function block to be indicatable,

the following conditions must be upheld:

• Code Systems X and Y must be SSC.

• The functions F and G must be completely specified.

Effectively, definition 2.2 means that an indicating imple-

mentation can be constructed for any function block with DI-

encoded inputs and outputs (functions can be made completely

specified by assigning any unspecified input values to arbitrary

output values).

To determine the role of individual variables within the ATS

of the function block each variable, vi, has associated input and

output code systems and , where:

 contains the data values of the ATS in X that involve a tran-

sition on vi. If vi is an input, contains the data values from

the ATS of X in which vi transitions. If vi is an output, con-

tains those data values in X, which result in ATS (k-l) in Y (as

determined by function F), where (k-l) contains a transition on

vi. The set contains the data values of Y, that result from

applying function F to the data values of .As they are subsets

of SSCs X and Y, code systems Xi and Yi are also self-synchro-

nising. Multi-valued functions and

 describe the mapping between the data and

spacer values of the two code systems associated with each var-

iable.

Example 2.2 For variables v1 (x1) and v5 (y1) from the function

block A in example 2.1, the sets , and corresponding

multi-valued function () are:

In order to construct a physical circuit for a function block,

the multi-valued functions are implemented by a system of inher-

ent functions (SIF). In an SIF each output of the function block

is determined by a binary cover function:

Each fi is the encoded function (or encoded expression [9]) of

variable yi formed by mapping the multi-valued functions

and to the binary encoding of code system X.

2.5 Indication

In order for a function block to be indicating, the transitions

of individual input variables must be indicated by the output

functions of the SIF. To describe the process of indication, Var-

shavsky introduces the term translation:

Definition 2.3 An input transition is translated to the output of

a function if its arrival causes the output to transition.

In order for a function to be indicating, all input transitions

must be translatable to the output of a function in a single step.

The ability is required because not all input transitions in an ATS

are directly translated to the output of a function, as this would

mean the function must change value after every input transition.

However, all input transitions must be capable of causing an out-

put transition if they are the last to occur (the last input transition

occurs “a single step” before the output). This property allows

the function indicate all input transitions regardless of the order

of their arrival.

Varshavsky uses boolean differences of functions in order to

determine whether a function translates all of its input transi-

tions. The boolean difference of function with

respect to variable xi is given by:

D
X

d0
X

1010 d1
X

! 0110 d2
X

! 1001 d3
X

! 0101= = = =" #=

S
X

s
X

0000=" #=

s
X
d0
X

–$ % s
X
d1
X

–$ % s
X
d2
X

–$ % s
X
d3
X

–$ %! ! !

d0
X
s
X

–$ % d1
X
s
X

–$ % d2
X
s
X

–$ % d3
X
s
X

–$ %! ! !

s
X
d0
X

–$ %

& s
X
d0
X

!$ % x2x4= ' s
X
d0
X

!$ % x1x3=

N s
X
d0
X

!$ % 1000 0010!" #=

D
Y

d0
Y

10 d1
Y

! 01= =" #=

S
Y

s
Y

00=" #=

s
Y
d0
Y

–$ % s
Y
d1
Y

–$ % d0
Y
s
Y

–$ % d1
Y
s
Y

–$ %! ! !

s
Y
d0
Y

–$ %

& s
Y
d0
Y

!$ % y2= ' s
Y
d0
Y

!$ % y1=

N s
Y
d0
Y

!$ % 00" #=

Y
0" #

X
0 1 2! !" #

=

Y
1" #

X
3" #

=

s
X
d0
X

–$ % s
X
d1
X

–$ % s
X
d2
X

–$ %
s
Y
d0
Y

–$ % s
X
d3
X

–$ %
s
Y
d1
Y

–$ %

Xi S
X

D
Xi(= Yi S

Y
D
Yi(=

D
Xi

dj
X

' s
X
dj
X

)$ % vi
˜* if 1 i n+ +

dj
X

' s
Y
dk
Y

)$ % vi
˜ Y

k" #
, * F X

j" #
$ % if n 1 i p+ ++ =

,
-
.
-
/

=

D
Yi

dk
Y
Y
k" #

F X
j" #

$ % dj
X

D
Xi0!=

,
.
/

=

D
Xi

D
Xi

D
Xi

D
Yi

D
Xi

Fi PD
X
i: P

D
Y
i

1
Gi PS

X
i: P

S
Y
i

1

D
Xi
D
Yi

Fi

D
X1

d0
X
d1
X

!" # D
Y1

, d0
Y

" # F1 Y1
0" #

: X1
0 1!" #

=!= =

D
X5

d0
X
d1
X
d2
X! !" # D

Y1! d0
Y" # F5 Y5

0" #
: X5

0 1 2! !" #
=!= =

yi fi x1 2 xn! !$ % 1 i m+ + =

Fi
Gi

fj x1 2 xn! !$ %

fj3

xi3
------- fjxi

f
jxi

4=

142

Authorized licensed use limited to: The University of Manchester. Downloaded on June 4, 2009 at 04:37 from IEEE Xplore. Restrictions apply.

Where and are the cofactors of in fj (the functions

obtained by replacing all occurrences of in fj with a 1 or 0

respectively). Boolean differences are used to determine the con-

ditions under which a function is dependent (or independent) on

a variable and are commonly used to generate input vectors for

stuck-at-fault testing.

Definition 2.4 An output, yj, translates an input transition on

input xi in a single step in the ATS (a-b), if for each adjacent TS,

(ai-b), where and or , the

values of the variables in form a solution to the equa-

tion:

Example 2.3 For the function block A from example 2.1, func-

tion y1:

The transition has the transition constant and variance

terms:

,

and the adjacent combinations:

Considering the adjacent TS , the transition on x3 is

translated by y1 as the value of the variables in the transition con-

stant term form a solution for the equation generated from the

boolean difference of the variable in the variation term:

 and

Therefore, function y1 indicates the transition x3 in a single step

for the ATS .

The concept of translation is used to define the indication of

input transitions by an SIF:

Definition 2.5 An SIF indicates the input transitions of an ATS

(a-b) if for each adjacent TS (ai-b) where , and

, there exists an output, yj, which translates the

transition on input xi in a single step.

In order to reason about the translation of variables in the net-

work the boolean difference equation of 2.4 can be used to deter-

mine the following two products for each variable, vi:

• is a product of the variables whose functions trans-

late variable vi for the ATS (a-b) on input code system X.

• is a product of the variables translated by function fi
for the ATS (a-b) on input code system X.

Example 2.4 For variables v1 (x1) and v5 (y1) and ATS

from the function block A in example 2.1:

Using these definitions the condition for an SIF to be indicating

can be defined:

Definition 2.6 In order for an SIF to be indicating every input

transition in X is translated to the outputs Y in one step for all

ATS:

3. Canonical Architecture

The principles of indication can be used to verify a canonical

architecture for indicating SIFs in which any function block

adhering to definition 2.2 may be implemented. As described in

section 2.4, each cover function, fi, in an SIF is the encoded func-

tion generated by mapping the multi-valued functions and

to the binary encoding of code system X. Therefore, each output

function, fi, is constructed from two separate functions: – the

encoding function of Fi (which covers spacer to data ATS) and

 – the encoding function of Gi (which covers data to spacer

ATS). The two functions are composed sequentially:

The minterms of the encoded functions are cubes that corre-

spond to the combinations in or . In the canonical archi-

tecture however, encoded function is constructed from

the sum of the transition variation terms of all of the spacer to

data ATS in code system Xi:

and is a single cube corresponding to the spacer value.

Theorem 3.1 If fi is a cover function of SIF A’ implemented in

the canonical architecture, then fi translates all input transi-

tions of ATS in the code system Xi.

Proof If fi contains a single cube, c, then the cofactors of any

literal, xj, in c will be: and where is a

cube containing all the literals of c except xj. Therefore, f trans-

lates all of the transitions of literals within c for any ATS in .

Definition 2.1 states that no combination (other than a or b)

within the transition cube of ATS (a-b) can be a member of a

code system. Therefore, the combinations of DX are mutually-

exclusive within the ATS of code system X. As all data values

within a self-synchronising code system are incomparable, there

exists a pair of literals which differ within and between each data

value and hence the transition variation terms of each ATS are

also mutually-exclusive within X. This means each transition

variation term can be used to distinguish the combinations of

each data value and, as only the variables with the transition var-

iation term need to be indicated, there is no need to include the

variables in the transition constant term within the associated

cube of the function. As each transition variation term is mutu-

ally-exclusive, for each ATS in code system Xi, only

one cube of , c, (corresponding to) evaluates to

true (). In this case, the boolean difference equation

fjxi
f
jxi

xi
xi

a
i
N a b!" #$ % a

i
b!" # xi= % a

i
b!" # xi=

& a
i
b!" #

fj'

xi'
------- 1=

y1 x1x3 x2x3 x1x4+ +=

s
X
d0
X

–" #

& s
X
d0
X

!" # x2x4= % s
X
d0
X

!" # x1x3=

N s
X
d0
X

!" # n
1

1000 n
2

! 0010= =()=

n
1
d0
X

!" #

% n
1
d0
X

!" # x3= & n
1
d0
X

!" # x1x2x4=

fj'

x3'
-------- x1 x1x4* 1 0* 1= = =

s
X
d1
X

–" #

a
i
N a b!" #$

% a
i
b!" # xi=

+i a b!" #

,i a b!" #

s
X
d0
X

–" #

+1 s
X
d0
X

!" # y1 ,1 s
X
d0
X

!" #! -= =

+5 s
X
d0
X

!" # - ,5 s
X
d0
X

!" #! x1x3= =

+i a b!" # 1 . a b–" # X
i
for 1 i n/ / $

Fi Gi

fi
1

fi
2

fi X" # fi
1
X" # fi X" # fi

2
X" #0" #+=

D
Xi

S
X

fi
1
X" #

fi
1
X" # % s

X
d1
X

!" # 1 % s
X
dn
X

!" # dj
X

D
Xi

$ + +=

fi
2
X" #

fi
2
X" # s

X
=

fixj
c xj2= f

ixj
-= c xj2

X
c

s
X
dj
X

–" #

fi
1
X" # % s

X
d
X
j!" #

c 1=

143

Authorized licensed use limited to: The University of Manchester. Downloaded on June 4, 2009 at 04:37 from IEEE Xplore. Restrictions apply.

behaves the same as the single cube case and indicates all

input transitions in the spacer to data ATS of Xi.

Function is a single cube and so it translates all of the

input transitions of the data to spacer ATS in Xi.

In single spacer systems the functions and must

be mutually-exclusive and so function translates all tran-

sitions of both functions and hence all input transitions in the

ATS of Xi.

If a function is to be implemented as a set of discrete gates

(such as an And-Or Sum-Of-Products implementation), the out-

puts of any intermediate gates become additional variables in the

SIF and also need to be translated. In the canonical architecture

outlined above, the cubes of only translate inputs transi-

tions from the set Xi and so all of the transitions of each

are translated by fi. As the function contains a single cube

corresponding to the spacer combination, it will translate all data

to spacer ATS including those not in Xi. Therefore, not all of the

transitions of are translated and it cannot be implemented

as a discrete gate.

The canonical architecture can be implemented in distributed

form, where each cube, c, of , is constructed from a

sequential composition of cubes:

where and :

Return-to-Zero (RTZ) SSCs are a class of code systems

whose spacer is the all-zero input vector. In RTZ codes, each

 contains the negation of all the variables in and

in such systems, c can be implemented in a single C-element as

depicted in figure 1. This distributed architecture forms the basis

of Muller’s Combinational Logic Blocks [10], Sparsø’s DIMS

architecture [13] and Theseus’s NCL-D [8] and has been shown

[16] to be equivalent to the Kondratyev’s basic gate speed-inde-

pendent architecture [7].

The requirements of definition 2.2 ensure that if each output

function of an SIF translates all of its input transitions the SIF is

indicating:

Theorem 3.2 If A’ is an SIF, implementing an indicatable func-

tion block A, whose functions are all implemented in the canon-

ical architecture, then A’ indicates all transitions of input code

system X.

Proof As the multi-valued functions and for function

block A are completely specified, for each ATS, ,on

code system X, there must be corresponding ATS on code system

Y, , where or . As A’ is

implemented in the canonical architecture each output variable

in must translate all of the input transitions in

. Therefore, for each :

The requirements of an ATS (definition 2.1) mean that

 and hence the SIF is indicating according to defi-

nition 2.6.

The cost of implementing functions in the canonical architec-

ture can be significant in both area and delay. As each output

must translate all input transitions, C-elements are large and no

outputs can be produced until all the inputs have transitioned so

the SIFs have worst-case latency. In function blocks that have

several outputs, there is often more than one output that transi-

tions as a result of each input ATS (). In such func-

tion blocks it is possible to reduce the cost of implementing each

function by distributing the indication of individual input transi-

tions between the outputs of without violating the indi-

cation of the SIF. This is achieved by reducing the number of

literals in the cubes of the output functions. Once the literals of

a cube, c, have been reduced, con and coff are no longer complete

transition variation terms and therefore the theorems 3.1 and 3.2

no longer hold. To ensure a SIF remains indicating during the

minimisation process, we enforce the following restrictions:

Definition 3.1 The on-sets and off-sets

 of each function, fj, must have the follow-

ing properties:

i. Each contains one or more and the associ-

ated code system, , is constructed from:

ii. Each contains one or more and the associ-

ated code system , is constructed from:

iii.

iv. The cubes of Con must be mutually-exclusive

v.

Any function, fj, upholding these definitions will translate the

input transitions on the literals within each of its cubes for all the

ATS in Xj:

Theorem 3.3 An output cover function, fj, which upholds the

restrictions of definition 3.1 has the following properties:

and

Proof As each cube is mutually exclusive, the

results of theorem 3.1 apply and each translates all of its lit-

erals for ATS in . As each is sequentially composed

fi
1
X! "

fi
2
X! "

fi
1
X! " fi

2
X! "

fi X! "

fi
1
X! "

c fi
1
X! "#

fi
2
X! "

fi
2
X! "

fi X! "

c con c coff$! "+=

con % s
X
dj
X

&! "= coff % dj
X
s
X

&! "=

% di s&! " % s d& i! "

F G

s
X
d' i
X

! "

s
Y
d' j
Y

! " F X
i()

! " X
j()

= G X
0()

! " Y
0()

=

% s
Y
dj
Y

'! "
% s

X
di
X

'! " % s
X
di
X

'! " xk*

+k s
X
di
X

'! " % s
Y
dj
Y

'! "=

% s
Y
dj
Y

'! " 1,

Figure 1: Distributed Canonical Architecture

% s
Y
dj
Y

'! " 1-

% s
Y
dj
Y

'! "

Con con
1

. con
n

& &()=

Coff coff
1

. coff
n

& &()=

con
i

% s
X
dk
X

&! " X
j

#
X
on
i S

X
DX

on
i/=

DX
on
i dk

X
% s

X
dk
X

&! " con
i

*
0
1
2

=

coff
i

% dk
X
s
X

&! " X
j

#
X
off
i S

X
DX

off
i/=

DX
off
i dk

X
% dj

X
s
X

&! " coff
i

*
0
1
2

=

X
off
i X

on
i*

X
j

X
on
i

i 1=

n

/=

3j s
X
dk
X&! " con

i
con
i

Con s
X
dk
X

–! " Xi
on#, # =

3j dk
X
s
X

&! " coff
i

coff
i

Coff dk
X
s
X

–! " Xi
off

#, # =

con
i

Con#
con
i

Xi
on

coff
i

144

Authorized licensed use limited to: The University of Manchester. Downloaded on June 4, 2009 at 04:37 from IEEE Xplore. Restrictions apply.

with the corresponding , it can only translate input transi-

tions for data to spacer transitions where is initially true:

As each is mutually-exclusive, each is also mutu-

ally exclusive and hence translates all of its literals for ATS

in .

This result can be used determine the conditions under which a

minimised SIF is indicating:

Theorem 3.4 If A’ is an SIF constructed from functions uphold-

ing definition 3.1, then A’ is indicating iff for each input transi-

tion in each ATS, , there exists some function, fj

with cube or where:

 or

Proof This follows directly from theorem 3.3 and definition

3.1.

Theorem 3.4 can be used to create the following definition

that ensures the minimisation procedure maintains the indication

of the original SIF.

Definition 3.2 For each ATS (a-b) of code system X the product

of all the (on-set or off-set) cubes which contain the transi-

tion variation term translates all of the variables in the

original transition variation term if:

A minimisation procedure can now be constructed for a set of

functions whose cubes are the transition variation terms of the

ATS of code system X. By implementing functions using the

restrictions of definition 3.1 and ensuring definition 3.2 is

upheld throughout minimisation procedure, an indicating SIF

implementation is ensured. Furthermore as definition 3.2 applies

to both spacer to data and data to spacer transitions, the minimi-

sation procedure can be used to minimise both the on-set and off-

set of each function.

4. Prime Indicants

The aim of minimising an indicating SIF is to reduce the log-

ical complexity of the output functions by exploiting ATS where

more than one output translates an input transition

(). For each ATS of this type, literal xi can be

removed from the corresponding cube of the functions of all but

one of the variables in and the indication of the SIF is

maintained (providing the resulting functions uphold the restric-

tions of definition 3.1). The minimisation procedure must deter-

mine which literals to remove from which functions in order to

minimise the total cost, in literal counts, of the SIF. In conven-

tional logic minimisation, a minimum cost implementation of a

function can be constructed from a cover of the prime implicants

of a function [12]. In indicating logic, the cubes of a function

serve two purposes: to implement each function correctly and to

indicate transitions on the inputs. The restrictions of definition

3.1 mean a minimum cost implementation of a function cannot

necessarily be constructed solely from a covering of its prime

implicants. Furthermore, any optimisation from the canonical

architecture is dependent on the implementation of other func-

tions in the SIF. Therefore, the concept of prime indicants is

introduced:

• An indicant of a SIF is a cube, c, of a function, fj, which trans-

lates the transitions of all of its literals for all ATS in the code

system , where .

• A prime indicant of a SIF is an cube, c, of fj, such that c is an

indicant of the SIF and is either:

i. a prime implicant of fj.

ii. indicates transitions in the SIF not covered by prime indi-

cants of other functions in the SIF (an essential prime in-

dicant).

Theorem 4.1 A minimum cost indicating SIF can be created

from a covering of prime indicants.

Proof A SIF is indicating if, and only if, the output functions

translate all the transitions of the inputs of the SIF as well as the

transitions of the cubes of each function. If a single cube is

translated by an output function, all of its input transitions are

also translated. Therefore, any indicated cube must be an indi-

cant and an indicating SIF is constructed solely from indicants.

In order to maintain indication, we can only remove literal xi
from a cube that translates it in ATS if .

Consider a transition on xi during , where the xi is trans-

lated by two cubes cj and ck. If cj and ck are prime implicants

then neither cube can be expanded further without intersecting

the off-set of their respective functions. If cj and ck are not

prime implicants then one cube, cj could be expanded by

removing xi and cube ck will then become an essential prime

indicant. Therefore any indicating SIF implementation may be

reduced by expanding non essential indicants into prime impli-

cants.

As the expansion of each cube can affect the expansion of

other cubes, there are many possible prime indicant covers for a

function block. Constructing a minimum cost prime-indicant

cover by expanding individual cubes of the canonical architec-

ture is prohibitively expensive for all but the simplest function

blocks. A better approach is to construct an initial SIF from a

prime implicant cover of each function and reduce the function

cubes by adding literals until they are all prime indicants. All of

the procedures presented in this paper are based on identifying a

reduction set: a subset of prime implicants to reduce that will

incur the smallest additional cost to the cover. The cost of gen-

erating an indicating SIF by this method depends on the initial

prime implicant cover. The minimum cost prime indicant cover

generated from an arbitrary prime implicant cover may not be

the minimum cost indicating SIF of the function block. How-

ever, performing the synthesis routine on all possible prime

implicant covers of each function is infeasible and so following

assumption is used:

Assumption 4.1 A low cost non-prime implicant cover can be

generated by applying a minimum cost reduction set to a mini-

con
i

con
i

dk
X
s
X

–! " dk
X

DXi
on

$
%
&

con
i

ci coff
i

'! "
coff
i

Xi
off

xi
˜ (s

X
dm
X

)! "*
con
l

coff
l

(sX dm
X+! " con

l
xi
˜* * (dm

X
s
X+! " coff

l
xi
˜* *

c*
j

(a b+! "

c*
j

(a b+! " (a b+! " c*
j

* =,

-i a b+! " 1.

-i a b+! "

X
c

X
c
X
j

*

a b–! " -i a b+! " 1.
a b–! "

145

Authorized licensed use limited to: The University of Manchester. Downloaded on June 4, 2009 at 04:37 from IEEE Xplore. Restrictions apply.

mum cost prime-implicant cover.

A synthesis procedure to find a low cost indicating SIF for an

arbitrary encoded function block can then be constructed from a

series of reduction set selection procedures of an initial prime

implicant cover of the output functions of the function block. Ini-

tially the prime implicant cover of each function must be

reduced to ensure it upholds the requirements of definition 3.1

and all the cubes are indicants. Then, the individual indicant cov-

ers are transformed into an indicating SIF by determining input

transitions that are not translated and applying a reduction set to

translate them. Finally, the off-sets of functions can be further

reduced as they have fewer restrictions than the on-sets.

The problem of generating reduction sets for all of the syn-

thesis procedures is equivalent to the unate covering problem

(UCP) of finding a minimum column set covering a matrix. The

procedures described in this paper are implemented using a heu-

ristic UCP solver (which approximates a minimum cost cover),

based on the MINCOV [12] solver used in the Espresso PLA

minimisation package [1]. The cost functions of the UCP solvers

use a simple metric based on literal counts in order to maximise

the number of don’t care values that may be exploited by multi-

level optimisation. It is possible to use more complex cost func-

tions (such as those used in the UCP-based desynchronisation

optimisation techniques [4][5][19]) if physical implementations

are targeted.

A heuristic UCP solver was chosen as this forms the basis of

many existing combinational logic synthesis algorithms. How-

ever, the covering problems presented in this paper are more

complex than those in conventional synthesis and so each reduc-

tion set selection problem may be better implemented using SAT

solvers or linear programming techniques. Investigation into the

efficacy of using such methods is the subject of future work.

5. Prime Indicant Generation

5.1 Indicant Cover

The first stage of the synthesis process is to construct a min-

imum cost indicant cover for each function. Definition 3.1 out-

lines the minimum requirements for each cube of a function to

be an indicant. The impact of these requirements on the synthesis

process is as follows:

• Definition 3.1.i states that each cube must contain one or

more of the transition variation terms . Therefore,

the transition variation terms become the required cubes of

the minimisation procedure: each term must be completely

covered by a prime implicant in the final cover.

• Definition 3.1.iii states that the code system of each off-set

cube is equal to or a subset of the code system of the as-

sociated on-set cube, . A minimum cost indicating cover

can therefore be constructed by considering the on-set func-

tions separately and optimising the off-set later (see section

5.3).

• Definition 3.1.iv states that each cube of the on-set function

must be mutually-exclusive within code system X.

Therefore, an indicant cover is constructed by generating a

mutually-exclusive covering of the prime implicants of the on-

set transition variation terms of each function.

In order to generate the prime implicants of a function a strat-

egy similar to the expansion process of the EXPAND algorithm

in Espresso [1] is used. The EXPAND algorithm expands the

cubes of a function individually using two matrices to guide the

process. A blocking matrix is used to ensure the expanded cube

does not intersect with the off-set of the function and the cover-

ing matrix determines which cubes of the function can be cov-

ered by the expansion process. The algorithm proceeds by

selecting literals of the current cube to “raise” (become don’t

care), based on how many other cubes of the function it covers.

A cube is fully expanded (and is a prime implicant) when there

are no more literals that may be raised without the cube inter-

secting the off-set. The procedure then removes all the other

cubes covered by the expanded cube from the covering matrix

before expanding the next cube.

The I-EXPAND procedure follows a similar approach to

expanding the cubes of function fj. The blocking matrix is con-

structed from the complete combinations of the spacer value, sX,

and all of the data values . The covering matrix is con-

structed from the transition variation terms of the data values

. This allows implicants to be expanded into the redun-

dant boolean space within the code systems, as well as between

the spacer and data values. A mutually-exclusive cover can be

generated in two ways. If the function is very large, the cubes of

a function can be expanded sequentially and then added to the

blocking matrix of subsequent cubes to ensure that they will

remain mutually exclusive. A better approach, provided the

function is not too large, is to expand each cube to cover as many

cubes as possible and then reduce a subset of the cubes to pro-

duce a mutually-exclusive cover.

The reduction set is created from the set of expanded cubes

that are not mutually-exclusive. For each cube, c, in this set, all

possible implicants of fj that may be generated by reducing c by

literals in its raised set are enumerated. If the expansion process

has raised n literals, there are 2n possible implicants that may be

enumerated, and so if n is large this approach may become

impractical.

The aim of the covering process is to determine the minimum

independent set of implicants that covers all the required cubes

of fj. Two implicants are independent if they do not cover the

same required cubes. Unlike conventional UCP solving, where

are maximal independent set of minterms is used to determine a

lower bound for the solution, the independent set forms the solu-

tion. As the required cubes of each function are mutually exclu-

sive, an independent set of implicants can always be constructed

and the covering process determines the minimum cost solution.

An approximation to a minimum independent set can be gen-

erated using a UCP solver. In order to ensure all columns are

independent, if a column, col, is selected as part of the solution,

all columns that intersect each row covered by col must be

removed from the matrix. This means it is possible that the inclu-

sion of a column into a solution may prevent a full cover being

! a b"# $ X
j

%

X
off
i

X
on
i

dk D
Xj

&

dk D
Xj

%

146

Authorized licensed use limited to: The University of Manchester. Downloaded on June 4, 2009 at 04:37 from IEEE Xplore. Restrictions apply.

generated. Therefore, before selecting each column col, the rows

or the matrix not covered by col must be checked to make sure

that they are not covered by a subset of the columns that intersect

with col. Once a covering has been produced the original prime

implicants are removed from the function covers and replaced

with the mutually-exclusive implicants.

Example 5.1 Function block A has 6 inputs:

with alphabet:

The on-set of function fj is defined by the transition variation

terms:

and the off-set constructed for the blocking matrix is:

The expanded cubes of fj (with their raised set in brackets) are:

The total set of implicants is:

Figure 2 shows a minimum independent set covering of the all

the implicants which results in the function:

5.2 Untranslated Inputs

While a minimum cost indicating cover for function, fj, trans-

lates all of the transitions of the input literals in its cubes, it no

longer translates the transitions of all input variables in the ATS

of Xj. Therefore, the properties of the canonical architecture (the-

orem 3.2) no longer hold and the resultant SIF may not be indi-

cating. The SIF is made indicating by determining the input

transitions that are not translated by the indicants that cover each

transition variation term (Untranslated input transitions are those

that do not appear in any of the covering indicants). A subset of

the indicants can then be reduced to translate them. As the indi-

cants of each function are mutually-exclusive they cannot cover

the same transition variation terms and the reduction set must be

determined from the indicants of all functions in the SIF. Fur-

thermore, each reduced indicant must cover the same terms as

the original indicant, otherwise its function will not be covered

correctly (definition 3.1.v). This means that when reducing an

indicant, it must be partitioned into a set of indicants that cover

the same terms of the original function and are mutually-exclu-

sive. In some cases, particularly in dual-rail implementations, an

indicant reduced by a single literal may be partitioned into two

mutually exclusive indicants. However, for some indicants there

may not be a mutually-exclusive partitioning other than the set

Example 5.2 Indicant covers the transition variation

terms:

Reducing c by literal c0 partitions it in to two indicants:

 and

which cover the terms:

 and

respectively, and hence are mutually exclusive.

Example 5.3 Indicant (from a different function

block) covers the terms:

Reducing J by literal c0 partitions it into four indicants:

, , ,

A unate recursive algorithm [1] is used to reduce indicant, I

by literal x and partition it into a mutually-exclusive set of indi-

cants. The cofactors and are created and the terms they

cover are calculated. If there is one or more literals that divides

the terms covered by evenly, then a mutually-exclusive parti-

tion can be created. Otherwise another variable must be chosen

to reduce both cofactors and the procedure recurses. The choice

of the next reduction variable can have a big impact on the

number of indicants a literal is partitioned into:

Example 5.4 Indicant and covers terms

if c0 is selected as a reduction variable would result in the parti-

tioning:

, , ,

But selecting b0 as a reduction variable would result in the par-

tition:

,

The reduction variable is selected by choosing the variable

that appears in most terms in an effort to reduce the number of

indicants produced.

A partitioning set is created for each indicant that covers an

untranslated literal. A covering of the partitioning sets is then

selected that will minimise the additional cost to the network. In

order to minimise the cost to the network, the reductions need to

be distributed between the indicants of the network, because

when a pair of reductions are applied to an indicant, the number

of resultant indicants is multiplied.

Example 5.5 If and covers the terms:

X a0 a1 b0 b1 c0 c1! ! ! ! !" #=

D
X

101010 101001 100110 100101! ! !"=

011010 011001 010110 010101#! ! !

S
X

000000" #=

fj a0b0c0 a0b0c1 a0b1c0 a1b0c0+ + +=

OFF fj$ % a0a1b0b1c0c1 a0a1b0b1c0c1+ +=

a0a1b0b1c0c1 a0a1b0b1c0c1 a0a1b0b1c0c1+ +

EXP a0b0 c0 c1!$ % a0c0 b0 b1!$ % b0c0 a0 a1!$ % ! !" #=

IMP a0b0 a0b0c0 a0b0c1 b0c0! ! !"=

a1b0c0 a0c0 a0b1c0#! !

fj a0b0 a+ 1b0c1 a0b1c1+=

a0b0 b0c0 a0c0 a0b0c0 a0b0c1 a0b1c0 a1b0c0

a0b0c0 1 1 1 1

a0b1c0 1 1

a0b0c1 1 1

a1b0c0 1 1

Figure 2: Minimum Independent Set Covering for fj

I a0b0=

a0b0c0d0 a0b0c0d1 a0b0c1d0 a0b0c1d1! !!" #

I1 a0b0c0= I2 a0b0c1=

a0b0c0d0 a0b0c0d1!" # a0b0c1d0 a0b0c1d1!" #

J a0b0=

a0b0c0 a0b0c1 a0b0c2 a0b0c3! ! !" #

J1 a0b0c0= J2 a0b0c1= J3 a0b0c2= J4 a0b0c3=

Ix Ix

Ix

I a0=

a0b0c0 a0b0c1 a0b0c2 a0b0c3! !!"

a0b1c0 a0b1c1 a0b1c2 a0b0c3#! ! !

I1 a0c0= I2 a0c1= I3 a0c2= I4 a0c3=

I1 a0b0= I2 a0b1=

I a0=

a0b0c0 a0b0c1 a0b1c0 a0b1c1! ! !" #

147

Authorized licensed use limited to: The University of Manchester. Downloaded on June 4, 2009 at 04:37 from IEEE Xplore. Restrictions apply.

Reducing I by b0 results in the partition:

 and

and reducing I by c0 results in the partition:

 and

However applying both reductions together results in the parti-

tioning:

The reduction set selection therefore has to take into account the

relationship between reductions of the same indicant.

A reduction set is selected by covering a matrix constructed

from the untranslated literals and the indicants that could poten-

tially cover them. The untranslated literals form the rows of the

matrix, and the partitioning sets form the columns. Each parti-

tioning set will translate at least two literals (e.g. the partitioning

set in example 5.2 translates both c0 and c1), and therefore any

duplicate partitioning sets are removed. The columns con-

structed by the partitioning sets of each indicant are then

grouped into buckets. The weight of each column, j, is a function

of the number of rows covered by a column and the cost of

implementing it. The cost of j is a function of how many indi-

cants are in the partitioning set associated with j (pj), and how

many previously selected columns of the solution, S, are in the

same bucket as j, Bj:

(4.1)

The covering problem therefore becomes more difficult,

because the weights of individual columns are no longer inde-

pendent, and the cost of the existing columns in a covering can

change depending on which further columns are selected. Tech-

niques to reduce the size of a matrix such as row and column

dominance or Gimpel’s reduction [12] can no longer be

employed because, at the time the reduction is executed, the final

cost of each column can not be determined, making the covering

problem larger. However, the solution does have the advantage

of distributing the reductions across the indicants.

Example 5.6 A function block contains 6 inputs, and 4 outputs:

The transition variation terms of each function are shown in the

truth table of figure 3.

A mutually-exclusive expanded cube covering for the functions

is:

, , ,

Therefore, transitions on variables b0, b1, c0 and c1 are not

translated in any term.

The partitioning sets of the four indicants are:

a0: ,

a1: ,

d0: ,

d1: ,

The untranslated literal matrix is shown in figure 4. Each bucket

has two columns that correspond to the partitioning sets, and

each transition variation term has two rows that correspond to

each untranslated literal. It is possible to construct a covering for

this matrix using columns from two of the four buckets, for

example a0 and a1, resulting in the implementation with a literal

count of 26:

,

However, because the weights of all the columns are equivalent

in this example, the cost function (4.1), makes selecting columns

from the same bucket expensive. The solution highlighted in fig-

ure 4, gives a literal count of 16:

,

,

5.3 Off-set Optimisation

In the distributed canonical architecture, the off-set cube of

each indicant is formed from the transition variation term

. In single spacer code systems, data to spacer transi-

tion variation terms are not mutually-exclusive and so each off-

set cube must be composed sequentially with the corresponding

on-set cube () in a single gate. Because of this, the off-

set expansion cannot be completely separated from the on-set

a0 a1 b0 b1 c0 c1 d0 d1 r0 r1 s0 s1 a0 a1 b0 b1 c0 c1 d0 d1 r0 r1 s0 s1

1 - 1 - 1 - 1 - 1 0 1 0 - 1 1 - 1 - 1 - 0 1 1 0

1 - 1 - 1 - - 1 1 0 0 1 - 1 1 - 1 - - 1 0 1 0 1

1 - 1 - - 1 1 - 1 0 1 0 - 1 1 - - 1 1 - 0 1 1 0

1 - 1 - - 1 - 1 1 0 0 1 - 1 1 - - 1 - 1 0 1 0 1

1 - - 1 1 - 1 - 1 0 1 0 - 1 - 1 1 - 1 - 0 1 1 0

1 - - 1 1 - - 1 1 0 0 1 - 1 - 1 1 - - 1 0 1 0 1

1 - - 1 - 1 1 - 1 0 1 0 - 1 - 1 - 1 1 - 0 1 1 0

1 - - 1 - 1 - 1 1 0 0 1 - 1 - 1 - 1 - 1 0 1 0 1

Figure 3: Truth Table for example 5.6

I1 a0b0= I2 a0b1=

I1 a0c0= I2 a0c1=

a0b0c0 a0b0c1 a0b1c0 a0b1c1! ! !" #

Cj pj pi

i Bj S$%

&' (
) *
+ ,

=

X a0 a1 b0 b1 c0 c1! ! ! ! !" #=

Y r0 r1 s0 s1! ! !" #=

Bucket a0 a1 d0 d1 Bucket a0 a1 d0 d1

Partition b0
b1
c0
c1
b0
b1
c0
c1
b0
b1
c0
c1
b0
b1
c0
c1

Partition b0
b1
c0
c1
b0
b1
c0
c1
b0
b1
c0
c1
b0
b1
c0
c1

a0b0
c0d0

b0 1 1 a0b0
c0d0

b0 1 1

c0 1 1 c0 1 1

a0b0
c0d1

b0 1 1 a0b0
c0d1

b0 1 1

c0 1 1 c0 1 1

a0b0
c1d0

b0 1 1 a0b0
c1d0

b0 1 1

c1 1 1 c1 1 1

a0b0
c1d1

b0 1 1 a0b0
c1d1

b0 1 1

c1 1 1 c1 1 1

a0b1
c0d0

b1 1 1 a0b1
c0d0

b1 1 1

c0 1 1 c0 1 1

a0b1
c0d1

b1 1 1 a0b1
c0d1

b1 1 1

c0 1 1 c0 1 1

a0b1
c1d0

b1 1 1 a0b1
c1d0

b1 1 1

c1 1 1 c1 1 1

a0b1
c1d1

b1 1 1 a0b1
c1d1

b1 1 1

c1 1 1 c1 1 1

Figure 4: Untranslated Literal Matrix for example 5.6

r0 a0= r1 a1= s0 d0= s1 d0=

b0 b1- a0b0 a0b1!" #= c0 c1- a0c0 a0c1!" #=

b0 b1- a1b0 a1b1!" #= c0 c1- a1c0 a1c1!" #=

b0 b1- b0d0 b1d0!" #= c0 c1- c0d0 c1d0!" #=

b0 b1- b0d1 b1d1!" #= c0 c1- c0d1 c1d1!" #=

r0 a0b0c0 a0b0c1 a0b1c0 a0b1c1+ + +=

r1 a1b0c0 a1b0c1 a1b1c0 a1b1c1+ + +=

s0 d0= s1 d1=

r0 a0b0 a0b1+= r1 a1b0 a1b1+=

s0 c0d0 c1d0+= s1 c0d1 c1d1+=

. dk
X
s
X

!/ 0

. s
X
dk
X

!/ 0

148

Authorized licensed use limited to: The University of Manchester. Downloaded on June 4, 2009 at 04:37 from IEEE Xplore. Restrictions apply.

expansion, as in the binate covering approach of [19] and must

be performed after the on-set minimisation.

Definition 3.1.iii states that the code system of off set

cube, , is equal to or a subset of the code system of the

associated on-set cube, . Therefore, off-set of each indicant,

c, can only translate transitions from the set:

The set of inputs translated by the off-set does not

necessarily have to be the same those translated by the on-set:

It must however fully contain some transition variation term(s)

 where .

Example 5.7 The on-set of indicant, c,is and cov-

ers two terms of the SIF:

the off-set, , can translate any of the literals in or either

of the literals c0 or c1. It cannot however, translate both literals

as the product does not contain any transition variation

term of the SIF.

Indicants with a minimised off-set can be implemented in

two-level implementations using asymmetric C-elements. If the

off-set does not translate any transitions an indicant can be

implemented using an AND gate.

There are three strategies for minimising the off-set:

i. General Minimisation: the off-sets of each indicant, c, can

translate a subset of input transitions from the set:

ii. Subset Minimisation: the off-sets of each indicant, c, can only

translate an input transition translated by the on-set:

iii.AND Minimisation: the off-sets can either translate all of the

input transitions of the on-set, or none

 or

The resulting SIF can be implemented using only symmetric

C-elements and AND gates.

All three strategies are solved using a unate covering of a

matrix with the literals of each term as rows and the literals of

each indicant as columns. The three strategies differ in the

number of columns per indicant, c:

i. General Minimisation: one column for each literal of con and

its raised set.

ii. Subset Minimisation: one column for each literal of con only.

iii.AND Minimisation: one column for each c.

In the general minimisation strategy, when a column of c is

selected, the other columns of c are checked and possibly

removed from the matrix to ensure each off-set fully contains

some transition variation term.

As the cost of implementing additional inputs in asymmetric

C-elements is linear, each strategy may be solved using a con-

ventional unate covering solution. However, the results pre-

sented in section 6 employ the UCP costing outlined in section

5.2 since this is a good way of distributing the off-set amongst

all of the indicants of the network.

6. Results

The aim of the synthesis process described in this paper is to

minimise the logical complexity of an indicating SIF, as meas-

ured by the combined literal count of all of the functions. The

procedures are not targeted at optimal two-level implementa-

tions as there is no attempt to share terms between functions. If

two-level implementations were desired, it would be possible to

maximise the sharing between functions by using multiple out-

put minimisation to determine the initial indicant cover of the

SIF. However, the basis of the optimisation procedure is to

exploit the differences between function implementations to dis-

tribute indication between outputs and so term sharing can

reduce the effectiveness of optimisation. Furthermore, the nature

of the canonical architecture means that each cube must be

implemented within a single-gate. Decomposing indicating SIFs

is very difficult, as each internal gate must be indicated by the

outputs, which, in general, requires a high degree of sharing

between functions. Procedures have already been developed

[16] to decompose any SIF (adhering to definition 2.2) so it may

be implemented using 2-input gates. However, the cost of such

implementations is high. The procedures presented in this paper

were developed to construct indicating specifications of function

blocks which minimise the sharing between functions and there-

fore simplify the decomposition process.

Table 1 presents the results of the synthesis algorithms over a

range of function blocks. The table shows the total literal count

of implementations in the unoptimised canonical architecture,

the (best) total literal counts of the optimised implementations

and the percentage decrease in literal count. The remaining col-

umns present the optimised on-set literal counts and the opti-

mised off-set literal counts for each of the three schemes outlined

in section 5.3. In order to demonstrate the effectiveness of off-

set optimisation, the number of C-elements (indicants with one

or more literals in the off-set) and AND gates (indicants with no

literals in the off-set) for a two-level implementation are given.

The first three examples are m-of-n adder circuits demon-

strating the ability of the synthesis procedure to synthesise

blocks with any encoding. The remainder of the circuits are dual-

rail encoded blocks from the ISCAS benchmarks. In order to

generate suitably sized blocks from the gate level netlists of the

ISCAS benchmarks, a greedy clustering algorithm, such as the

one described in [6], was implemented. The algorithm traverses

the netlist adding gates into clusters until a maximum number of

inputs is reached. The single rail gates were then replaced with

their dual-rail equivalents and each cluster was then flattened to

determine the minterms for the entire function block. The figures

show a sample of function blocks from four different clustered

implementations of the benchmarks with cluster sizes of 3, 5, 4

X
off

coff X
on

con

! dk
X
s
X

"# $ dk
X

 Xi
on

%
&
'
(

)c
off
dk
X
s
X

"# $

)c
off
dk
X
s
X"# $)c

on
s
X
dk
X"# $*

! dk
X
s
X"# $ dk

X
DXon

I%

c
on

a0b0=

a0b0c0 a0b0c1"+ ,

c
off

c
on

c0c1

! dk
X
s
X"# $ X

on%

)c
off
dk
X
s
X

"# $)c
on
s
X
dk
X

"# $-

)c
off
dk
X
s
X

"# $)c
on
s
X
dk
X

"# $=)c
off
dk
X
s
X

"# $.=

149

Authorized licensed use limited to: The University of Manchester. Downloaded on June 4, 2009 at 04:37 from IEEE Xplore. Restrictions apply.

and 8 dual-rail inputs (6,8,12 and 16 function block inputs).

The results of the ISCAS blocks show a dramatic reduction

in the literal count of function blocks (up to 99.3%) compared to

the canonical architecture, particularly in large function blocks

with many outputs where the indication may be distributed

between the outputs. The results for the m-of-n encoded designs

are less dramatic showing a reduced literal count of between 37-

60%. The results demonstrate the ability of the synthesis proce-

dures to reduce the specification of indicating function blocks.

Prior to this work, constructing an efficient indicating imple-

mentation for an arbitrary function block was very difficult with-

out resorting to conventional synthesis tools and

desynchronisation.

A comparison with the desynchronisation approach of Zhou

[19] is also made. Zhou’s input relaxation technique was applied

to the full benchmark and the resulting netlists were then clus-

tered. The results show very similar literal count figures for both

techniques; however, the implementations are quite different.

The desynchronised versions are all multi-level implementa-

tions, whereas the prime indicant covers are all two-level. It is

expected that when combined with the indicating decomposition

techniques the size of prime-indicant implementations will

reduce still further.

The execution times of the synthesis procedures are given in

the final column of table 1. It is clear that the execution time is

exponential in the number of inputs. This is due to the implemen-

tation of the indicant cover algorithm described in 5.1, where 2n

implicants are generated from n raised literals. A better imple-

mentation of this algorithm is the subject of further research.

7. Conclusions

This paper presents algorithms for the optimisation of indi-

cating function blocks, by distributing don’t cares amongst the

outputs of a function block. An architecture that allows any indi-

catable function block to be implemented was presented along

with the restrictions necessary for it optimised. The algorithms

show dramatic improvements (up to 99% in some cases) in the

two-level implementation of large function blocks.

Further research to develop more efficient algorithms to cre-

ate mutually-exclusive indicant covers and off-set optimisation

will be undertaken. As well as a study of the effectiveness of

using SAT solvers to solve the reduction set selection problems.

More complicated costing models, which will target testability

and use performance modelling will also be explored.

8. Acknowledgements

The authors would like to thank the reviewers for their helpful

comments and Michael Theobald for his insight and discussions

that were invaluable in producing the final version of the paper.

9. References

[1] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen , G. D. Hachtel,

“Logic Minimization Algorithms for VLSI Synthesis”,Klewer,1984.

[2] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Coping with the variabil-

ity of combinational logic delays”, Proc. ICCD-04, 2004.

[3] T. Chelcea, G. Venkataramani, S. C. Goldstein , “Area Optimizations for Dual-Rail

Circuits Using Relative-Timing Analysis”, Proc ASYNC-07, 2007.

[4] C. Jeong, S. M. Nowick, “Optimization of robust asynchronous circuits by local

input completeness relaxation” Proc. ASPDAC-07, 2007.

[5] C. Jeong, S. M. Nowick, “Block-Level Relaxation for Timing-Robust Asynchronous

Circuits Based on Eager Evaluation”, Proc. ASYNC-08 2008.

[6] S. Khatri, S. Sinha, R. K. Brayton, A. L. Sangiovanni-Vincentelli, “SPFD-Based

Wire Removal in Standard-Cell and Network-of-PLA Circuits”, IEEE Trans. CAD,

v. 23(7), 2004

[7] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, A. Yakovlev: “Basic Gate

Implementation of Speed-Independent Circuits”, Proc. DAC-94, 1994.

[8] A. Kondratyev, K. Lwin, “Design of Asynchronous Circuits by Synchronous CAD

Tools”, Proc. DAC-02, 2002.

[9] S. Malik, L. Lavagno, R. K. Brayton, A. L. Sangiovanni-Vincentelli, “Symbolic Min-

imisation of Multilevel Logic and the Input Encoding Problem”, IEEE Trans CAD, v

11(7), 1992.

[10] D. E. Muller, “Asynchronous Logics and Application to Information Processing”,

Proc Switching Theory In Space Technology, 1963

[11] S. M. Nowick, D. L. Dill, “Exact Two-Level Minimisation of Hazard-Free Logic

with Multiple-Input Changes”, IEEE Trans. CAD, v. 14(8), 1995.

[12] R. L. Rudell. “Logic Synthesis for VLSI Design”, PhD thesis, University of Califor-

nia at Berkeley, 1989.

[13] J. Sparsø, J. Staunstrup. “Delay Insensitive Multi Ring Structures”, Integration, the

VLSI Journal. v15(13), 1993.

[14] C. Seitz. “System Timing”, Chapter 7 in C.A. Mead and L.A. Conway, editors, Intro-

duction to VLSI systems, Addison-Wesley, 1980.

[15] M. Theobald, S. M. Nowick, “Fast Heuristic and Exact Algorithms for Two-Level

Hazard-Free Logic Minimisation” , IEEE Trans CAD, v.17(11), 1998.

[16] W. B. Toms. “Synthesising Quasi-Delay-Insensitive Datapath Circuits”, PhD Thesis,

University of Manchester, 2006.

[17] V.I. Varshavsky, ed. “Self-Timed Control of Concurrent Processes: The Design of

Aperiodic Logical Circuits in Computers and Discrete Systems”, Klewer,1990.

[18] T. Verhoeff, “Delay-insensitive codes – an overview”, Distributed Computing, v.

3(1), 1988.

[19] Y. Zhou, D. Sokolov, and A. Yakovlev, “Cost-aware synthesis of asynchronous cir-

cuits based on partial acknowledgement. Proc. ICCAD-06, 2006.

Circuit Non
Opt
Arc

Opt Arc Desyn-
chro-
nised

Exec-

ution

Time

(s)
Clus-
ter
Size

Name Clus-
ter
Index

Inputs Outputs Total Best
Total

Dec-
rease
(%)

On-set Off-set Total

General Subset AND

Literals C AND Literals C AND Literals C AND

n/a drfulladder - 6 4 96 60 37.5 40 20 8 6 20 10 4 24 8 6 - 0.15

1of4fulladder - 10 6 384 216 43.8 144 72 32 20 84 44 8 96 32 20 - 0.25

3of6fulladder - 14 8 44800 17806 60.3 15175 2631 615 1629 2819 897 1347 5737 870 1374 - 537

3 C6288 131 6 6 144 35 75.7 22 15 7 4 13 8 3 17 8 3 32 0.01

C6288 871 6 4 144 39 72.9 22 9 4 6 13 8 3 17 8 3 64 0.01

4 C6288 173 8 10 640 79 87.7 62 17 8 16 18 16 8 38 15 9 72 0.23

6 C6288 52 12 14 5376 173 96.8 139 34 16 25 31 23 18 62 20 21 152 2.79

C6288 43 12 12 3840 162 95.8 118 53 19 16 44 25 10 77 25 10 204 1.85

8 C6288 140 16 18 36864 247 99.3 202 50 22 34 45 31 25 97 28 28 264 663

C6288 144 16 16 32768 275 99.1 213 62 23 34 68 39 18 132 37 20 272 699

Table 1: Results of Prime Indicant Synthesis

150

Authorized licensed use limited to: The University of Manchester. Downloaded on June 4, 2009 at 04:37 from IEEE Xplore. Restrictions apply.

