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Abstract. How can sequential applications benefit from the ubiquitous
next generation of chip multiprocessors (CMP)? Part of the answer may
be a dynamic execution environment that automatically parallelizes pro-
grams and adaptively tunes the work distribution. Experiments using
the Jamaica CMP show how a runtime environment is capable of paral-
lelizing standard benchmarks and achieving performance improvements
over traditional work distributions.
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1 Introduction

In most traditional optimizing compilers, each optimization has a corresponding
performance prediction. These predictions are often based on abstract metrics,
with the assumption that there is a direct correlation between the metric and the
runtime performance. However, a given program may have markedly different
characteristics when run with different input data or on different architectures,
significantly impacting the performance of an optimization.

A runtime compilation environment has the potential to take into considera-
tion the most promising optimizations and pick a good choice based on runtime
profiling data to maximize performance, and avoid reapplying optimizations
shown to incur performance degradation.A compiler-enabled virtual machine
framework is presented capable of collecting runtime performance information
and automatically reconfiguring the executing code. Using this Online Tuning

Framework (OTF), a loop-based program can be parallelized and tuned at run-
time, with acceptable overheads, increasing the performance when compared to
traditional parallelization schemes.

This paper is organized as follows. Section 2 introduces the online tuning
framework and its interaction with the Jikes Research Virtual Machine. Section
3 describes the experimental methodology. Section 4 presents and discusses the
results from experimental evaluation of the OTF, Section 5 describes how this
work compares to related research, and finally Section 6 concludes this paper.



2 Online Tuning Framework

The Online Tuning Framework (OTF) consists of three distinct elements: the
loop parallelizing compiler (see Section 2.1), the adaptive optimization compo-
nent (see Section 2.2), and the runtime profiler (see Section 2.3).

The OTF is embedded within the adaptive optimization system (AOS) of the
Jikes Research Virtual Machine (RVM) [11, 1]. The Jikes RVM captures runtime
information by instrumenting the running code at the method-level. Once the
instrumentation indicates that a given method is hot (i.e. number of times the
method is executed is above a threshold), the AOS decides whether to compile it
using an optimizing compiler[4]. The OTF hijacks this decision, so that any hot
method is also considered for parallelizing optimizations. The following sections
describe in detail the internal elements of the OTF and how they interact with
the AOS.

2.1 Loop Parallelizing Compiler

The Loop Parallelizing Compiler (LPC) searches for fine-grain parallel code
within amenable loop structures. The LPC works within two phases of the Jikes
RVM optimizing compiler’s workflow:

Loop Analysis and Annotation. Loop analysis and annotation occurs in the
high-level optimization phase. In this phase the LPC detects loop structures,
analyses the data dependencies within them, creates parallel loops where these
dependencies can be maintained, and annotates the loops with high-level pseudo
code. By performing the analysis of loops at this high-level compiler phase the
LPC benefits from Java’s strong typing and single static assignment (SSA) form
[12].

In order to determine whether array accesses within the loops are amenable
to parallelization the Banerjee Test [2] is performed. This allows do-all and do-

across loops to be created when presented with loop carried dependencies on
arrays with affine indices. The code for the parallel loop body is placed at the
end of the method containing the parallel loop. All parallel loop bodies have a
prologue to set up their state and load loop-constant values, and an epilogue to
join them back with the parent thread.

Parallel Thread Creation. Parallel thread creation occurs in the machine-
level optimization phase. In this phase the previously inserted pseudo-code is
replaced by machine specific code, enabling the code to fork new threads on idle
processor contexts1, as well as applying different adaptively optimizing distribu-
tion policies.

1 A processor context is defined as a hardware supported context within a chip mul-
tiprocessor architecture.



2.2 Adaptive Optimization Component

The Adaptive Optimization Component (AOC) inserts one or more optimiza-
tions deemed to be appropriate for optimizing a given loop, identified by the
LPC, into the code. The AOC is invoked by the LPC to place the optimizations
around the identified parallel loops. Presently the AOC supports three adaptive
optimizations for parallelizable code (see Optimizations 1–3 below). These three
optimizations vary either the number of loop iterations inside a block2 or tile,
the number of threads created, or the manner in which the blocks or tiles are
distributed. By varying these factors the OTF is able to find strategies that
best balance the costs associated with threading, the cache performance, and
the system load.

Optimization 1 – Adaptive Block Division (ABD). For a given loop the
total number of iterations is divided into blocks. Each block is then distributed
through the creation of a parallel thread. The parallel threads can be run on any
available processor context. In all optimizations if a thread cannot be invoked
on a remote processor context the generator thread must consume its work
before continuing to distribute subsequent threads. This optimization uses two
simple hill-climbing like algorithms [15] to adaptively divide the total number
of iterations in a loop into blocks. The first algorithm, searches for an optimal
divisor in the range 1 ≤ optimal ≤ number of processor contexts. An extension
to this algorithm is used to increase the search to the range 1 ≤ optimal ≤ m,
where m is a multiple of the number of processor contexts.

Optimization 2 – Adaptive Tile Division (ATD). As loops can be tiled
to take advantage of data resuse [17], selecting a suitable tile size is a common
technique for improving performance. This optimization is applied when a per-
fect nested loop is identified by the LPC. The 2-dimensional loop traversal of the
iteration space is divided into tiles which are then distributed by the creation
of parallel threads. Each tile has a corresponding divisor pair. Given a divisor
pair (Di, Dj), Di is the divisor corresponding to the outer loop iterator and Dj

corresponds to the inner loop iterator. Adaptive searching, again using simple
hill-climbing, starts from the divisor pair (M, 1), where M is the total num-
ber of processor contexts, this is equivalent to näıve ABD. Di is incrementally
decreased and Dj is increased. Two algorithms are used for ATD, one adap-
tively optimizes regular 2-dimensional loops and another optimizes triangular
2-dimensional loops. The division of both dimensions of the iteration space is
configurable, but currently, the total number of tiles created is restricted to the
total number of processor contexts. For regular 2D loops: Di ×Dj = M , and for

triangular 2D loops: Di ×
Dj+1

2
= M .

Optimization 3 – Adaptive Version Selection (AVS). This optimiza-
tion performs runtime selection between block/tile based loop distribution, as
described in optimizations 1 and 2, and distribution using a cyclic recursive
distribution (CRD), shown by Figure 1(b). CRD divides the tiles/blocks, using
divisor pairs generated using ABD/ATD, such that half of them remain with

2 The term block is used to mean a contiguous sequence of loop iterations.



the generator thread and half are distributed by the creation of a parallel gen-
erator thread to another processor context. This happens recursively until all
the blocks/tiles are distributed. A variable cyclic stride pattern is also applied
to shuffle the division of the blocks.

2.3 Runtime Profiler

To evaluate the performance of the selected adaptive optimizations, the OTF
needs to be able to calculate each optimizations runtime profile. This is achieved
by inserting two additional code stubs at the start and end of the parallelized
loop being profiled. The first stub extracts from the architecture the cycle count3

prior to the loops execution and the second stub extracts the cycle count after
the loop has executed. The second stub is also responsible for reporting the total
execution time, and the number of loop iterations, back to the AOS, running in
a parallel thread, as shown in Figure 1(a).
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Fig. 1. Runtime profiling and adaptive version switching.

The OTF is then able to calculate the execution time per iteration of each
invocation of the loop and can make a decision about the comparative per-
formance with other invocations of the loop under different optimizations and
divisors. Once an optimal divisor is found for a given optimization the AOS stops
profiling it and either switches to a different distribution scheme using AVS, as
shown in Figure 1(b), or having assessed all optimizations the AOS switches off
the runtime profiler and runs any subsequent executions of the loop using the

3 Although this mechanism is machine specific; instructions exist in the main archi-
tectures: RDTSC (x86), mftb (PPC), TICK register (SPARC)



best optimization found. The code stub that previously invoked the runtime pro-
filing is modified, so that future execution of the code no longer needs to execute
any code inside the profiling phase, Figure 1(c). It should also be noted that the
AOS instrumentation code for loop back-edges is removed from the parallel code
sections which prevents their interruption at runtime.

The precision of the execution time metric is a major factor in getting good
results from the presented optimizations, and there are two issues that affect
the precision. The first is that not all loops are of static length or duration, it is
possible that both the number of iterations and the loops content will vary per
invocation. The second issue is that the execution timings are affected by system
noise, for example cold caches and other unrelated thread activity. To overcome
these issues, the execution time for a given optimization on a parallelized loop is
calculated, as an arithmetic mean of the cycles per iteration for four invocations
of that loop. Loops that exhibit large profile deviations, defined as having a
coefficient of variation4 (CV) greater than a configurable threshold, for this
work set at 0.1, are deemed unstable, the profiling code is switched off and the
current best optimization is used.

3 Experimental Methodology

The experiments are performed on the JAMAICA architecture [18] using the
OTF as part of the adaptive optimization system of the Jikes RVM. The Jikes
RVM has been ported to the JAMAICA architecture and runs without an un-
derlying operating system. The JAMAICA architecture is implemented within
a highly configurable cycle-accurate processor and memory simulation platform.
The main decision behind using a simulated architecture was the ability to evalu-
ate the online tuning framework on a wide range of simulated hardware configu-
rations all using the same instruction set. To evaluate the OTF seven benchmarks
have been selected from standard suites, FourierTest from jBYTEmark [8], Euler
from JavaGrande [3], MatrixMul, LU, Zchol from JaMa [10], Java Linpack [6]
and a Java version of Swim adapted from SpecCPU2000 [9]. Each benchmark is
executed to completion and validation on each simulated architecture configu-
ration. The configurations assess the performance of the OTF in the presence of
varying cache sizes, the number of cores and the number of contexts per core.

4 Results and Discussion

Figure 2 shows the OTF searching for an optimal divisor in the inner loop
for the matrix multiply benchmark using ABD. By the third invocation of the
parallelized loop the initial overhead of the runtime profiling code is amortized
by the optimized performance, and by iteration 6 a local optimal divisor for
this loop has been found. It should be noted that by the very nature of the

4 Coefficient of variation (CV) is the ratio of the standard deviation to the arithmetic
mean.



hill-climbing algorithms used, the adaptive searching finishes after finding local-
optimal solutions.
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Fig. 2. Searching profile using ABD for the matrix multiply benchmark.

Figure 3 presents the results of optimizing the benchmarks using the ABD
optimization. The results show the speedup achieved using the adaptively found
local-optimal divisor, listed in the table, compared to dividing the loop iterations
equally to a fixed number of threads, in this case equal to the total number of
processor contexts.

Naïve Divisor

L1 Cache Size 8KB 16KB 32KB 8KB 16KB 32KB 8KB 16KB 32KB 8KB 16KB 32KB

MatrixMul 3.75 3.75 3.75 7.875 7.75 7.75 15.75 7.75 7.75 15.75 15.75 15.75

FourierTest 4 3.75 4 7.75 7.75 7.625 7.875 7.875 7.875 16 15.5 15.75

Linpack 3.75 3.75 3.75 7.625 7.5625 7.625 7.5625 7.625 7.625 15.5 15.5 15.5

Euler 3.875 3.875 3.875 7.625 7.75 7.625 7.75 8 8 16 16 14.25

Jswim 7.875 7.875 3.75 15.75 7.75 7.75 15.875 15.75 7.75 15.5 15.5 15.5
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Fig. 3. Speedup of ABD compared to näıve division.

For the majority of cases shown in figure 3, the optimal divisor is a value less
than the näıve divisor. This is due to the nature of the distribution scheme. The
processor context responsible for distributing the parallel threads, the generator,
is always the last available for processing any of the loop iterations. In the case
of a smaller divisor, 3.75 as opposed to 4, a loop with 100 iterations will be
distributed such that the first three distributed threads contain a block of 26



iterations, and the fourth contains only 22. This scheme is therfore able to trade-
off the overhead on the generator thread. In the cases where the optimal divisor is
larger than the näıve divisor, the optimization overcomes the context contention
overhead. As mentioned previously, in Section 2.2, if the generator thread is not
able to distribute a parallel thread to a remote context the work must be done
by the generator which prevents subsequent threads being distributed. As the
size of the block decreases with larger divisors, each parallel thread contains less
work, which reduces the amount of serialization caused by context contention.
For this reason in some cases a divisor greater than the number of processor
contexts performs better.
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Fig. 4. Speed-up ATD compared to näıve tile division.

Figure 4 presents the results of both regular, for matrix multiply, LU kernel
and jswim benchmarks, and triangular, for the Zchol5 kernel benchmark, ATD
optimizations. The table shows the pairs of optimal divisors that achieved the
speedups shown, compared to the performance using näıve tile divisor pairs.
It should be noted that näıve tile divisor pairs performed better than ABD
on the benchmarks shown. Both the regular and the triangular tile division
algorithms, optimize the performance of nested loops to achieve more efficient
cache use. The table illustrates the variation amongst the optimal divisor pairs
given variations in the architecture and cache size. The OTF is able to increase
the performance for almost all configurations presented. The ATD optimizations
search for an optimal tile size which can take advantage of data resuse and

5 Zchol implements the Cholesky decomposition of a positive definite matrix.



therefore improve cache behaviour. Each architecture used to assess the ATD
optimizations contained 16 processor contexts, and the results for the optimal
divisors are normalized against the results gathered using the divisor pair (4.0,
4.0) for regular 2D loops, and (4.0, 7.0) for triangular 2D loops. Both of these
divisor pairs generate equal sized square tiles. In the Java programming language,
operations on multi-dimensional arrays can be optimized. For example, a loop
iteration that loads a value from a 2D array A[i][j], where j is the inner loop
iterator, needs two memory load instructions: load A[i] to refi and load refi[j]
into the target register operand. The load operation for A[i] can be moved outside
of the loop, reducing the total load operations. For this reason the divisor pair
(8.0, 2.0) achieves performance benefits over the simple (4.0, 4.0) divisor pair.
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Fig. 5. Speed-up from CRD on top of initial ABD/ATD gains.

By using the AVS optimization, the OTF can select between a traditional
and a cyclic recursive distribution (CRD) policy. To show the affect of AVS the
performance of traditional distribution, using optimal divisors located using the
ABD/ATD optimizations, and CRD, using the same divisors, was compared.
Figure 5, shows the additional performance speedups gained by using CRD with
the ABD/ATD optimizations. For each benchmark both a large and small data
set was evaluated. Clearly for larger data sets the CRD scheme degrades the
performance of the best ABD/ATD using traditional distribution, however, for
smaller datasets additional performance increases are achieved for most of the
benchmarks. CRD gains performance for smaller data sets as it uses a tree-
like distribution policy to create parallel threads. This reduces the overhead of
thread creation in the initial generator thread. It also employs a cyclic block
distribution, which has been shown to improve the cache performance on multi-
threading processors [14], especially for loops working on contiguous memory
segments. Furthermore, when CRD is used on triangular loops, this cyclic dis-
tribution leads to less variation in the total amount of work received by each
processor context. The drawback of CRD, however, is that it increases the num-



ber of cache misses when used in a multi-processor environment. This is because
a contiguous memory segment will be mapped to different processors’ caches.

5 Related Work

Voss and Eigenmann [16] established an adaptive optimization framework named
ADAPT which performs dynamic optimization on hot spots through empirical
search. The ADAPT uses dynamic recompilation to evaluate different optimiza-
tions and a domain-specific language to drive the search on the optimization
space for a specific optimization (e.g. for loop unrolling, each level of unrolling
will be compiled, run and timed, and the fastest version will be kept and used
for the hot spot). The compiler used for recompilation was run on a parallel
processor which reduced the recompilation overhead at runtime. Fursin et al.

[7] explored online empirical searches for scientific benchmarks. To reduce run-
time code generation overheads, a set of optimized versions of code were created
prior to the execution of a program. These versions were then evaluated at run-
time with the best performing version chosen for subsequent execution. They
employed predictive phase detection to identify the periods of stable repetitive
behavior of a program and used these phases to improve the evaluation of alter-
native optimized versions. Similarly Lau, Arnold et al. [13] investigate an online
framework for evaluating the effectiveness of optimizations. They present a vir-
tual machine based online system that automatically identifies the optimal pa-
rameters for optimizations, and give an example for selecting method inlinining
policy by utilizing the framework. By deploying optimizations at the method-
level, more runtime noise is present in the system, and they use a large number
of iterations to assess the effectiveness of optimizations. Diniz and Rinard [5]
use a simple version selection mechanism which reacts to runtime inputs and
loop parameters. Their dynamic optimization system also generates code to pro-
vide dynamic feedback, allowing automated selection of the best synchronization
policy for parallel execution.

In contrast with the above work, the method presented in this paper com-
bines a loop-level parallel compiler and an adaptive optimization framework
within a Java virtual machine that works on a CMP architecture. By employ-
ing the Jamaica CMP’s capability of distributing fine-grain parallelization, the
adaptive optimization system can perform online adaptive tuning to improve
the performance of parallelized code for smaller data sets with acceptably low
overheads.

6 Conclusion and Futher Work

This paper has presented an Online Tuning Framework, capable of locating and
parallelizing loops. The framework is able through runtime profiling, to search
for an optimal division of a parallelizable loop into blocks and an optimal distri-
bution of the loop blocks across the parallel resources of a chip multiprocessor.



This system realises additional performance speedups, up to 12% on the bench-
marks assessed, over a traditional parallelization system, including the initial
overheads involved with the profiling system.

The OTF is currently directed to optimize work distribution within parallel
code sections which exhibit stability during profiling. As part of further stud-
ies the framework will be extended to time-out, whereupon previously unstable
code sections, and those previously optimized but performing poorly , will be
re-evaluated. Additionally the framework is being extended to automatically
optimize work distribution across larger and more scalable CMP architectures.
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