
Asynchronous on-chip networks

M. Amde, T. Felicijan, A. Efthymiou, D. Edwards and L. Lavagno

Abstract: Various kinds of asynchronous interconnect and synchronisation mechanisms are being
proposed for designing low power, low emission and high-speed SOCs. They facilitate modular
design and possess greater resilience to fabrication time inter-chip and run-time intra-chip process
variability. They can provide a solution for low power consumption in chips and simplify global
timing assumptions, e.g. on clock skew, by having asynchronous communication between modules.
A few methodologies, including globally asynchronous, locally synchronous and desynchronisa-
tion, aim at leveraging the benefits of both synchronous and asynchronous design paradigms.
The authors survey various methodologies used for leveraging asynchronous on-chip communi-
cation. They investigate various GALS based implementations, desynchronisation strategies and
asynchronous network-on-chip (NoC) designs.

1 Introduction

The main idea of a SoC design methodology is to ‘divide’
complex chips into several independent functional blocks
and ‘conquer’ each of them using standard synchronous
methodologies and existing CAD tools These functional
blocks are then connected by means of an on-chip
communication infrastructure to form a functional system.

Dividing a chip into smaller blocks keeps the technology
scaling problems, such as clock-skew, manageable; how-
ever, this is only true for each individual block, while the
problems aggravate drastically for the interconnect itself.
This is because the network elements may be scattered all
over the chip connected by relatively long wires, which
do not scale well in deep sub-micron technologies [1].
Synchronising such a network with a single clock source is
problematic at best.

There are major problems in having various synchronous
on-chip communications, namely:

. Modularity and design reuse: In the synchronous world, a
complete redesign on the chip is needed if a component of
the chip is modified or if the frequency of operation is
changed, thus making the design nonmodular. Normally, all
the components have to be redesigned at the same new clock
frequency. This leads to waste of design effort. GALS IP
cores with asynchronous interfaces would make them
amenable for design reuse.
. Electromagnetic interference (EMI): All the switching
activity in a synchronous chip takes place at a given clock
tick, making the circuit prone to EMI effects. In comparison,

switching activity is distributed over time in an clockless
chip.
. Worst case performance: The circuit always designed for
the worst-case performance, since the critical path in the
circuit determines the clock period.
. Clock power consumption: Large clock buffer trees
present in current design lead to a high power consumption.
Studies show that high-speed processors have power
consumption dominated by clock and the average clock
power consumption by the clock is 45% of the total power
consumed [2]. Similar statistics are reported for high- and
medium-speed ASICs as well.
. Clock skew: The problem of distributing the global clock
in a chip with minimal clock skew is getting difficult to
solve due to increase in clock frequencies, smaller feature
sizes and growing design complexities. Few ASIC designers
can afford the sophisticated calibration techniques used in
leading edge microprocessors [3], and would like to enjoy
the intrinsic robustness with respect to manufacturing and
run-time variability that asynchronous circuits exhibit.

Owing to the above-mentioned problems in using a
synchronous design style, efforts are being made to design
chips asynchronously. A significant advantage of asynchro-
nous design is smoother handling of both fabrication-time
inter-chip and run-time intra-chip variability (the later
requires completion detection, the former only delay
matching). Also, all the aforementioned problems associ-
ated with distribution of global clock over the entire chips,
clock power consumption, clock skew and EMI, are
eliminated. Moreover, the designs become modular since
timing assumptions are explicit in the handshaking proto-
cols. Hence no redesign is needed if an asynchronous
component is modified. Furthermore, the circuit would work
faster, exploiting average case rather than worst case
performance.

However, asynchronous design strategies also come with
their own set of problems. Asynchronous design is a more
difficult task compared to synchronous design. Glitch-free
circuits have to be generated as compared to the
synchronous domain, where the data only have to be stable
before the arrival of the clock. Also, asynchronous design
suffers from absence of industrial tool support. Lack of a
mature tool flow has prevented this methodology from being
widely adopted by designers in industry.

q IEE, 2005

IEE Proceedings online no. 20045093

doi: 10.1049/ip-cdt:20045093

M. Amde is with the Department of Electrical & Computer Engineering,
University of California at San Diego, USA

T. Felicijan, A. Efthymiou and D. Edwards are with the Department
of Computer Science, University of Manchester, Oxford Rd, Manchester
M13 9PL, UK

L. Lavagno is with Politecnico di Torino, Dipartimento di Elettronica,
Corso Ducadegli Abruzzi 24, Torino 10129, Italy

E-mail: luciano@cadence.com

Paper first received 19th July and in revised form 4th October 2004

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 273



Moreover, several asynchronous circuit implementation
techniques have a very high overhead in terms of area, delay
and possibly even power consumption. This is due to the
fact that truly asynchronous datapaths require implementing
each signal in dual rail, and collecting acknowledgments
from every gate output in the circuit. In this paper we survey
techniques that avoid such large overhead, at the expense of
fewer gains in terms of, for example, EMI and average case
performance.

The globally asynchronous locally synchronous (GALS)
and desynchronisation design styles that are described
below are aimed at filling the gap between the purely
synchronous and asynchronous domains. GALS consists of
synchronous modules on a chip communication asynchro-
nously as shown in the system level view in Fig. 1. These
methodologies are promising because they allow synchro-
nous design of components at their own optimum clock
frequency, but facilitate asynchronous communication
between modules. This leads to a design flow fairly similar
to the synchronous flow but with a few additional
components which enable asynchronous communication.
It eliminates the global clock leading to a huge reduction of
power consumption and alleviating the clock skew problem.
It facilitates modular system design which is scalable. Close
resemblance to synchronous design also makes it amenable
to attract the attention of synchronous designers who are not
willing to experiment with asynchronous design.

GALS refers to a communication framework in which
local clocks are either unsynchronised or paused. This
means that there is a risk of meta-stability at the interfaces
which is not present in ‘traditional’ speed-independent or
delay-insensitive asynchronous circuits. Metastability is a
condition where the voltage level of a signal is at an
intermediate level — neither 0 or 1 — and which may
persist for an indeterminate amount of time.

Desynchronisation bears some similarity to GALS
techniques, in that the datapath remains essentially
synchronous and its clocks are locally generated, but it
prevents metastability completely by using handshakes.
As such, a desynchronised circuit can be obtained
automatically from a synchronous one. It has approximately
the same area, power and performance, but has lower EMI,
due to the spreading over time of clock edges, and better
modularity, due to the explicit handshakes between
components that automatically satisfy local timing
constraints.

In this paper we first present formal frameworks for
the analysis of transformations from synchronous to
asynchronous systems, and their implementation in the
desynchronisation flow. We then proceed to explain various
schemes for implementing GALS based systems. We finally

conclude with a discussion of asynchronous NoCs, and
with a case study.

2 Formal models

2.1 Multi-clock Esterel

Synchronous design tools have a wide range of tools, giving
rise to a tried and tested design flow. Asynchronous circuits
suffer from lack of mature design flow, and efforts are being
made to capture the asynchronous behaviour of the GALS
system in the synchronous domain. One effort in this
direction is of multi-clock Esterel [4].

Synchronous languages [5, 6] have a significant advan-
tage with their ability to prove correctness of the hardware
circuit before they are actually implemented. Esterel is a
synchronous language used for modelling reactive systems
interacting with the environment. It is an imperative
language and hence uses variables which retain their value
until updated. It is used mainly for modelling controller
applications and provides synchronous parallelism. Hence it
could also be used for modelling hardware systems. Esterel
inherently assumes a global clock and it cannot handle a
system with multiple clocks.

Multi-clock Esterel provides a framework for modelling
multiple local clocks as well as enabling asynchronous
communication between various components in the design.
It also provides a clean model for integrating Veri-
log=VHDL features in a design. It aims to retain the
existing features of reactive languages like pre-emption and
more importantly verifiability. It can be considered to
satisfy the ‘synchrony hypothesis’ as its reactions can be
associated with local clock ticks.

The asynchronous communication between concurrently
running locally clocked reactive components is based on
latches with limited memory. In [4] the authors show an
example design of a Micropipeline in a modular fashion and
show that multi-clock Esterel modules could be composed
in a hierarchical fashion.

Multi-clock Esterel could also be used to model a sub-sets
of VHDL code enabling the possibility of hardware–
software codesign using VHDL while verifying the entire
design in the synchronous paradigm of multi-clock Esterel.

2.2 Signal=polychrony framework

The goal of this research is to model GALS in a multi-clock
synchronous environment and map it to an asynchronous
system, preserving all the properties proven in the
synchronous domain.

Signal [5] is a programming framework which provides a
formal way of modelling various synchronous components
running on different clocks and validating that the
asynchronous composition of the various components
would lead to a functionally correct behaviour. It achieves
this by transforming the asynchronous composition of the
various synchronous components having different clocks to
a fully synchronous multi-clock model preserving beha-
vioural equivalence. The synchronous model takes advan-
tage of verification tools available for the synchronous
languages. The correct behaviour can thus be checked by
extensive simulation and model-checking in the synchro-
nous domain.

This methodology could be used in integrating various
IP cores designed at different clock frequencies using
a desynchronisation protocol and formally verifying the
functional correctness of this GALS network.

In [7], the authors provided a formal way of capturing
asynchrony in the synchronous framework of Signal.Fig. 1 System level view of GALS

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005274



They prove that an ideal asynchronous model can be
completely mapped in Signal with unbounded FIFOs for
inter-component communication. They also show that the
class of synchronous models that can be implemented
asynchronously without any loss in semantics, i.e. while
preserving the deterministic behaviour that is a key
characteristics of synchronous models, must satisfy the
properties of endochrony and isochrony. Roughly speaking,
endochrony means that a component whose interface is
going to be made asynchronous must be able to tell from the
values of its inputs which inputs must be read next. This
approximately corresponds to the sufficient property stated
by Kahn [8] to ensure determinate behaviour for the data
flow networks, namely that processes cannot probe input
FIFO for the presence of data. Isochrony, on the other hand,
means that, if two components share a variable, they must
agree on the values which are assigned to it at each step.
Note that, unfortunately, the identification of bounds to the
size of FIFO channels in Kahn Process Networks is
undecidable [9], and hence the problem of correctly
deploying an arbitrary synchronous system onto an
asynchronous architecture must be solved by a human,
using a lot of simulation, iteration and guesswork.

The high-level system specification is transformed into a
low-level circuit representation through a series of steps.
At each step, the transformation from a higher to lower level
of abstraction should preserve the correctness across the
transformation. Polychrony [10] is a platform which, along
with the synchronous programming framework of Signal,
provides formal refinement of multi-clocked models from
high-level behavioural specification to the low-level
synthesis and implementation of these models using formal
verification techniques. Polychrony takes a high-level
SystemC=SpecC specification and refines it in a semantic-
preserving manner towards a GALS implementation. This
allows one to leverage the implementation of various
synchronous components with multiple clocks with assur-
ance of a functionally correct asynchronous communication
between different clocked synchronous components.

The advantage of using Polychrony in a high-level design
flow is that it automates the complex task of formal design

verification at each stage of refinement and renders the low-
level implementation formally correct. The polychronous
model of Signal formally captures the behavioural abstrac-
tions from SystemC=SpecC programs as well as behavioural
specifications from IP cores. The Polychrony platform aids
in automating the refinement of behavioural specification
towards synthesis while formally verifying the correctness
of the transformation at each design flow step. Hence one
can rapidly codesign hardware=software GALS architec-
tures while being assured of formally conforming to the
original behavioural specifications.

2.3 Desynchronisation

Desynchronisation [11] builds on these theoretical foun-
dations in order to provide the designer with the option to
derive a medium-grained asynchronous implementation
from a traditional synchronous specification. Assuming an
initial design implemented with edge-triggered flip-flops,
it requires the following steps:

(i) conversion of the flip-flop-based synchronous circuit
into a latch-based one (M and S latches in Fig. 2b)
(ii) generation of matched delays for combinational logic
rounded rectangles in Fig. 2b
(iii) interconnection of controllers for local clocks.

The method for desynchronising an arbitrary netlist relies on
composition of the controllers. It requires to identify direct
connections, via combinational logic, between adjacent
groups of latches, and then the overall clock generation
circuit is obtained through composition of timing diagrams
corresponding to these partial descriptions.

The specification of a pairwise interaction between even–
odd and odd–even latches for overlapping desynchronisa-
tion is shown in Fig. 3. It models the communication of data
from latch A to latch B. The latches are transparent when the
control signal is high. Initially, only half of the latches
contain data ðDÞ: Data items flow in such a way that a latch
never captures a new item before its successor latches have
captured the previous one.

Data overwriting can never occur, even though the pulses
for the latch control can overlap. This model is based on

Fig. 2 Synchronous and desynchronised pipelined circuit

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 275



the observation that a data item can ripple through more
than one latch, as long as the previous values stored in those
rippling latches have already been captured by the successor
latches. As an example, event Bþ can fire as soon as data are
available in A ðarcAþ ! BþÞ and the previous data in B
have been captured by C ðarcC� ! BþÞ:

Reference [11] suggests that desynchronisation results in
circuits with almost identical area, performance and power
consumption as the original synchronous ones. Desynchro-
nised circuits, however, have smaller EMI due to the out-of-
phase clocks, and better modularity due to the explicit
handshakes encapsulating timing constraints. A comparison
between a synchronous and a desynchronised version of the
same processor is shown in Table 1.

The electro-magnetic emission advantages can be seen by
looking at the spectrum of the current absorbed by the
circuit from the power rails, shown in Fig. 4.

3 Mixed synchronous=asynchronous solutions

The Pentium 4e processor [3] uses 47 different clock
domains, whose skew relative to a global reference clock is
programmable. Domain clocks were intentionally skewed to
improve operating frequency, and up to one speed bin
improvement is reported. The design uses two PLLs – one
for the core and one for the I=O logic. From these, six
different clock frequencies are derived. The Pentium 4e
also has critical portions (e.g. the ALU) working at twice the
clock frequency of the rest of the chip [3]. Noncritical ones
work at half the clock frequency, in order to save area,
power und design effort.

The Alpha processor [12] illustrates the need for flexible
clocking schemes in order to enable core reuse in system-
on-chip (SOC) designs. The entire chip is partitioned into 11
clock domains, where one domain is a migration of a
processor core from an older design. The existing clock
distribution in this embedded core is used as a reference
clock. Four major clocks (one reference and three derived)
are used to clock separate chip sections. Delay-locked loops
(DLLs) are used to maintain small phase alignment errors
among major clocks.

An example of mixed synchronous and asynchronous
implementation is given in [13], which presents the design
of a digital FIR filter used in read channels of modern disk
drives. The degree of pipelining in the filter is dynamically
variable and depends on the input data rate. The perform-
ance of this filter was found to be better than existing read
channel filters.

The high-speed asynchronous portion of the chip is
sandwiched between two synchronous portions.
The asynchronous datapath in the chip uses dual-rail
dynamic logic and the synchronous datapath in the chip
uses single-rail static logic. The asynchronous section relies
upon handshakes for communication, whereas the synchro-
nous section is dependent on global clocking. Thus, the
interface circuitry between asynchronous and synchronous
datapaths is responsible for data conversion. It also needs to
adapt to different control signals on either side of the
interface. The first interface requires conversion from the
synchronous to the asynchronous domain and the second
interface requires asynchronous to synchronous conversion.
The interface circuitry achieves this by having special
latches for performing data conversion and pulse generators
for implementing the handshaking protocol for the asyn-
chronous section. In order to resynchronise and avoid
metastability at the second interface, a delayed version of
the Req handshake signal generated at the first interface is
passed directly to the second interface using a program-
mable delay element. The programmable delay should be
greater than the delay for the correct data computation by
the asynchronous section.

4 Pausable clock interfacing schemes

Pausable clocking schemes are proposed as mechanisms for
data transmission between synchronous modules running at
different clock frequencies. In this scheme, the receiver
clock is paused whenever the sampling of data lines by the
receiver could lead to potential metastability. The sender
clock is paused till the data is correctly sampled by the
receiving module. This avoids synchronisation failure at the
receiving end and flow control at the sender end.

A similar approach is also followed by recent work on
the Razor processor [14], in which a comparator (including
a meta-stability detector) identifies when a register incor-
rectly latches a value, due to a critical timing problem.

Fig. 3 Synchronisation between latches

a Even ! odd
b Odd ! even

Fig. 4 FFT of current consumption in synchronous and
desynchronised DLX

a Synchronous
b Desynchronised

Table 1: Synchronous against desynchronised DLX

Sync. DLX Desync. DLX

Cycle time, ns 4.4 4.45

Dyn. power cons., mW 70.9 71.2

Area, mm2 372 656 378 058

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005276



In the next clock cycle the pipeline is simply restarted with
the correct data copied back in every register from a shadow
latch, and processing continues synchronously, with
‘skipped’ clock cycles. Pausable clock schemes listed
below, on the other hand, generally stretch clock cycles
and do not ensure phase alignment with an external
reference clock. Razor is a very promising approach to
tackling variability, in that it allows one to clock a processor
very close to its true speed. However, reliable operation
over extended periods of time, despite the inherent risk of
meta-stability, still needs to be demonstrated.

In [15], the authors comment that previously proposed
schemes [16] do not scale well for high clock frequencies of
locally synchronous (LS) components and multiple cycle
delay in clock distribution due to large clock buffer trees.
Due to the presence of large clock buffer trees in the LS
components, the assumption of previous schemes of data
transfer being stalled within one clock cycle of pausing the
sender clock does not hold and leads to extra transmissions
in what the authors call the ‘clock overrun window’, which
denotes the skew between pausing the clock and actual
stopping of data transmission by the sender module.

They propose a circuit for interfacing two high frequency
LS modules using a partial handshake protocol which
achieves high data rates and has a small probability of
failure. A partial handshake is used as it provides faster data
transfer than a complete handshake protocol. They propose
a ‘direct path’ FIFO to account for long interconnect delay
and an additional ‘buffered’ FIFO to capture data transferred
in the clock overrun window. This scheme does not pause
the receiver clock for synchronisation but pauses the sender
clock to achieve flow control.

In [15], transistor level sender and receiver interface
circuits are given and the models are verified by SPICE
simulation. The timing analysis of the interface circuits
proves that under certain circumstances of bad signal
timings of the signal with respect to sender and receiver
clock, the synchronisation circuit would fail with a small
probability of failure, thus improving on previous schemes.

Chakraborty et al. in [17] discuss using abstract timing
diagrams to reason about the correctness of interfacing
techniques between synchronous modules. They point out
that there are various different interfacing techniques
available but it is difficult to compare them due to
differences of analysis carried out for each of them. Abstract
timing diagrams are used for analysing specific interfacing
schemes and understands why certain schemes work under
restricted conditions and fail otherwise. The authors further
point out that robust asynchronous interfaces could be built
if certain new circuits could be implemented.

5 GALS implementations

According to the GALS methodology used in [18], the
asynchronous circuits required to convert LS modules to
conform to the GALS standard are restricted to implement-
ing ‘self-timed’ wrappers around each module. Each LS
module is driven by a pausable clock in its self-timed
wrapper, avoiding metastability and data corruption.
The self-timed wrappers consist of a pausable local clock
generator, port controllers and test structures as shown in
Fig. 5. They have implemented five wrapper elements in
technology-independent VHDL. The port controllers are
implemented as asynchronous finite state machines using
the extended burst mode paradigm of [19]. These are
synthesised using the 3-D tool, which results in a
synthesisable And–Or implementation [20].

In [18] the authors describe two different types of port
controllers:

(a) Poll-type, or nonblocking, port: This port is used
whenever a data item is needed but computation could
proceed without it arriving immediately. The LS modules
keeps functioning while the data transfer is handled by the
port.
(b) Demand-type, or blocking, port: This port is used when
the LS module cannot continue computation till the arrival
of data on the port. While waiting for data, the demand-type
port suspends the local clock, reducing power consumption
of the module.

Various tunable local-clock generators are compared in
[21]. The current research is directed towards highly
frequency tunable local oscillators for better performance
of individual GALS modules.

Point-to-point interconnects have been implemented to
allow asynchronous communication between GALS mod-
ules [22]. In [22], interface wrapper circuits are presented
for communication between LS modules. The wrapper
interface consists of an arbiter and a calibrated delay line.
This ensures that a stable local clock signal is generated.
Metastability is avoided as clocking is done only after the
data are ready. Circuits with sleep mode, where the local
clock is stopped due to unavailability of data, are also
presented. This could lead to reduced power consumption.
FIFOs with various depths have been used as asynchronous
channels between modules. The simulations show that
designing for FIFO depths greater than 2 does not improve
bandwidth of communication between modules.

Multi-point interconnects are also required for efficient
SoC GALS systems. Two different interconnection topol-
ogies have been proposed in [23]:

(a) GALS bus: In this architecture all port controllers of LS
modules (master=slave) in a design are connected to the
same bus, as shown in Fig. 6. The arbitration and address
decoding is central for power efficiency.
(b) Ring structure: A transceiver is associated with the port
controller of every LS module, as shown in Fig. 7.
The arbitration is done by the transceivers and it decides
which request to grant, either from the previous transceiver
or from its own port controller, when it wants to insert some
packets into the ring.

The ring structure leads to higher latency as each packet has
to encounter one or more transceivers, but it leads to lower
interconnect length between modules and possibly reduces
power consumption. One aspect that is not discussed by

Fig. 5 Self-timed wrapper

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 277



the authors of [23] is fault tolerance. Failure of one module
in a ring architecture would lead to failure of communi-
cation between all modules, whereas the GALS bus would
be more tolerant to such faults.

A GALS test chip with 3 million transistors was
implemented in 0.25 micron technology [24]. The chip
contains 25 GALS modules and occupies a total area of 25
square mm. A design flow has been presented for
automating the design of GALS chip. This is facilitated
by using a library of self-timed elements which can be used
to convert synchronous modules to GALS modules.

The requirement of a pausable local clock led to the
addition of a programmable delay element and Mutex
element to the standard cell library. Timing verification was
carried out hierarchically at three levels:

(i) inside the self-timed wrapper library
(ii) within each GALS module
(iii) for the handshake signals between GALS modules.

The authors claim that since their GALS methodology
requires a limited number of self-timed sub-circuits, most of

Fig. 6 GALS bus architecture

Fig. 7 Ring architecture

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005278



the design process can be handled by using customised
design automation scripts.

In [25], a study has been carried out to measure the
performance and power consumption of GALS method-
ology for a hypothetical super-scalar processor architecture.
The results show that GALS design does not lower power
consumption appreciably and the overheads of using multi-
clocked synchronous blocks leads to a performance drop in
the range of 5–15%: It further says that voltage scaling
techniques for each synchronous block would help bridge
the performance gap. The authors of [26] propose a strategy
for optimally partitioning the synchronous logic into
synchronous blocks for maximising power reduction.
They report average power reduction of 30%:

6 Current research in asynchronous NoC

Employing totally self-timed techniques for the intercon-
nect is, as mentioned in Section 1, a promising means to
tackle a number of on-chip interconnection issues, from
power and EMI reduction to clock skew management, to
modularity of design. However, only a few proposals for an
asynchronous NoC have been published so far. This Section
gives an overview of the state-of-the-art research in
asynchronous on-chip networks.

CHAIN (chip area on-chip interconnect) was designed by
Bainbridge at the University of Manchester, UK [27].
The network is based on narrow delay-insensitive high-
speed links using one-of-five data encoding combined with
a return-to-zero signalling protocol. In a 0.35 micron VLSI
technology the author claims that a single chain link
provides a throughput of around 700 Mbps and more than
1 Gbps in 0.18 micron CMOS technology using suitable link
lengths to minimise end-to-end latency. To increase the
bandwidth, multiple links can be bundled together to form a
wider data path.

CHAIN does not require a fixed network topology but
allows a designer to adapt the topology of the network to a
specific SoC using three basic network elements: a router,
an arbiter and a multiplexer. To further improve the
flexibility of the network, source routing is employed with
a variable length packet organisation. The routing infor-
mation is encoded in a series of routing symbols at the start
of every packet. The length of a packet is designated by the
EOP (end-of-a-packet) symbol, which also has a function to
tear down the route set by the header of the packet.

CHAIN implements a split transaction protocol typically
employing two separate networks for the command and
response in order to improve the performance of the
interconnect. Also, the network supports atomic sequences
of multiple commands.

NEXUS is another asynchronous on-chip network
developed at Fulcrum Microsystems, USA [28]. Their
approach is based on a 16-port, 36-bit asynchronous
crossbar that connects synchronous modules through
asynchronous channels and clock-domain converters.
Nexus is a quasi-delay-insensitive (QDI) on-chip inter-
connect infrastructure using one-of-four encoding and pre-
charge domino logic. It also supports a split transaction
protocol with a request burst going out and a completion
burst returning. Implemented in a 0.13 micron low-voltage
CMOS process, Nexus runs at 1.35 GHz and exhibits the
latency of 2 ns.

Liljeberg et al., from the University of Turku, Finland,
propose a self-timed ring architecture as a replacement
for on-chip buses [29]. They implemented a 12-stage
bi-directional ring network with 36 pipeline sections.
The network employs a two-phase signalling protocol

between stages to accommodate relatively long wire
segments with less transitions within a transaction cycle,
and a four-phase signalling protocol for internal control
within a stage to enable design of fast and relatively simple
control logic circuitry. The data path is encoded using a
standard single-encoding scheme.

The authors compared three closely related structures:
a bi-directional ring, a bi-directional folded ring and a
bi-directional open ring against different types of traffic.
The simulation results show that the peak throughput of a
single segment in one direction is between 0.8 and
1.0 Gwords=s in 0.18 micron technology with the segment
lengths of 1 and 4 mm, respectively. The maximum
measured throughput of the whole ring is 6.61 Gwords=s.

An asynchronous ring-based network was also proposed
in [30].

A related research direction is that of asynchronous
communication mechanisms (ACMs [31]), which
implement various degrees of synchronisation between
communicating parties, from fully independent to fully
interlocked. ACMs are an important mechanism, especially
in the form which does not block the reader nor the writer of
a communication channel, in order to implement hard real-
time with asynchronous techniques. In other words, they go
beyond QoS-based soft real-time, in order to provide full
timing guarantees to safety-critical systems. The cost is
slightly higher than traditional FIFO-based mechanisms,
which block the reader when empty and the writer when
full, and the performance is comparable to that of traditional
FlFOs [32].

7 QoS for NoCs

A modern SoC may consist of many different components
and IP blocks interconnected by an NoC. These components
can exhibit disparate traffic characteristics and constraints,
such as requirements for guaranteed throughput and
bounded communication latency.

As an example, consider a connection between a video
camera and an MPEG encoder. Such a connection has
to maintain a constant throughput with bounded jitter
(variation in end-to-end latency) in order to support the
required quality of the system. If the camera and the encoder
are a part of a complex SoC interconnected by an on-chip
network, the connection has to share the network bandwidth
with the rest of the traffic. In order to maintain the quality of
the system, the network has to provide the required
bandwidth for the connection at any given time.

It is therefore essential for a modem NoC to support
quality-of-service (QoS) in order to accommodate such
components sharing the same communication medium.
Furthermore, the ability of an NoC to provide guaranteed
services enables a designer to make critical timing decisions
early in the design process, thus avoiding unnecessary
design iterations [33].

In synchronous networks QoS is often provided by time
division multiplexing (TDM). TDM partitions the time axis
into time-slots where each time-slot presents a unit of time
in which a single flow can transmit data over a physical
channel. Guaranteed throughput is provided by reserving a
proportion of time-slots for a particular flow. For example,
if a connection requires 50% of the available bandwidth,
a network has to ensure that every other time-slot is available
for that particular connection. Reserved slots traverse the
network in a well synchronised manner without having to
arbitrate for the output link with the rest of the traffic.
The Aethereal NoC developed at Philips and the Sonics

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 279



on-chip bus employ a TDM technique to support guaranteed
throughput [34, 35].

Although TDM provides a high level of QoS it is
unsuitable for asynchronous implementation because it
requires global synchronisation between network elements.
Another way to provide QoS is to employ a packet
scheduling algorithm that will prioritise input traffic in
terms of the level of QoS required. In [36], Felicijan
et al. proposed a QoS architecture suitable for asynchronous
on-chip networks using virtual channels [37], where a
connection with QoS requirements uses a virtual channel in
order to reserve buffer space. The bandwidth of the network
is distributed using a priority based asynchronous arbiter
according to the priority level of each individual virtual
channel. The same authors also proposed a low latency
asynchronous arbiter suitable for QoS applications [38]
which overcomes the problem of allowing a contender to
obtain over 50% of the resource allocation in a self-timed
system by using downstream knowledge to trigger the
arbitration.

8 Case study: the ASPIDA network-on-chip

ASPIDA (asynchronous open-source processor IP of the
DLX architecture) is a project which aims to demonstrate
the feasibility of designing and delivering an asynchronous
IP in a portable, reusable manner.

With regard to asynchronous networks on chip, one of the
main contributions of this project is the creation of an
asynchronous interface specification aiming to become the
asynchronous equivalent of WISHBONE [39], a synchro-
nous SoC interconnection architecture for reusable IP cores.
This interface specification is heavily influenced from both
CHAIN and WISHBONE. Most of the interface signals are
named following the WISHBONE convention. The major
difference from WISHBONE is that the model for inter-core
communication is based on split transactions. Thus there
are two separate interconnect fabrics: one for commands
and another for responses. The asynchronous request–
acknowledge handshake signals make this interface speci-
fication robust and easy to reuse without a need to verify
complex timing assumptions.

ASPIDA will produce a demonstrator chip containing an
asynchronous system on a chip. Figure 8 shows its main
components, which include an asynchronous open-source
DLX processor core (obtained using the desynchronisation
techniques described above), two memories dedicated for
instructions (IMEM) and data (DMEM), a test interface
controller (TIC) for initialisation=debugging, and three
interfaces with the external world: a synchronous

WISHBONE interface for connection to synchronous
peripherals (WB), a novel asynchronous, general-purpose
interface (GP), and a ‘bare’ CHAIN interface (BC) for
adding more CHAIN networks and=or debugging the
interconnection.

In the ASPIDA system there are three initiators (masters)
and five targets (slaves). The DLX core has a Harvard,
architecture, so it has two initiators in the interconnection –
one for the instruction port and another for the data
port.The remaining initiator is attached to the TIC so that it
can access the memories and the external interfaces, as well
as being able to test the interconnection.

Two of the five targets are the system’s memory: 1K
words of SRAM each. Their main purpose in the system is
to provide fast, on-chip memory space for the DLX so that it
can run simple programs at a high speed without the need to

Fig. 8 Top-level block diagram of ASPIDA demonstrator chip Fig. 9 ASPIDA interconnection network

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005280



access a slow external memory and without taking up too
much area. The remaining targets essentially extend the
interconnection off-chip, so that synchronous (WB port) or
asynchronous (GP port) ‘peripherals’ can be accessed by the
processor.

In the above system the most common situation is that the
processor instruction port will communicate with the
instruction memory and the data port with the data memory.
All other initiator-target communications should be made
possible by the interconnect, but their performance is not as
crucial. The above observation led to the interconnection
architecture shown in Fig. 9, which optimises the two
commonly used paths.

8.1 Design for testability features of
interconnect

One of the major challenges of the project was to include
circuits that guarantee full test coverage, as a typical
synchronous system would. Although well known tech-
niques can be applied to the circuits implementing the
processor data-paths and the SRAMs, for the delay-
insensitive circuits of CHAIN, these techniques would
dramatically increase the area and reduce the circuit speed.

The approach followed for the interconnect fabric is to
insert scan-latches in the acknowledge paths of the CHAIN
pipeline stages, so that the common input of the parallel
C elements can be controllable. In comparison, the standard
approach would require a scan-latch for each C clement.
Thus our approach resulted in considerable area savings and
performance improvement.

The test patterns are manually generated for each of the
four basic building blocks of CHAIN interconnects, and a
computer program has been developed which, given the
network topology and the patterns for each of the
component types, produces a full test sequence that gives
over 99:5% stuck-at fault coverage for the interconnect.
The test strategy is explained in [40, 41].

8.2 Implementation

Since one of the aims of ASPIDA is to produce portable,
reusable asynchronous IP, the implementation is standard-
cell based, using a 0:18 mm technology. It should be noted
that area and performance improvements can be gained by
using even a small number of special asynchronous cells.

The processor core is built using the desynchronisation
techniques described earlier. The interconnection is drawn
as a schematic diagram and later passed on to a standard
synthesis tool to optimise the gate-mapping.

For the results presented here, only the network was
placed and routed. The area of the network, including
the interfaces, is 0:63mm2; with the cell density set at
approximately 70%. Actually most of the above area is
taken up by the interfaces; the actual interconnection fabric
occupies < 15% of the total core area.

8.3 Evaluation

To evaluate the performance of the ASPIDA interconnect,
two sets of simulations were conducted, creating different
traffic scenarios in the network.

Each master interface is connected to a traffic generator
programmable to inject different types of traffic into the
network. The masters generate two types of commands, read
and write, in the proportion 70% and 30%, respectively.
The length of a write command packet is 10 bytes and the
length of a read command packet is 6 bytes. Similarly, each
slave interface is connected to a dummy client to emulate
the behaviour of a slave client. The length of a response

packet depends on the type of the command received from a
master and represents 6 bytes in the case of a read command
and 2 bytes in the case of a write command. Therefore the
total number of bytes transferred in a single command–
response cycle is 12.

The performance of the network was assessed by
measuring throughput and latency of each individual
master. The throughput corresponding to the number of
bytes a single master is able to transmit and receive per unit
of time, and the latency represents the time between when a
master sends a command through the network and when it
receives the response back from the client. Note that the
dummy clients exhibit zero service time, and thus the
latency represents only the time packets spent traversing
the network.

As mentioned above, two sets of simulations were
conducted in order to evaluate the performance of the
network. The first set was designed to mimic the traffic
characteristics of the environment the network was designed
for. In this case masters IP and DP were set to generate
commands for slaves IM and DM, respectively, as fast as
possible. Furthermore, master TIC was set to generate
commands to IM and DM in order to disrupt the throughput
of the masters IP and DP. The TIC generates commands at
random intervals, according to the exponential distribution
function, with an average packet rate between 0 and 100%
of the physical bandwidth. Figure 10 shows how the traffic
generated by the TIC affects the throughput of the IP.

When there is no TIC traffic present the network
dedicates the whole physical bandwidth to the IP master;
however, when the TIC traffic is introduced, the IP
throughput decreases almost linearly until it reaches around
50% of the maximum bandwidth. Figure 10 shows that the
network guarantees approximately half of the physical
bandwidth to the IP master. In terms of latency, Fig. 11
shows a similar situation. Note that the masters do not have

Fig. 10 Impact of TIC load on throughput of IP

Note that TIC has same impact on throughput of DP master

Fig. 11 Latency of IP master against TIC load

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 281



any buffering capabilities; thus the results shown in Fig. 11
do not include any queueing time.

The second set of simulations generates a more generic
traffic scenario in the network. In this case all three masters
(IP, DP and TIC) were programmed to issue command
packets to randomly chosen slave targets (WB, IM, DM, BC
and GP) for every transaction cycle. Furthermore, each
master generates commands exponentially distributed
across the time axis. The throughput and latency of each
master was measured against different traffic loads.
Figures 12 and 13 show the throughput and the latency of
the IP, DP and TIC masters, respectively.

It is interesting to note that the relative ranking of the
three masters in this set of simulations reflects the topology
of the network. As the targets are selected randomly, most of
the traffic will follow the main trunk of the fabric, as shown
in Fig. 9. So IP will be ‘fighting’ with TIC and the combined
flow with DP. Thus the performance of DP is significantly
better when the network is congested. Among IP and TIC,
the former is connected to IM through a relatively short
route, while the latter does not have such special connec-
tions. As in one out of five times the IP sends packets to IM,
it manifests, on aggregate, a somewhat better performance
than TIC.

9 Conclusion

With the SIA roadmap pointing to increasing clock
frequencies and smaller feature sizes, distributing a global
clock across an entire chip is becoming less and less
feasible. While progress in clocking structures continues,
several research groups convincingly argue that a complete
paradigm shift would ensure significant advantages.

We first surveyed techniques which minimally depart
from the synchronous scheme, or in some sense are
loosely coupled synchronous schemes, as in the case of

desynchronisation. These are the most likely candidates to
be picked up first by conservative design teams. They are
very easy to use, fully automated or at least tool-supported,
but also provide little incentive beyond EMI reduction.
The latter is a significant issue only for very cheap
integrated circuits, due to the reduced packaging cost, and
in security applications, due to the reduced data-correlated
emissions.

We then considered stoppable clocks and GALS
schemes, which retain a fully synchronous design method-
ology for the LS blocks, while using standardised wrappers,
produced by module generators, for the interfacing. They
provide more independence between the modules, in that
the overall performance need not be determined by the
slowest stage, but may exhibit meta-stability, thus resulting
in potentially unpredictable performance.

Finally we looked at truly asynchronous NoCs, which
again, due to the need for standardised design flows, use pre-
defined modules and module generators, whose output is
then assembled to determine the overall network logic.
These asynchronous structures have the best power and
performance, but are often less efficient in terms of area, due
to the lack of established logic optimisation tools for
asynchronous gate-level netlists.

10 Acknowledgments

Aspects of this work were supported by the EU through the
IST-2002-37796 ASPIDA project and by the EPSRC under
grant GR=R47363=01. The authors would like to thank John
Bainbridge for providing many of the circuits used in the
case study presented and for useful discussion on the
CHAIN interconnection system.

11 References

1 Ho, R., Mai, K., and Horowitz, M.: ‘The future of wires’, Proc. IEEE,
2001, 89, (4), pp. 490–504

2 Tiwari, V., Singh, D., Rajgopal, S., Mehta, G., Patel, R., and Baez, F.:
‘Reducing power in high-performance microprocessors’. Proc. 35th
Ann. Conf. on Design Automation, 1998, pp. 732–737

3 Kurd, N., Barkatullah, J., Dizon, R., Fletcher, T., and Madland, P.:
‘Multi-ghz clocking scheme for Intel Pentium 4e microprocessor’.
IEEE Int. Solid-State Circuits Conf., 2001, pp. 404–405

4 Rajan, B., and Shyamasundar, R.K.: ‘Multiclock ESTEREL: A reactive
framework for asynchronous design’. Int. Conf Parallel and Distributed
Processing Symp., 2000, pp. 201–210

5 Halbwachs, N.: ‘Synchronous programming of reactive systems’
(Kluwer Academic Publishers, 1993)

6 Edwards, S., Lavagno, L., Lee, E.A., and Sangiovanni-Vincentelli, A.:
‘Design of embedded systems: Formal models, validation, and
synthesis’, Proc. IEEE, 1997, 85, (3), pp. 366–390

7 Mousavi, M.R., Le Guernic, P., Talpin, J-P., Shukla, S.K., and Basten,
T.: ‘Modeling and validating globally asynchronous design in
synchronous frameworks’. Proc. Conf. on Design Automation and
Test in Europe, 2004, pp. 384–389

8 Kahn, G.: ‘The semantics of a simple language for parallel program-
ming’. Proc. IFIP Congress, August 1974

9 Buck, J.T.: ‘Scheduling dynamic dataflow graphs with bounded
memory using the token flow model’. PhD thesis, University of
California at Berkeley, 1993, UCB/ERL Memo M93/69

10 Talpin, J-P., Le Guernic, P., Shukla, S.K., Gupta, R., and Doucet, F.:
‘Polychrony for formal refinement-checking in a system-level design
methodology’. 3rd Int. Conf. on Application of Concurrency to System
Design, June 2003, pp. 9–19

11 Blunno, I., Cortadella, J., Kondratyev, A., Lavango, L., Lwin, K., and
Sotiriou, C.: ‘Handshake protocols for de-synchronization’. Proc. Int.
Symp. on Advanced Research in Asynchronous Circuits and Systems.
IEEE Computer Society Press, April 2004

12 Xanthopoulos, T., Bailey, D., Gangwar, A., Gowan, M., Jain, A., and
Prewitt, B.: ‘The design and analysis of the clock distribution network
for a 1.2 GHz Alpha microprocessor’. IEEE Int. Solid-State Circuits
Conf., 2001, pp. 402–403

13 Singh, M., Tierno, J.A., Rylyakov, A., Rylov, S., and Nowick, S.M.:
‘An adaptively-pipelined mixed synchronous-asynchronous digital
FIR filter chip operating at 1.3 gigahertz’. Proc. Int. Symp. on

Fig. 12 Throughput of IP, DP and TIC masters

Fig. 13 Latency of IP, DP and TIC masters

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005282



Advanced Research in Asynchronous Circuits and Systems, April 2002,
pp. 84–95

14 Austin, T., Blaauw, D., Mudge, T., and Flautner, K.: ‘Making typical
silicon matter with razor’, Computer, 2004, 37, (3), pp. 41–49

15 Mekie, J., Chakraborty, S., and Sharma, D.K.: ‘Evaluation of pausible
clocking for interfacing high speed IP cores in GALS framework’. Proc.
Int. Conf. on VLSI Design, 2004, pp. 559–564

16 Yun, K.Y., and Dooply, A.E.: ‘Pausible clocking-based heterogeneous
systems’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 1999, 7,
(4), pp. 482–488

17 Chakraborty, S., Mekie, J., and Sharma, D.K.: ‘Reasoning about
synchronization issues in GALS systems: A unified approach’. Proc.
Workshop on Formal Methods in GALS Architectures (FMGALS),
Formal Methods Europe Symposium, September 2003

18 Gurkaynak, F.K., Villiger, T., and Oetiker, S.: ‘An introduction to the
GALS methodology at ETH Zurich’. Proc. Formal Methods for
Globally Asynchronous Locally Synchronous (GALS) Architecture
(FMGALS), September 2003, pp. 32–41

19 Yun, K.Y., and Dill, D.L.: ‘Automatic synthesis of extended burst-
mode circuits: Part I (specification and hazard-free implementations)’,
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 1999, 18, (2),
pp. 101–117

20 Yun, K.Y., and Dill, D.L.: ‘Automatic synthesis of 3D asynchronous
state machines’. Proc. 1992 IEEE/ACM Int. Conf. on Computer-Aided
Design, IEEE Computer Society Press, 1992, pp. 576–580

21 Oetiker, S., Villiger, T., Gurkaynak, F.K., Kaeslin, H., Felber, N., and
Fichtner, W.: ‘High resolution clock generators for globally-asynchro-
nous locally-synchronous designs’. Handouts of the Second Asynchro-
nous Circuit Design Workshop (ACiD), January 2002

22 Moore, S., Taylor, G., Mullins, R., and Robinson, P.: ‘Point to point
GALS interconnect’. 8th Int. Symp. on Advanced Research in
Asynchronous Circuits and Systems, 2002

23 Villiger, T., Gurkaynak, F.K., Oetiker, S., Kaeslin, H., Felber, N., and
Fichtner, W.: ‘Mulit-point interconnect for globally-asynchronous
locally synchronous systems’. Handouts of the Second Asynchronous
Circuit Design Workshop (ACiD), January 2002

24 Oetiker, S., Gurkaynak, F.K., Villiger, T., Kaeslin, H., Felber, N., and
Fichtner, W.: ‘Design flow for a 3-million transistor GALS test chip’.
Handouts of the Third Asynchronous Circuit Design Workshop
(ACiD), January 2003

25 Iyer, A., and Marculescu, D.: ‘Power and performance evaluation of
globally asynchronous locally synchronous processors’. Proc. 29th
Ann. Int. Symp. on Computer Architecture, IEEE Computer Society,
2002, pp. 158–168

26 Hemani, A., Meincke, T., Kumar, S., Postula, A., Olsson, T., Nilsson,
P., Oberg, J., Ellervee, P., and Lundqvist, D.: ‘Lowering power

consumption in clock by using globally asynchronous locally
synchronous design style’. Proc. 36th ACM/IEEE Conf. on Design
Automation, (ACM Press, 1999), pp. 873–878

27 Bainbridge, J., and Furber, S.: ‘CHAIN: A delay-insensitive chip area
interconnect’, IEEE Micro., 2002, 22, (5), pp. 16–23

28 Lines, A.: ‘Asynchronous interconnect for synchronous SoC design’,
IEEE Micro, 2004, 24, (1), pp. 32–41

29 Liljeberg, P., Plosila, J., and Isoaho, J.: ‘Self-timed architecture for SoC
applications’. Proc. 16th IEEE Int. SoC Conf., 2003, pp. 359–361

30 Carrion, C., and Yakovlev, A.: ‘Design and evaluation of two
asynchronous token ring adapters’. Technical report, CS-TR: 562,
Department of Computing Science, University of Newcastle, 1997

31 Simpson, H.: ‘Four-slot fully asynchronous communication mecha-
nism’, IEE Proc. E, Comput. Digit. Tech., 1990, 137, (1), pp. 17–30

32 Xia, F., Yakovlev, A., Clark, I., and Shang, D.: ‘Data communication
in systems with heterogeneous timing’, IEEE Micro, 2002, 22, (6),
pp. 58–69

33 Goossens, K., van Meerbergen, J., Peteers, A., and Wielage, P.:
‘Networks on silicon: Combining best effort and guaranteed services’.
Design Automation and Test in Europe Conf. (DATE), March 2002,
pp. 423–425

34 Rijpkema, E., Goossens, K., Dielissen, J., Rădulescu, A., van
Meerbergen, J., Wielage, P., and Waterlander, E.: ‘Trade offs in the
design of a router with both guaranteed and best-effort services
for networks on chip’, IEE Proc., Comput. Digit. Tech., 2003, 150, (5),
pp. 294–302

35 Wingard, D.: ‘Micronetwork-based integration for socs’. Proc. Design
Automation Conf. (DAC), Las Vegas, USA, June 2001

36 Felicijan, T., and Furber, S.: ‘Quality of service (QoS) for asynchronous
on-chip networks’. Formal Methods for Globally Asynchronous
Locally Synchronous Architecture (FMGALS), September 2003

37 Dally, W.J.: ‘Virtual-channel flow control’, IEEE Trans. Parallel
Distrib. Syst., 1992, 3, (2), pp. 194–205

38 Felicijan, T., Bainbridge, J., and Furber, S.: ‘An asynchronous low
latency arbiter for quality-of-service (QoS) applications’. Proc. 15th
IEEE Int. Conf. on Microelectronics, December 2003, pp. 123–126

39 OpenCores Organization: ‘WISHBONE system-on-chip (SoC) inter-
connection architecture for portable IP cores’. http://www.opencores.
org/wishbone/doc/specs/wbspec_b3.pdf, 2002

40 Efthymiou, A., Sotiriou, C., and Edwards, D.: ‘Automatic scan insertion
and pattern generation for asynchronous circuits’. Design Automation
and Test in Europe Conf. (DATE), February 2004, p.672

41 Efthymiou, A., Bainbridge, J., and Edwards, D.: ‘Adding testability to
an asynchronous interconnect for globally-asynchronous, locally-
asynchronous systems-on-chip’. IEEE Asian Test Symp., November
2004, to be published

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 283

http://www.opencores.org/wishbone/doc/specs/wbspec_b3.pdf
http://www.opencores.org/wishbone/doc/specs/wbspec_b3.pdf



