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Abstract

The advantages of power-aware processors are well
known. This paper presents an innovative processor archi-
tecture optimized for wireless environments. The presented
architecture incorporates a certain power-aware microar-
chitectural technique, called pipeline depth adaptation and
it is tailored to self-timed processors. With this technique a
processor is able to alter its pipeline depth, while in opera-
tion, trading speed and energy use.

The pipeline depth is changed by making selected
pipeline registers transparent. A shallow pipeline has
lower energy consumption for two reasons: the capacitance
driven by the load signal of the ‘collapsed’ pipeline reg-
isters is not switched and the reduction in branch latency
and data-dependent stalls reduce the cycles per instruction
(CPI) of the processor.

An analysis of the advantages of using pipeline depth
adaptation in an asynchronous processor is given, sup-
ported by simulation results based on a real asynchronous
processor and on applications that are frequently executed
on a wireless environment. Finally a method of dynami-
cally adapting the pipeline depth is described and evaluated
which only reduces the pipeline depth when a branch in-
struction is expected. The presented architecture has a rela-
tively lower power consumption than a conventional similar
architecture, therefore it can be useful in wireless environ-
ments.

Keywords: Low power, Pipeline depth, configurable
pipeline, power-adaptive processors, asynchronous circuits.

1 Introduction

Probably the most crucial factor of a processor employed
in wireless devices is its power consumption. Therefore,
several techniques have been examined that can reduce the

energy consumption of a certain CPU, very often at the cost
of reduced performance. One such method is to adapt the
processor speed according to the requirements of the exe-
cuting task, by mainly altering the supply voltage. Due to
the quadratic relationship of the supply voltage to the dy-
namic power consumption, supply voltage scaling (DVS)
has been employed in a number of research projects and
commercial products as an energy-saving technique [1][2].

Recently, microarchitectural techniques for adapting the
speed and energy consumption of a processor have also
emerged [3][4][5][6]. As such techniques essentially adapt
the effective switched capacitance of the processor, in prin-
ciple, they cannot offer as large energy savings as DVS.
Nevertheless, such techniques are useful since they can be
combined with DVS for further energy savings, while they
do not suffer from the DVS disadvantages: long transition
times between operating modes and increased circuit com-
plexity leading to higher verification effort.

Although DVS appears to have more potential for saving
energy than microarchitectural techniques, in future tech-
nologies this potential will be reduced. As transistor fea-
ture sizes shrink, so does the nominal supply voltage, but
the transistor threshold voltages are not scaled accordingly
because that would cause a large increase in leakage cur-
rent. As a result, the minimum safe operating voltage will
not drop as quickly as the nominal supply voltage, causing
the operating range of DVS to be quite small. Within that
voltage range, the energy savings will be relatively low.

This paper presents a low power processor architecture
incorporating pipeline-depth adaptation (PDA), a power-
adaptive, microarchitectural technique which enables a con-
ventional processor to alter its pipeline depth [7] [8] [9].
Energy is saved by the reduction of speculatively executed
instructions and the reduction of stall cycles, at the expense
of an increase in the cycle time. Similar techniques, called
Dynamic Pipeline Scaling [10] [11] and Pipeline Stage Uni-
fication [12] have been proposed independently for standard
synchronous processors. As explained later, a typical, syn-

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05) 
1063-6862/05 $20.00 © 2005 IEEE 



chronous processor has significant restrictions to the way it
can implement PDA. On the contrary an asynchronous pro-
cessor has enough flexibility that allows a wider choice of
variations.

Section 2 introduces pipeline-depth adaptation and re-
views the related work. Section 3 shows simulation results
for the asynchronous processor where PDA is applied stat-
ically, while section 4 shows an example of dynamically
adapting the pipeline depth while a program is executed.
Finally, we conclude in section 5.

2 Pipeline-Depth Adaptation

A processor with pipeline-depth adaptation has a num-
ber of operating modes depending on the possible config-
urations of its pipeline. When the highest performance is
required, the pipeline should be as deep as possible so that
the instruction throughput is the highest. When energy is
to be conserved, the pipeline can be made shallower, with a
corresponding decrease in the performance as the process-
ing throughput drops.

By decreasing the pipeline depth, energy is saved for two
main reasons: First, the drivers for the pipeline registers that
are collapsed, i.e. made transparent, are gated so a fraction
of the capacitance of the clock network is not switched in
every cycle. Second, a shallower pipeline has a lower ‘cy-
cles per instruction’ (CPI) metric, (or higher Instructions
Per Cycle, IPC). This is due to the lower branch latency and
the reduction in cycles lost to stalls caused by data depen-
dencies between instructions. A lower CPI leads to a lower
number of cycles required to execute a particular task. As-
suming that the energy expended in a cycle is the same re-
gardless of its duration, a lower CPI leads to lower energy
consumption.

Decreasing the pipeline depth has certainly a negative
impact on the performance. For example, halving the
pipeline depth also drops the processing throughput by half.
As the energy savings, by using PDA in such a case, are
lower than 50%, as it will be demonstrated, in terms of
energy-delay product, or, even worse, of ET n, (n ≥ 1)
[13] the proposed technique loses out. However, this tech-
nique is very useful, in wireless devices like Mobile Phones
or low-end Personal Digital Assistants, when, very often,
there is ample time to complete a task, but not enough en-
ergy to be consumed. In those cases the energy savings are
greater than what could be achieved only by slowing down
the clock, while keeping the pipeline depth unchanged.

2.1 Implementation Issues

Implementing PDA in a processor requires solving two
main issues: how to collapse the pipeline registers and how

the pipeline interlock and forwarding mechanisms are af-
fected.

Collapsing the pipeline registers is relatively easy. If
level sensitive latches are used, collapsing involves keeping
them transparent, regardless of the clock transitions. For
edge-triggered registers, multiplexors can be used that se-
lect either the register input or the output, depending on
whether the pipeline register is collapsed or not. Figure 1
shows how a local signal (collapse) modifies the operation
of both types of pipeline registers.

The implementation of pipeline interlock and forwarding
logic that can operate with variable pipeline depths is a hard
problem in a synchronous processor.

In one of the two available synchronous PDA propos-
als, [11], a top-down approach was followed. They start
with a relatively shallow pipeline, show how to split the key
pipeline stages into two and, finally, add extra hardware to
handle interlocking when these two stages are unified.

In [12] a bottom-up approach is presented; the starting
point is a very deeply pipelined processor and a method
of unifying pairs of pipeline stages and handling pipeline
interlocks is presented. Each stage produces a local haz-
ard signal; these are ORed together so that each stage stalls
when it or a stage downstream detects a hazard. Multiplex-
ors then select the appropriate stall signals, depending on
which pipeline register is collapsed.

When a pipeline register is collapsed, loops in combi-
national logic could be formed, in case a signal from the
downstream stage is used as an input to the upstream stage.
Such loops could be formed in the result forwarding paths,
for example. Since the stages are unified there should be
no need to use these forwarding paths and the control logic
should disconnect them by setting the appropriate multi-
plexors, which are present in these paths already. An al-
ternative solution is not to collapse the specific bits of the
pipeline registers that will form loops, which is the choice
preferred in [12]. Unfortunately this solution presumes that
those bits are still clocked by the original, fast clock sig-
nal. Thus two clock signals are needed which means that
a considerable proportion of the energy savings, from not
switching all of the clock network, is lost.

From the above discussion it is clear that PDA proba-
bly seems ‘unnatural’ for a synchronous design. The de-
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Figure 1. Collapsing pipeline registers.
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Figure 2. Block diagram of AMULET3 with collapsible pipeline latches.

signer must have a clear plan about which combinations
of pipeline registers can be collapsible, so that the appro-
priate clock signals can be routed to the right registers and
the pipeline interlock mechanism can be configured accord-
ingly. For these reasons the existing synchronous imple-
mentations offer only 2 ([10]) or 3 ([12]) possible pipeline
depths: the original depth d, d/2, where every other regis-
ter is collapsed, and d/4, where only one in four consecutive
pipeline latches is left uncollapsed.

2.2 PDA In Asynchronous Processors

In the remainder of this paper we show the options avail-
able for PDA using an asynchronous processor. Since the
global clock is replaced with a number of local ‘clocks’
produced by handshake signals, there is considerably more
flexibility in the timing of an asynchronous processor.
Moreover, the asynchronous processors, under certain cir-
cumstances, consume less power than the corresponding
synchronous ones ([8]), therefore they are more suitable for
devices that should consume as less energy as possible. The
explicit communication/synchronization among the differ-
ent stages, in an asynchronous processor, has the additional
advantage of simplifying the interlock mechanism used in
the pipeline.

The details for the circuit and microarchitecture modifi-
cations implemented to AMULET3 [14] (an asynchronous
ARM processor) in order to support PDA are described in
[9]. A standard latch controller is implemented with ap-
proximately 10 logic gates, while the collapsible controller
requires about double the number of gates. The area over-
head of this technique is minimal, since only the processor’s
5 latch controllers need to be modified, a tiny proportion of
the total processor area.

Another worthwhile feature of PDA in an asynchronous

environment is that changes to the configuration of a
pipeline latch can be made dynamically while the proces-
sor is operating. For example, in AMULET3 some instruc-
tions (e.g. long multiplications) require multiple execution
cycles to complete, so when the pipeline stage between de-
code and execute is collapsed (fig. 2), these instructions can-
not be executed. A good solution is to temporarily clear the
collapse signal for the decode-execute pipeline latch. This
re-instates the pipeline stage between decode and execute
for the duration of the multi-cycle instruction, so that mul-
tiple execution cycles can be performed as required. Sec-
tion 4 shows another example of dynamic PDA which in-
volves more pipeline latches than in the simple case above.

3 Experimental Results for Static Pipeline
Adaptation

The proposed architecture has been evaluated by simu-
lating a mixed behavioural/structural Verilog model of it.
The proposed processor is essentially an AMULET3 with
the latch controllers being replaced with collapsible ones
and some other minor modifications mainly for distributing
the appropriate control signals. One of the reasons for us-
ing AMULET3 as the basis of our design is that it supports
the instruction set of the ARM processor, which is a proces-
sor very widely used on mobile devices. Therefore, since
the presented architecture’s sophisticated features are trans-
parent to the software, the presented CPU can easily be in-
corporated in such devices, since no alterations is software
would be needed.

A block diagram of the newly introduced parts of the
processor is shown in figure 2. All the stages shown in the
figure are the comprehensive pipeline ones, with the possi-
ble exception of ‘Thumb’ which is an optionally active in-
struction pre-decoder, decoding a number of 16-bit instruc-
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Figure 3. Effect on execution delay.
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Figure 4. Effect on energy consumption.

tions supported by AMULET3. The processor is not deeply
pipelined, thus the energy savings of PDA are expected to
be limited. A processor with a larger number of pipeline
stages would achieve considerably greater energy savings
by adapting its pipeline depth.

The energy consumption of the processor was estimated
by counting the number of transitions of the processor’s
nodes and multiplying by the corresponding capacitances
(incl. interconnect) which were extracted from the post-
layout AMULET3 netlist, designed in a 0.25 µm technol-
ogy.

The benchmarks were chosen so as to represent typical
applications for mobile devices. Therefore, we have used
(a) Dhrystone a string handling benchmark representing the
performance of the similar applications running on mobile

phones (e.g. handling the phone book), (b) a filter selected
from an implementation of GSM encoding, (c) a DES en-
cryption program very frequently used in any wireless de-
vices, and two SPECInt95 programs used in wireless en-
vironments where both storage and network bandwidth are
limited : (d) compress and (e) ijpeg. All are written in C
and compiled with speed optimizations enabled using the
compiler provided with the ARMtools 2.51. The input size
for all benchmarks was relatively small, so that the simula-
tion can complete in reasonable time. For the same reason
ijpeg was only allowed to do one cycle of compression and
decompression.

Of these benchmarks, DES encryption differs as it com-
prises almost entirely of sequential code; the only branches
that occur are a few subroutine calls. Thus there is almost
no energy wasted in erroneous prefetch.

Figures 3 and 4 show the effect in delay and energy of
collapsing every combination of pipeline latches in the pro-
cessor. Table 1 contains the key to the pipeline latch names.
So the rightmost points in the graphs show the results when
all the pipeline stages are collapsed, whereas the leftmost
points correspond to the collapse of only a single pipeline
stage. The reported values are normalized with respect to
the fully-pipelined machine. When all the pipeline stages
are unified the execution delay increases by as much as 3.12
times (DES), while the energy can be reduced by up to 13%
(Dhrystone).

It has to be noted that the actual average pipeline occu-
pancy observed in the fully-pipelined processor is slightly
over three simultaneous instructions. This is because the
instruction memory is significantly slower than the proces-
sor and the Thumb stage which decodes 16-bit instructions
is almost never occupied as the benchmarks used here are
all using the 32-bit instruction set.

4 Dynamically Adapting the Pipeline Depth

Using the collapsible latch controllers to set a constant
processor pipeline depth for the duration of a program ex-
ecution, as shown above, is the most conservative way to
use PDA. As an example of dynamically (i.e. while the pro-
gram is executed) adapting the pipeline depth we present a
scheme where the whole pipeline is collapsed when there is
an indication that a branch may be imminent. This saves
the energy wasted in prefetching instructions beyond the

Table 1. Pipeline latch names.
PF Prefetch - Fetch
FT Fetch - Thumb
TD Thumb - Decode
DE Decode - Execute
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branch, while reducing the pipeline depth for only a frac-
tion of the execution time.

Since we are not interested in finding the branch target,
a simpler and more energy efficient technique than standard
branch prediction methods can be used. It is reported that
over 80% of the branches are conditional [15]. Thus an
instruction that sets a branch condition could be used as
a hint that a branch is approaching. As mentioned in the
last section, AMULET3 implements the ARM architecture
which uses condition codes to specify the branch condition.
For processors that do not use condition codes, comparison-
type instructions could be detected instead. Once such an
instruction has been detected, the processor could be con-
figured to a pipeline depth of 1, so that when the branch
arrives no following instruction will be fetched until its tar-
get has been computed. When the first instruction from the
branch target is fetched, the processor will resume its nor-
mal operating mode. We call this scheme condition code
detection (CC-detection).

Detecting instructions that change the condition code is
simple in the ARM instruction set architecture as there is a
specific bit in the data-processing instruction format which
controls this. It is important that the detection occurs as
early as possible in the pipeline; the number of stages be-
tween prefetch and the detecting stage determine how many
instructions following the one which sets the condition code
have already been fetched and thus how much energy might
be wasted. In our modified AMULET3 the detection can be
done at the first decode stage (Thumb in figure 2), so only
one instruction may be already fetched before the detection
happens. This is very useful as over 50% of branches in the
benchmarks used here, immediately follow the instruction
(usually compare - CMP) that sets the condition codes.

In the ARM instruction set architecture all instructions
can be conditional. Thus if the condition is set for a non-
branch instruction, the processor will stay in the single-
stepping mode until a branch happens to be taken. To test
the impact of this in the execution delay, another variation
of the CC detection scheme was also designed and evalu-
ated. This scheme detects instructions that are conditional
but not branches and forces the processor to return to the
fully-pipelined mode (CC detect-early), when it realises that
there is no branch to be taken. This method is expected to
improve the execution delay without significantly compro-
mising the energy savings achieved.

4.1 Evaluation

The two condition-code setting detection techniques re-
quire sufficiently small changes to the processor. In order to
measure their efficiency two Verilog models were produced
and simulated following the methodology described earlier.

The execution delay of each benchmark, for the two vari-
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Figure 5. Evaluation of condition code set-
ting.

ations described above and the fully unpipelined version,
are shown in figure 5(a), normalized relative to the fully-
pipelined version. Figure 5(b) shows the normalized energy
consumption for the same programs and PDA techniques.

DES encode has almost no speculative instruction
fetches, so there are insignificant energy savings to be
gained by using a shallower pipeline. Thus the interest is in
the execution delay overhead of the method tested. In this
case both condition-setting detection variations managed to
keep the execution delay to the levels of the fully-pipelined
version. In comparison the fully unpipelined version is over
three times slower.

The difference in the two variations can be seen in a
benchmark like GSM filter. The execution delay of CC-
detect is very close to that of the unpipelined processor,
while the execution delay of CC detect-early is almost half
that of the former. As the GSM filter code has many condi-
tional data-processing instructions, it clearly benefits from
restoring the fully-pipelined mode early.
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Generally, both variations managed to reduce the execu-
tion delay, compared to the fully unpipelined processor, for
an increase in energy consumption. CC detect-early is con-
sistently faster than CC-detect, but it also consumes more
energy. It is very useful for benchmarks that have a large
number of data-processing conditional instructions, such as
GSM filter. This may be less significant in other processors
which do not have conditional data operations. By using
those techniques we managed to reduce the delay overhead
to just 50% of the fully pipelined version, while still reduc-
ing the overall power consumption by up to 12%.

Unfortunately, the energy delay product of both vari-
ations of this technique is lower than that of the fully
pipelined processor. Thus they are useful in systems where
the energy consumption is more important than the perfor-
mance, and this is very often the case in the wireless de-
vices.

5 Conclusions

This paper presented a low power processor asyn-
chronous architecture, tailored to the wireless environ-
ments. The proposed architecture incorporates ”pipeline
depth adaptation”, a microarchitecture-level, power-aware
technique. Using this technique the presented processor is
able to alter its pipeline depth, while in operation, trading
off speed for energy reduction.

The pipeline depth is changed by making selected
pipeline registers transparent. In order to employ PDA, the
required circuit modifications are minimal and the resulting
processor can change its pipeline depth from 1 to its maxi-
mum of 5. As the basis CPU -even though it is very widely
used in embedded systems- is not a deep pipelined machine
and the actual maximum pipeline occupancy is 3, the energy
benefits of collapsing the pipeline, in a static manner, are
not as profound as those expected for a significantly deeper
pipeline: up to 13% less energy is consumed when the
pipeline depth is 1, while the execution delay can increase
by up to 3 times. In order to further increase the perfor-
mance of the presented architecture, while maintaining its
low power consumption, a number of methods of adapting
the pipeline depth in real-time have also been incorporated
and evaluated. Those methods lower the pipeline depth
when a branch instruction is expected, and increase it after
the branch is executed. As the experiment results demon-
strate, those schemes increase the performance (compared
to the static scheme) of a number of representative applica-
tions while they still reduce the power consumption com-
pared to the fully-pipelined non-collapsible underlying ar-
chitecture.
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