
Exploiting mpical DSP Data Access Patterns amid 
Asynchrony for a Low Power 

M. Lewis 
Ericsson Microelectronics AB 

Isafjordsgatan 16 
S-164 81 Kista, Sweden 

mike.lewis @mic.ericsson.se 

Abstract 
CADRE (Configurable Asynchronous Dsp for 

Reduced Energy) is a low-power asynchronous DSP 
(digital signal processor) architecture intended for 
digital mobile phone chipsets. Central to the architec- 
ture are the X and Y register banks, which supply the 
four processing units with the data they require and to 
which results are written. The register banks each 
require 10 read and 6 write ports to service all possible 
requests, leading to a large and power-hungry unit if 
implemented directly. Instead, typical DSP data 
access patterns are exploited to produce a partitioned 
design which offers fast and low-power operation in 
typical cases but also caters for worst-case patterns. 
Power consumption and performance results for the 
register bank with the DSP running typical algorithms 
are presented, and it is shown that the register bank 
consumes only 8% of total power (core and memory) 
in what is already a highly power-efficient system. 

1. Introduction 
CADRE is a 16-bit DSP architecture intended for 

low-power embedded applications such as digital 
mobile phone chipsets. The design of the architecture 
is based on the principle that a reduction in power con- 
sumption can be traded for an increase in die area by 
providing multiple processing elements, which allow 
the voltage to be reduced while maintaining through- 
put (so-called architecture driven volrage scaling [ I]). 
The CADRE architecture contains 4 functional units 
(Mus), as shown in Figure 1, each operating with an 
average period of 2511s to give a total throughput of 
160 million operations per second. A fuller descrip- 
tion of the architecture can be found in [2]. 

One of the challenges in the design of the architec- 
ture is to supply the functional units with data at a suf- 
ficient rate while minimising the associated power 
consumption. This power consumption is made up of 
the power consumed within the main memory RAM 
units themselves, and the power required to transmit 
the data across the large capacitance of the system 
buses. Memory accesses can form the largest compo- 
nent of power consumption in data-dominated appli- 
cations 133, and a study of the Hitachi HX24E DSP [41 
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showed that memory accesses caused ,a significant 
proportion (-20%) of the total power consumption 
even where the activity of the system is not dominated 
by memory transfers. As technologies scale further 
into the deep submicron region, the proportion of the 
power consumption associated with memory transfers 
will increase, due to the increased relative cost of driv- 
ing long interconnections. 

Fortunately, DSP programs tend to display very 
strong locality of reference, so the memory hierarchy 
approach can work very well to both reduce power 
consumption and increase operating speed. For this 
reason, a large register file made up of hvo 128 word 
banks (labelled X and Y) is included in the design. 
Many DSP algorithms map naturally onlo two sepa- 
rate banks, e.g. data in one bank and filter coefficients 
in the other, or the real part of data in one bank and the 
complex part in the other. 

I I OPERANDSETUP 

Figure 1 Block Diagram of CADRE 

Having a large explicit register file has ii number of 
advantages when compared to the alternative of hav- 
ing few local registers and a cache berween main 
memory and the DSP. In a traditional DSP architec- 
ture, data is located in memory by means of address 
registers whose contents are updated by address gen- 
eration units (AGUs). The AGUs update the addresses 
in parallel with arithmetic instruction execution, in the 
pattern required by the algorithm. Thess generally 
support features such as circular buffeis and bit- 
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reversed addressing, and have the same number of bits 
width as the maximum addressable space of the proc- 
essor (24 bits for CADRE). CADRE can require up to 
8 operands for the functional units per cycle, with 
each access potentially requiring an address update. 
The hardware required to perform these 8 updates 
would clearly represent a significant area and power 
overhead if implemented by 24 bit AGUs. 

Having an explicitly addressable register file 
allows data to be located in the register file by means 
of 7-bit index registers. These can be updated much 
more quickly with much lower hardware and power 
cost, than the 24-bit wide address registers. In the 
CADRE architecture, address registers are only used 
for loading and storing data between the register file 
and memory, with transfers of 16 or 32 bits allowed 
from each bank per operation. 

The notation used in the paper is that a store 
involves the reading of a value from the register bank 
and its transfer to memory, while a load involves the 
reading of a value from memory and its transfer to the 
register bank. 

2. Register bank design 
A typical multiported register cell with n read and 

m write ports is shown in Figure 2. The data is stored 
by the cross-coupled weak inverters. Each read port 
connects to one bit line (Nop l  ... Nopn, which go to all 
of the cells at that bit position in the register bank) on 
which the read value is placed, and one word line 
(en-opl ... en-opn, which go to all of the cells in that 
word of the register bank) through which the word to 
be read from the register bank is selected and which 
enables the precharged bit lines to be discharged 
depending on the contents of the register cells. An 
example of how the bit and word lines are connected 
is given in Figure 3. Each write port connects to one 
word line, (en-wl ... en-wm) selecting the word to be 
written and enables the value stored on the bit line 
(wbl ... wbm) to be driven onto the weak inverters. 

By necessity, the read and write transistors are 
larger than those for the weak inverter, as the read 
ports drive the large capacitance of the bit lines and 
the write port$ need to overdrive the weak inverter. It 
is therefore the number of ports which control the 
overall size of the register bank. The physical size of 
the register bank dictates the length of the bit lines, 
and it is the charging and discharging of these lines 
which represents one of the major sources of power 
consumption in the register bank. It is claimed [5] 
that, if the size is limited by the wiring pitch of both 
the bit lines and word lines, that the area of the register 
bank can be expected to increase quadratically with 
the number of ports. Consequently, despite a number 
of power saving measures that can be employed, the 
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Figure 2 Multiported register cell 
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Figure 3 Word and bit lines in a register bank 

register bank is likely to be a major component of the 
power consumption. 

One way of avoiding the energy and area cost of a 
large centralised multiported register bank is to divide 
it into a number of smaller banks, each of which are 
associated with a smaller number of processing ele- 
ments. However, this requires that data access pattems 
can be mapped onto this configuration, and adds addi- 
tional complexity for the programmer or the compiler. 
An automatic way of performing this mapping is pro- 
posed in [6], but this adds hardware complexity and is 
not necessasily well suited to DSP algorithms, where 
individual data values tend to be processed by many 
or all of the functional units. 

The register bank for CADRE requires 10 read 
ports (2 readr from each functional unit, and data to 
be read for stores to memory from two sequential reg- 
isters aligned on an even boundary), and 6 write ports 
(1 writeback from each functional unit, and 2 writes 
to sequential even-aligned registers for data arriving 
due to loads from memory). The proposed design 
exploits the timing flexibility of asynchronous pipe- 
lines and the data access pattems of typical applica- 
tions, to give the appearance of two unified 128-word 
register files with the requisite number of read and 
write ports at a much lower area and power cost than 
a conventional multiported register bank. It also offers 
the potential for faster reads than could be expected 
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from a conventional implementation, when using common 
data access patterns. 

X:n 

X:n 

3. Data access patterns 
Many DSP algorithms require access to sequential 

addresses, such as for sequential data values and filter coef- 
ficients, and write the results back in sequential order. 
When parallelized, this maps onto simultaneous requests to 
four consecutive addresses. Tho important examples of this 
are the F’IR filter algorithm and the calculation of autocor- 
relations (autocorrelations being the dominant processing 
component of many speech compression algorithms). 

3.1. FIR filter data access patterns X:n-6 X:n+l X:n-5 Y:n Y:n-6 \I:n+l Y:n-5 6 

X:n-7 X:n+l X:n-6 Y:n Y:n-7 Y:n+l Y:n-6 7 
A N-point finite impulse response (FIR) digital filter is 

characterized by the equation: 

y(n) = E” x ( n - i ) c ( i )  
i = O  

When mapped onto four functional units, this leads to 
simultaneous accesses to x(n), x ( n -  1).  x ( n - 2 )  and 
x ( n - 3 )  from X memory, and c(O), ~ ( l ) ,  4 2 )  and 4 3 )  
from Y memory, and so on for all values of i at each data 
index n . 

3.2. Autocorrelation data access patterns 

Autocorrelation is characterized by the equation: 
N 

r (k )  = E x ( n ) x ( n - k )  
n = O  

When implemented directly with four functional units, 
this can require simultaneous accesses from up to 8 data 
locations. However, the situation can be improved by split- 
ting the data into two halves with one half residing in the X 
register bank and the other in the Y register bank. In this 
way, no more than 4 reads occur to each register bank, and 
the final result can be calculated with a summation after 
processing the blocks. 

Where more than one autocorrelation value must be cal- 
culated, further optimizations can be made by concurrently 
calculating sets of consecutive autocorrelation results to 
give sequential data accesses, which also minimizes multi- 
plier switching activity by keeping one input constant over 
four operations. This leads to the register access patterns 
shown in Table 1 for each data point, with MAC A-D rep- 
resenting the four separate multiply-accumulate functional 
units. The summation can be performed in any order, and 
in this implementation MAC A and MAC C process even 
data points in the X and Y register banks respectively, while 
MAC B and MAC D process odd data points. In practice, 

the functional units in CADRE contain only 4 accumula- 
tors, so autocorrelation values for 4 valules of lag k (0 ... 3, 
4...7, etc.) can be calculated on each pass through the data. 

Table 1. Autocorrelation data access patterns 

4. Register bank structure 
The sequential nature of data accesSes suggest that one 

way to improve the performance and power consumption of 
the register banks in this application would be to divide 
them into N address-interleaved sub-banks, with the sub- 
banks containing sequential register numbers repeating 
every N th digit. Given that there are 4 functional units, and 
that operations are mapped onto separate X: and Y banks, an 
obvious choice of N for this design would be 4, with a sub- 
bank size of 32. Usefully, optimised custorn layout cells are 
available from the AMLJLET3 processor, which has a 32- 
entry register bank. 

This sub-division means that sub-bank 0 contains regis- 
ters 4n, sub-bank 1 contains registers 4n + 1 , sub-bank 2 
contains registers 4n + 2 and sub-bank 3 contains registers 
4n + 3  (with n = 0...7) as shown in Figure 4. Write- and 
read-requests are distributed to the appropriate sub-bank, 
by two very different mechanisms. 

When the code is written so that all of the register 
accesses to each bank occur in different sub-banks, the 
power consumption and delay incurred at each read port 
will be that of an access to a single-ported 32-entry register 
file, with some overhead from the routing: and arbivation 
circuitry. Where contention for register sub-banks exists, a 
number of access cycles can be performed until all of the 
requests have been answered. In the asynchronous domain, 
this represents no difficulty: surrounding stages will simply 
wait until the accesses have completed. The programmer 
need only ensure that the average data access patterns are 
good to ensure that overall performance will not be 
affected. By contrast, in a synchronous system it would be 
necessary to ensure that, at most, only a small number of 

6 



Write arbiters 

WY subbanks 

Read winner 
selection 

Read pori 
t 1  I 

I +  
Read requests (x8) 
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access contentions occurred so that the operations are guar- 
anteed to complete within the given clock period, which 
would be extremely difficult. 

5. Write mechanism 
Write-requests to the register bank arrive asynchro- 

nously: while there is likely to be some correlation between 
the times of writeback requests from the functional units. 
data returned by loads from external memory can arrive at 
arbitrary times. It is expected that contention for the sub- 
banks is unlikely between writebacks from functional units, 
as few algorithms write back data other than in a sequential 
manner. Contention is somewhat more likely between loads 
from memory to the registers and writebacks from func- 
tional units to the registers, since the timing of load com- 
pletion is unknown and the destination register for the load 
is likely to be in one of the next groups of 4 registers to 
those currently being written back. 

The chosen mechanism for distributing writes is shown 
in Figure 5. When a write-request arrives at one of the 
writeback ports, it is routed to one of the arbiter blocks in 
each of the 8 sub-banks. The selection is based on bit 7 (X/ 

Y select) and bits 1:0 (sub-bank selection) of the register 
selection reg[7:0]. Similarly, the data and the address 
within the sub-bank (reg[6:2fi are also passed to the target 
sub-bank. A similar process occurs for arriving load com- 
pletions, except that only one load can occur to each of the 
X and Y register banks and, when a 32-bit load is selected, 
the targets are either sub-banks 0 and 1 or sub-banks 2 and 
3. 

At the input to each sub-bank, an arbiter block accepts 
possible write-requests from all of the write ports, and con- 
tention for that sub-bank is resolved amongst the pending 
requests. The data and register selection of the winning 
request are passed to the sub-bank write input, and the write 
process occurs. Once the write has completed, the acknowl- 
edge is passed back to the winning write port, the winning 
request is removed and any other contending requests can 
gain access in whichever order that the arbiters determine. 

Figure 6 shows the organization of the arbiter blocks, 
and the arbitration component used to construct it. At the 
input to each arbiter, the incoming requests vie for control 
of the mutex element. The winning request then gains con- 
trol of the multiplexers, causing the appropriate register and 
data values to be passed through. It can be seen that the 
organization of the arbiter components is asymmetric: load 
completion is arbitrated after all of the writeback requests, 
making load completion somewhat faster and giving it 
higher priority. If a conflict occurs between the writebacks 
and incoming data on the final instruction of a loop, it is 
important that the new data should arrive first, so that the 
register read for the next iteration of the algorithm can 
begin. The writeback occurs in the pipeline stage following 
the register reads, so that the writebacks will then occur in 
parallel with the reading of the fresh data. If the priority 
were reversed, then the writebacks would complete and the 
execution stage of the pipeline would become empty. How- 
ever, the register read in the previous stage would be unable 
to start until the loading of fresh data had completed, lead- 
ing to a bubble being introduced in the pipeline while the 
read is performed. 

The individual arbitration circuits are not symmetrical in 
terms of the delay that they impose: the multiplexers are 
normally set to pass input A, and if input B wins control it 
is necessary to delay the output until the multiplexers have 
changed their selections. A slightly fairer technique, which 
is also likely to be faster, would be to use a tree arbiter with 
arbitration off the critical path, such as that proposed in [7], 
to determine the winning request and then select the data 
and address corresponding to the winner (e.g. by using tri- 
state drivers). However, writebacks to the register bank 
from the functional unit accumulators are an infrequent 
event in the CADRE architecture, and the repeated tree 
structure gave a simple (and readily expandible) design 
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Figure 6 Arbitration block structure and arbitration component 

which operated well within the target speed for typical 
access pattems. 

6. Read mechanism 
6.1. Overview 

In contrast to write requests, read requests to the register 
banks tend to arrive at approximately the same time as they 
originate from a single triggering event. Also, it is very 
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much more likely that read requests from the functional 
units will conflict with one another in their choice of sub- 
bank, particularly in the case where they all require access 
to exactly the same register (as occurs in the autocorrelation 
example in Table 1). For these reasons, an asynchronous 
arbiter tree will give poor performance as the chances of 
metastability in the mutual exclusion elements is maxi- 
mized due to this near-synchronization of requests. In addi- 
tion, when a number of functional units all require access 
to exactly the same register, it is undesirable that the same 
register should be read multiple times, for reasons of both 
performance and power consumption [81. 

The method proposed here uses distributed requests 
coordinated by a central read controller, and avoids redun- 
dant reads as an inherent part of the mechanism by which a 
multiported register file is simulated. The register bank 
waits for all read requests to have arrived before commenc- 
ing: this synchronisation incurs little penalty, since incom- 
ing requests are already nearly synchronised, but greatly 
simplifies the design of the hardware by avoiding the need 
for arbitration. 

The read mechanism is shown in more detail in Figure 
7. The system consists of the register sub-banks, which are 
connected to the read ports by a switching network. The 
switching network allows any read port to pass a request for 
a register to any sub-bank, and for register data and the reg- 
ister selection address from each sub-bank to be passed 
back to any of the read ports. The read process occurs over 
one or more cycles, managed by the read controller. The 
read cycle begins with one of the contending requests from 
the read ports being selected as the winner at each register 
sub-bank. Reads are then performed, and the winning reg- 
ister selections and the associated register data are passed 
back to the read ports. The controller then signals for the 
read ports to evaluate whether or not their request has been 
the winner: if so, the read port captures the data and 
removes its request. If there are any requests outstanding at 
the end of the cycle, the controller begins another read cycle 
after a delay to allow changes to the request signals to prop- 
agate across the switching network. 

In practice, read requests arrive in pairs from each func- 
tional unit, so there is one control circuit for every two 
ports. However, for simplicity only a single port is shown 
in the figure. Requests arriving from the read ports are syn- 
chronized by the lock unit, which then signals the read con- 
troller to begin the read operations. 

Data being written into the register bank as the result of 
a load from main memory may arrive at any time. This 
implies a possible hazard, where a load is initiated and a 
subsequent instruction attempts to access the data before it 
has arrived from memory. It is therefore necessary to 

enforce locking of registers which are the target of load 
instructions, to ensure that this does not occur. Before 
reaching the read ports, each active read request is com- 
pared against any currently active register locks. If a con- 
flict exists, the read request is stalled until the lock is 
removed when the loaded data is written to the register. If 
no conflict exists, the read request is passed on to the read 
port. 

6.2. Read operation 

For reasons of synchronization, a request must be sent to 
each read port regardless of whether a read is actually 
required or not: a read enable signal is bundled with the 
request I acknowledge interface to the read port. When a 
read request, whether enabled or not, arrives at a read port 
the port asserts the go signal to the lock unit. 

While the go signals are being passed to the lock unit, 
each enabled read port passes its choice of register (5 bits) 
and a read request signal to the relevant sub-bank. At each 
register sub-bank, a simple priority selector chooses one of 
the active requests according to some arbitrary ordering, 
and passes the associated register selection to the sub-bank. 
The ordering chosen could be exploited by the designer, by 
connecting slower processing elements to the ports with 
higher priority: the slowest functional unit is guaranteed to 
begin operation in the earliest possible read cycle, with sub- 
sequent read cycles occuning concurrently with this slow 
operation. 

Once go signals have been issued by all of the read ports, 
new register locking information and details of loads and 
stores are accepted from the load / store unit: this is the 
point where synchronization occurs. The new register lock- 
ing information does not affect the state of any of the cur- 
rently pending reads, allowing reads from a register and 
loads writing to that register to take place in the same par- 
allel instruction (read-before-write ordering is enforced by 
the lock unit). Once the load I store information is latched, 
the reqdo signal is asserted to the read controller to begin 
the first read cycle. 

The read controller is responsible for coordinating 
requests from the read ports and performing read cycles a y  
long as any read requests are outstanding. Each read cycle 
begins by sending the req-read signal to all of the sub-bank 
inputs. All of the sub-bank input selectors with at least one 
active read request perform read operations on their sub- 
banks, and respond on ack-read. Sub-banks with no active 
read requests remain idle, responding immediately with 
ack-read. Along with the output data, the register selection 
address of the winning request is also passed back across 
the switching network to the requesting read ports allowing 
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Figure 7 Read mechanism 

them to determine when their register request has been sat- 
isfied. 

Once each sub-bank read has completed, the read con- 
troller asserts req-eval to all of the read ports, to indicate 
that the output data from the register sub-banks is valid. 
Each read port has compared the winning register selection 
with its desired register in parallel with the register read 
process, SO any read port whose request has been satisfied 
can capture the data immediately and remove its read 
request. This means that, if multiple read portr are request- 
ing the same register, all of the read ports will have their 
requests satisfied by a single read cycle. Each read port 
responds with ack-eval once the capture I non-capture of 
data is complete and the read cycle is completed once all 
read ports have responded with ack-eval. As soon as the 
data has been captured by each port, i t  is passed to the func- 
tional unit which requested it using reg-op I ack-op. 

-4 c ........................... ........ ~ ......... 

After the cycle has completed, another cycle is begun by 
the read controller if any read requests are still outstanding. 
Matched delays in the control path ensure that changes to 
the read-requests have time to pass across the switching 
network before the next read cycle begins. Once the final 
cycle is performed, with all read requests satisfied, the read 
controller finishes the read process by responding with 
a c k s o .  The lock unit, in turn, completes the handshake 
process with the read ports. The read ports only complete 
their input handshake cycle once both the read process has 
completed, and the functional units have accepted the new 
data: this means that, while data will be passed forward 
from the register bank to the functional units as soon as it 
is available, new read requests will only be accepted at the 
input of the register bank once the whole read process has 
completed. Free access without this synchronization would 
require arbitration for access to the read coirltroller: as men- 
tioned previously, the near-synchronization of the read 
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requests makes this undesirable. Also, the synchronization 
steps greatly simplify the locking mechanism. 

7. Implementation 
The CADRE DSP has been designed at the schematic 

level, using a mixture of standard cells and full-custom lay- 
out cells on a 0.35pm 3 metal layer process. The register 
bank consists of 89,835 transistors, out of which 50,736 
transistors are used in the register sub-banks themselves. Of 
the remaining 39,100 transistors, approximately 11,000 are 
used in the control circuits with the remainder performing 
switching functions. 

Control circuits for the DSP were specified using signal 
transition graphs, and synthesised into speed-independent 
circuits using the Petrify tool [9]. 

8. Simulation and Testing 
All testing was performed by simulation of the processor 

architecture of Figure 1. The Powermill circuit simulator, 
which claims SPICE-like simulation accuracy, was used to 
perform the analyses. Memory models were used to simu- 
late the system program and data memories. These mod- 
elled the power consumption of the memory units, using the 
power consumption figures from the RAM blocks of the 
AMULET3i embeddedprocessor system [ 101. Since layout 
of the CADRE processor has not begun, parasitic wiring 
capacitances were not available for inclusion in the simula- 
tions. 

Timing information for reads and writes to the register 
bank were collected by using the functional modelling 
interface supported by Powermill. C models were written to 
record the time requited to perform a writeback to the reg- 
ister file, and to record the time required to perform reads. 
The writeback time was measured as the time taken from 
the start to the finish of the write request handshake at each 
of the write ports. The read time was measured at each 
active read port, as the time taken from the assertion of the 
go signal to the completion of all the read requests at that 
Port. 

8.1. Read and write timing 

The first test performed simply measured the depend- 
ence on the read and write process times on the number of 
conflicting elements. First, a succession of reads were per- 
formed on a single sub-bank; with the number of conflict- 
ing requests at the sub-bank increasing from one to nine. 
Second, a succession of writes were performed on a sub- 
bank, with the number of conflicting write requests increas- 
ing from one to four. The random nature of the arbitration 

for the write process means that there some variability is to 
be expected in the write times when a deliberate conflict is 
being introduced. In theory, the time to resolve metastabil- 
ity in the arbiters is unbounded, To give a rearonable assess- 
ment of the practical performance, each number of requests 
was performed using a variety of different write port con- 
figurations (to use different paths through the arbiter tree), 
and were repeated to perform a total of 100 attempts for 
each case. 

8.2. Testing with DSP algorithms 

To evaluate the effectiveness of the register file pamtion- 
ing and the analysis of data access patterns, and the power 
impact of the register bank on the whole system, extensive 
testing was performed using real DSP algorithms. The cho- 
sen algorithms were a 20 point FIR filter, a @-point com- 
plex FET, and the LPC (linear predictive coding) analysis 
section from a GSM speech compression algorithm. The 
FIR filter and m;T were performed using both random data 
and speech data taken from the European Telecommunica- 
tions Standards Institute’s standard speech sequence for 
speech codec testing, with 256 samples being processed in 
each case. The W C  analysis program war performed on 
speech data alone, on a GSM speech frame of 160 data sam- 
ples. 

9. Simulation Results 

9.1. Read timing 

The maximum read times for each level of conflict are 
shown in Table 2. The results demonstrate that the first read 
cycle takes place quickly, within 5ns. Subsequent read 
cycles are slower, taking between 7-811s to complete. This 
is because the req-eval/ ack-ewal cycle must be completed 
before another read cycle can be started, while the data 
from the first read cycle can be captured as soon as the 
req-eval signal has been issued. The figures presented are 
for the time taken to perform the last read cycle: other 
requests will be serviced in earlier read cycles, and will take 
proportionately less time. 

9.2. Write timing 

The measured worst case write cycle times for each level 
of conflict are shown in the right-hand column of Table 2. 
It can be seen that the time per write does not increase in 
proportion to the number of writes, since the incremental 
increase reduces somewhat. This is due to other requests 
propagating further through the arbiter tree while the first 
write requests are serviced, reducing subsequent write 
times. 

11 



Number of requests Read cycle 
per bank time 

I 1 I 5ns I lons I I 

Slowest write 
access time 

2 1211s 18ns 

3 

4 

I I 8 55ns 

Table 2. Read and write times with different levels of 
contention 

19ns 2611s 

26ns 3211s 

93. Performance for DSP algorithms 

6 

7 

The average, minimum and maximum read and write 
cycle times for the different DSP algorithms are shown in 
Table 3. It can be seen that, in all cases, the average read 
time is close to the minimum read time which illustrates the 
efficient performance of this asynchronous system. 

The FFT has the worst read performance, as it is difficult 
to schedule all of the operations so that they do not conflict 
due to the bit-reversed addressing. However, the average 
caqe performance is still less than twice the minimum case, 
and is substantially less than the target cycle time of 25ns.. 

I I Read times I Write times I 

4111s 

48ns 

Algorithm 

FIR filter 

E analysis 

Table 3. Register access times for DSP algorithms 

The mR filter algorithm could be expected to always 
have good performance, since it can be designed so that no 
conflicts occur. However, when the buffer size is not an 
even multiple of 4 (as is the case here, due to the way in 
which the parallelism is implemented) there are boundary 
cases where the sequential ordering breaks down. This, 
combined with additional delays due to store operations, 
leads to the higher maximum read time. 

The GSM LPC analysis code demonstrates the best aver- 
age and maximum read time. The code has, at worst, two 
read cycles required when implementing the autocorrela- 
tion portion of the algorithm. 

In all c a w ,  the average write time is very close or iden- 
tical to the minimum value. The FIT and the FIR filteralgo- 
rithms suffer similar difficulties in their write accesses as 
they do for their read accesses. By contrast, the LPC anal- 
ysis algorithm never experiences write. contention: the 
higher maximum write time is solely due to the worst-case 
delay through the writeback arbiter tree. 

9.4. Power consumption results 

Energy per operation for the whole DSP system running 
the test algorithms are given in Table 4. This gives the total 
system energy including the memory models, the energy 
dissipated in the whole register bank, that dissipated in the 
register subbanks themselves, and the number of accesSes 
to the register bank and the data memories (the data mem- 
ory consumes 0.67nJ per access). The siimulations do not 
take into account capacitances due to interconnections, 
with the overhead of the switching network between the 
ports and the sub-banks representing the greatest load. 
However, for each operation only one path is driven from 
each port to a single sub-bank, and normally-closed opera- 
tion of latches are used to avoid unwanted1 transitions from 
propagating across the network and out through the read 
ports. 

9.4.1. Effect of split register architecture 

It can be seen from Table 4 that, averaged over the dif- 
ferent runs, the register bank consumes less than 9% of the 
total energy. The register bank uses decreasing amounts of 
energy per access for the FFT. FIR filter and LPC analysis 
tests respectively: this corresponds to how efficiently the 
algorithms make use of the register sub-bank interleaving. 
Accesses to the register bank require approximately one 
third of the energy required for an access to the main mem- 
ory, and the register bank is accessed between 6 and 21 
times more frequently than the memory. Even were the 
inclusion of wiring capacitances to increase the register 
bank energy consumption disproportionakly, there is still a 
clear energy benefit from use of the register bank. A direct 
comparison is difficult however: the energy consumption 
figures for the main memory are based on those for an 8 kil- 
obyte single-ported RAM. To service the functional units 
would require higher speed and / or multiple ports, both of 
which would dramatically increase the anergy consumed 
by the memory system. 

If it is assumed that power consumption of register 
banks increases in proportion to the square of the number 
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Table 4. Energy per parallel instruction and per register bank access 

of ports as suggested in [5],  then the average power for a 
conventional multiported implementation could be greater 
by a factor of 64 than the interleaved scheme presented 
here: the register sub-banks have only 2 ports, while a uni- 
fied implementation would require 16 ports. This gives an 
indication of how much benefit can be obtained from using 
the proposed architecture rather than a direct multiported 
register bank. 

The actual benefit will be less than the factor of 64 
implies (although still significant) as the quadratic assump- 
tion can be considered an ‘upper limit’ and the figures take 
no account of the wiring capacitance of the switching net- 
works for reads and writes. A more conservative estimate 
can be made by extrapolating the data available. In a direct 
multiported implementation, each bit line for each read port 
would be connected to 256 register cells, as opposed to 32 
in the current implementation. Assuming that the energy 
consumed by the register subbanks is dominated by the 
capacitance on the bit lines, it would be expected that each 
read to a direct implementation would require 8 times as 
much energy as each read to the register subbanks (70pJ) 
when neglecting wiring capacitances. This would lead to an 
average read energy of 0.56nJ, 2.5 times greater than that 
of the entire partitioned implementation. This estimate for 
the direct implementation neglects the cost of the register 
locking mechanism, which would further increase the 
energy per read. 

Similar estimates may be applied to the read access 
times: each register cell must discharge 8 times as much 
capacitance on the bit lines. The discharge time for the 32 
entry register subbanks is 0.6111~ out of a total access time 
of 1.7111s. Assuming that the access time scales only with 
the time required to discharge the word lines gives an esti- 

mated access time of 6.011s. again neglecting the overhead 
of the locking mechanism. These results lead to an energy- 
delay product for the direct implementation of 3.3ns.nT, as 
compared to an average energy-delay product for the parti- 
tioned implemenation of 1.5ns.nJ. 

The above comments assess only the direct effect of the 
register bank on memory activity, and the effect of the reg- 
ister bank structure: use of a register bank also has collateral 
effects such as the ability to address data through 7-bit 
index registers rather than 24-bit address registers. Other 
figures collected in the same simulations show that an 
update to the index registers requires on average 0.15nJ 
while an update to the address registers requires 3.4nJ; and 
there are on average 14 index registers updates to every 
address register update. 

10. Conclusions 
An architecture for an asynchronous register bank has 

been presented. This allows the appearance of a large 
highly-ported register file to be presented to the program- 
mer, while maintaining the power and speed advantages of 
using small single-ported register files. 

The design takes advantage of the ability of asynchro- 
nous systems to exploit average-cas operation times. Spe- 
cifically, the data access pattems for DSP are suited to an 
interleaved address division of the register banks, but asyn- 
chronous operation allows deviations from these pattems to 
be accepted with only a modest decrease in average opera- 
tion speed for typical algorithms. Where different data 
access pattems exist, similar techniques could be used with 
different partitioning schemes. 
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The proposed technique could also be applied to syn- 
chronous systems, but this would require either that the pro- 
grammer guarantees only a limited amount of conflict 
(which is in practice extremely difficult) or that complex 
control logic be included to stall the pipeline when non- 
ideal access pattems occurred. In addition, the access times 
would then be coarsely quantized into an integral number 
of clock cycles; reducing the average-caqe performance. 

Power consumption measuremen& made of the register 
bank within the CADRE architecture while executing real 
DSP algorithms indicate that the register bank consumes 
only a small proportion of the total power, giving a signifi- 
cant advantage in terms of energy per access over the main 
memory despite the fact that this memory is a fairly small 
single-portedRAh4: it would be expected that a multiported 
RAM would consume very much more power and area. 
Estimates made for a direct multiported register implemen- 
tation suggest that it would have an average energy per 
access around 2.5 times greater, with more than twice the 
average energy-delay product of the partitioned design. 

Overall, the proposed register architecture gives the pro- 
grammer an extremely simple and flexible programming 
environment, while maintaining fast access times on aver- 
age, and minimising power consumption. The CADRE 
project is now proceeding to layout, transferred onto a 
smaller scale process technology, and this will allow the 
benefits of the register architecture to be assessed in greater 
depth. 
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