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Abstract 

It is well known that single-rail, bundled-delay cir- 
cuits provide good area eficiency but it can be dificult to 
match them with appropriate delay models. Conversely 
delay insensitive circuits such as those employing dual- 
rail codes are larger but it is easier to ensure timing cor- 
rectness. In terms of speed, bundled-delay circuits need 
conservative timing but dual-rail circuits can require an 
appreciable completion detection overhead. 

This paper compares designs in both of these styles 
and also a delay-insensitive I-of4 coded circuit using the 
practical example of an ARM Thumb instruction decodel: 
The results show that, through the application of careful 
optimizations, the I-of-4 circuits out-performed single-rail 
circuits and reduced the power compared to dual-rail cir- 
cuits. 

1: Introduction 

A robust VLSI design not only matches circuit design 
style to the function to be implemented, but also exploits 
the chosen fabrication technology. Single-rail datapaths are 
area-efficient in representing data in an asynchronous sys- 
tem requiring, only a single wire per bit. Their correct oper- 
ation, however, requires a 'data-valid' control signal to 
indicate that a functional unit has completed its operation. 

The required 'data-valid' signal may be obtained from 
the input signal(s) either by replicating the critical path of 
the functional unit or employing a discrete delay circuit 
which must embrace the worst-case delay of the slowest 
data signal through the unit and defines its operational 
speed. 

Datapath elements, such as register files, are easily mod- 
elled when produced in custom VLSI layout; both switch- 
ing and wiring delays can be duplicated. Other units, such 

as &Us etc. are more problematic and the difficulties are 
exacerbated by the differences in wiring delay introduced 
by compiling the circuit. 

Extensive validation is required to ensure that the timing 
relationships are maintained in all circumstances. As tech- 
nology shrinks, parasitic elements make accurate delay 
matching increasingly difficult and time-consuming. This 
problem increases with the size and complexity of asyn- 
chronous systems. There has been a consequent escalation 
in the size of safety margins added to the matched delays 
and a growing dependence on the accuracy of sophisticated 
and expensive design tools. 

Asynchronous design is particularly sensitive to errors 
in delay matching; slowing down a global clock to achieve 
timing closure is not an option here. Design approaches 
which remove the need to match delays thus present an 
attractive altemative. One such approach is to encode the 
data using a delay insensitive (DI) code which enables a 
functional unit to detect the completion of each operation 
using circuitry which generates a 'data-valid' signalling the 
result (a new codeword). 

The use of a DI code has overheads however, with the 
choice of code affecting the pexformance, cost and power 
consumption. This paper compares the original single-rail 
design of the AMULET3 Thumb decoder with designs 
employing two DI encdigs:  a dual-1161 code and a 1-of4 
code. 

The Thumb decoder was chosen as it has unusual delay 
characteristics (detailed in section 6.1) which created sig- 
nificant matching problems for the singlle-rail design used 
in AMULET3. The lack of static timing analysis tools in 
the present AMULET design flow meant that the critical 
path had to be deduced from extensive simulation directed 
by manual analysis. The extra confidence and reduction in 
the required timing validation provided by completion 
detection would be very welcome. These benefits should be 
obtained with the smallest overhead. To achieve this 
dynamic logic and an engineering appraach are employed. 
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2: Thumb Instruction Capability 

‘Thumb’ is an extension to the ARM architecture and may 
be viewed as a compressed form of a subset of the ARM 
instruction set. It comprises twenty one instruction formats 
drawn from the standard 32-bit ARM instruction set recoded 
into 16-bit op-codes to increase the code density [ 11. 

AMULET3 is the first asynchronous ARM to include 
Thumb capability; it use a separate Thumb decompression 
stage prior to the main ARM decode. If a packet received 
from memory contains an ARM instruction then the Thumb 
stage collapses, forwarding the instruction through to the next 
stage with minimal delay. If the packet contains Thumb 
instructions the stage expands to allow sufficient time to per- 
form the Thumb decompression. The decompressed instruc- 
tions are then passed to the following stage where they are 
decoded as ARM instructions. A similar approach is used in 
the ARM7TDMI, but the clocked pipeline used on this proc- 
essor prevents the time slot collapsing when running ARM 
code. 

AMULET3 can fetch two Thumb instructions on each 
memory access which are passed as a packet to the Thumb 
stage; this perform two cycles, decompressing each in turn. 
The elastic nature of the asynchronous pipeline accommo- 
dates this ‘one-in, two-out’ behaviour automatically. The 
clocked pipelines used by the ARM7TDMI and ARM9TDMI 
processors cannot readily allow this behaviour and so, to sim- 
plify pipeline control, a single Thumb instruction only is 
fetched per memory access. This doubles the required 
number of memory cycles. 

3: Thumb Decompression Logic 

The decompressor performs a direct translation from 16- 
bit Thumb instructions to 32-bit ARM instructions. The 
AMULET3 Thumb decompressor implements THUMBv 1 
defined by ARMv4t instruction set architecture [ 11. 

A one-to-one mapping between Thumb instructions and 
their ARM equivalents simplifies the decompression logic. 
Decompression is achieved by filling each field in the equiv- 
alent ARM instruction from the corresponding field in the 
Thumb instruction. This process is illustrated in figure 1. The 
example converts the Thumb ADD of a constant to a register 
(ADD rd, #Constant) into its ARM equivalent (ADD rd, rd, 
#Constant). A simple lookup table produces major and minor 
opcodes and the immediate value and register specifiers are 
zero-extended to fill the larger ARM instruction fields. 

This means that the Thumb decoder - at least in 
AMULET3 -comprises a relatively small amount of random 
logic and a significant number of wide multiplexers. This is 
important as multiplexers are particularly suited to a dynamic 
CMOS implementation. 

ADD rd, #Constant 
16-bit Thumb I 001 I 10 I Rd I &bit immedmte 

mqoropcodc dcnonng muaropcodc &.~~at lon  and unm&te 

W l r h  lmmcdlatc value ~ ~ - 0 n  

always -. condttion . codc ADD rd,rd, #Constant 
32-bit ARM 

Figure 1 : Thumb decompression 

4: Representation of Data 

The AMULET processors have, to-date, been constructed 
using single-rail datapaths, the designers being influenced by 
the low cost and the ease of design they offer. 

In a single-rail design a ‘data-valid’ control signal is bun- 
dled with the result wires to indicate that a functional unit has 
completed a processing task. Additional circuity is provided 
to delay its passage such that it becomes valid only after the 
result is valid. Single-rail datapaths can only support data- 
dependent operation if a complex iterative function allows 
early termination. Operation dependence can be achieved by 
providing different task-dependent matched delays. The 
Thumb decode stage exploits the latter of these approaches to 
increase its performance (see section 6.1). 

A DI code implementation also uses additional circuitry to 
produce a ‘data-valid’ signal. However this circuitry is 
employed to monitor the output of the unit to detect the pro- 
duction of new results, rather than trying to match the delay 
through the unit. This allows the DI code implementation to 
exploit whatever data and operational dependence the unit 
displays. Unfortunately, unlike delay matching, completion 
detection can take place only after the result has been pro- 
duced. This clearly adds an extra overhead to the cycle-time 
of the functional unit. Circuit techniques to reduce this over- 
head are discussed in section 5. 

Completion detection is the process of identifying certain 
codewords from the pattems of ones and zeros that appear on 
the wires. Faster detection can be achieved if all wires are 
returned to the zero state - called the spacer - between the 
transmission of each code word this is called retum-to-zero 
(wrz) signalling. 

Completion detection can be further simplified by restrict- 
ing the number of logic ones that can appear on the wires for 
each codeword. l-of-N or l-Hot codes 121 represent data such 
that only a single wire of a set of N can be raised to logic one 
for each codeword. Thus completion detection is now 
reduced to a simple logical-OR of the wires. 

Dual-rail codes are the most widely used form of l-of-N 
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codes for constructing asynchronous systems [23. The dual- 
rail code is a 1-of-2 code, employing two wires to encode 
each bit; a logic one is represented by raising one of the two 
wires high, a logic zero by raising the other wire high. The 
spacer is represented by both wires being held low. 

Part of the popularity of the dual-rail code can be attrib- 
uted to their relatively low cost representation of a large 
number of data wires. The cost of the 1-of-N codes as N -and 
hence the required number of wires - increases soon becomes 
excessive. It is far more efficient to represent a large number 
of bits as a set of concatentated dual-rail codes. Whilst this 
requires an OR-AND function to detect completion of the 
evaluation phase across the multiple pairs of wires it still only 
requires an OR function to detect the reset phase. 

Recently [3] interest has focused on 1-of4 codes. As can 
be seen from table 1, a 1-of4 code encodes two bits onto four 
wires [2] using an approach similar to dual-rail encoding. 
This proves to be a very efficient encoding. 

dual-rail (RTZ) 

dual-rail (NRTZ) 

1-of-4 (WrZ) 

1 -of4 ("2) 

l===kk spacer 

~ ~~ 

2 2 

2 1 

2 1 

2 1 12 

I I O O o l I  
I 01 I 0010 I 

10 0100 

11 lo00 

Table 1 : 1-of-4 encoding 

Table 2 illustrates the reasons for the interest in 1-of-4 
codes. It presents a comparison of the 1-of-N codes and the 
single rail representation considered in terms of two metrics: 

Area efficiency: the number of wires required to encode 

Energy efficiency: the number of wire transitions required 

This table does not consider the relative implementation 
costs, the costs of indicating data validity or the overheads 
required for handshaking. These are presented in later sec- 
tions. For completeness the table does include the area and 
energy efficiency for dual-rail and 1 -of-4 non-return-to-zero 
(NKlZ) codes. These encodings have the advantage of not 
requiring the insertion of the spacer between consecutive 
codewords; each new codeword is indicated by a transition on 
one of the wires. 

It should also be noted that whereas the table presents the 
average case energy efficiency for the single-rail approach, it 
presents the obligatory energy for the DI codes. If two con- 
secutive bits applied to the circuit are at the same logic level, 
the single-rail approach can convey this information with no 

each bit. 

to send each bit. 

changes on the data wires. In contrast, the DI codes require a 
change on the data wires to indicate th,at these are two sepa- 
rate data. 

transitionslbit 

single-rail 112 (average) 
I I 

Table 2 suggests that for word lengths that are multiples of 
2-bits, the RTZ l-of-4 code has the same area cost per bit as 
the IiTz dual-rail code but provides hvice the energy effi- 
ciency. Results presented in section 7.2 demonstrate that fur- 
ther efficiency increases are possible. Ostensibly using a 
NRTZ code allows the power to be reduced even further; 
however the use of signal transitions rather than levels makes 
completion detection far more costly. 

5: Dynamic versus Static Circuits Styles 

There are area and delay overheads iesulting from repre- 
senting the datapath using a dual-rail olr 1-of-4 code. These 
arise from: 

the additional wiring required to support the 1 -of-N 

the extra circuitry required for completion detection. 
This additional logic contributes to the delay overhead. 

However, the most significant contribuition arises from the 
need to extend the cycle time to accommodate the IYM, phase. 
The incorporation of this phase can result in a doubling of the 
cycle time. 

The designer can make the most significant reductions in 
these costs by changing from a static to a dynamic circuit 
style. Unfortunately these reductions are usually traded for an 
increase in design effort or a reduction in the robustness of 
the design. 

Both static and dynamic CMOS circuits have been used to 
construct single-rail datapaths for the AlMULET processors. 
Significantly, dynamic logic is employed wherever a replica- 
tion of a critical path is required for timing purposes. For 
example, it is used in the register bank and for arithmetic 
operations. This is a consequence of the monotonic operation 
of dynamic logic which make it easier to conrrol and to char- 
acterise. Conversely, if a functional unit is constructed using 

encoding. 
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static logic, separate delay matching circuits are used to pro- 
vi& timing information. 

Construction of static CMOS circuits to support a 1-of-N 
code is straightforward. The evaluation function is realised in 
the n-stack whilst the reset (RTZ) function is constructed in 
the p-stack. The arrival of a spacer dictates to the circuit that 
it should enter the reset phase of operation. This is detected 
using transistors in the p-stack. As the number of inputs to a 
circuit increases the required number of p-transistors also 
increases with the result that the cost of the circuit rapidly 
becomes untenable. 

Dynamic logic aims to reduce area and speed costs by 
eliminating the need to implement both the evaluation and the 
reset functions using transistor stacks. The expensive p-stack 
employed for the reset function is replaced with a single p- 
transistor. This p-transistor is used to precharge the summand 
node (figure 2). 

Removal of the p-stack reduces the area cost and 
decreases the circuit delay. These reductions are obtained at 
the price of several operational and constructional con- 
straints. For a single-rail implementation these constraints 
would present a cost overhead but, for a l-of-N code operat- 
ing using an RTZ protocol, they closely match the required 
operational implementation characteristics: 

dynamic logic must precharge between each evaluation. 
This matches the reset phase required by the RTZ oper- 
ation of the DI codes. Further, because the reset phase is 
initiated by a precharge signal (‘nprech’ in figure 2) rath- 
er than the passage of the spacer it permits multiple cir- 
cuit stages to precharge concurrently. Recharge also 
provides opportunities to simpliy completion detection 
allowing the circuitry employed to detect completion of 
precharge to be replaced by a matched delay E51. 

dynamic logic is an incomplete logic as it can only imple- 
ment non-inverting functions. Thus if a single-rail im- 
plementation requires an inverted version of the signal a 
separate path must be built for it. This is not an addition- 
al overhead for 1-of-N codes as the required multiple 
paths are already present. 

Domino circuits use an inverting static gate on their out- 
puts to ensm that, after precharge, the gate output - which 
forms the input to next gate - is at logic zero [7]. The domino 
gate shown in figure 2 uses a static inverter. 

Domino logic does not offer the same robustness as static 
logic: the summand node in a domino logic is only driven 
whilst the circuit is precharging or evaluating. When un- 
driven it is vulnerable to loss of state as a consequence of 
leakage current, poor noise immunity and charge sharing. 
These potential failure mechanisms can be controlled either 
by careful control of the operation of each domino gate or by 
adding extra failure prevention circuitry to each gate. It is 
possible to optimise a design by rradmg between more con- 
trol or extra circuitry. This is explored in section 6.1. 

F L - .  , 
.#i-iL farecharge retainer 

I .- 
i n u r  ir . -  

1ur I 

i n a N 4  13 
‘7 17 I 

Figure 2: Generalised domino gate 

Figure 2 illustrates the use of precharge and evaluate keep- 
ers. These replace charge lost through leakage. Use of keep- 
ers adds a small area overhead due to the extra transistors and 
a small increase in delay caused by the half-latch hysteresis. 
Keepers are not required if the period of time for which the 
gate is undriven is guaranteed to be sufficiently small. 

The keepers can also perform the secondary task of 
improving noise immunity. Domino gates can fail if noise is 
capacitively coupled into the domino gate during the evalua- 
tion phase of its cycle causing false output states. The use of 
DI codes provides a reduction in capacitive coupling; by 
interdigitating the wires required for a dual-rail implementa- 
tion the coupling can be reduced as only (at most) one of the 
adjacent wires can switch in any evaluation. This effect is fur- 
ther enhanced using a l -of4 encoding. 

The floating nodes present in domino logic make it partic- 
ularly sensitive to charge sharing. This occurs when transis- 
tors within the domino gate are connected to form a 
capacitive chvge divider resulting in a reduction in the pre- 
charge voltage which may cause the output to switch falsely. 
Charge sharing can be decreased by reducing the number of 
discharged transistors that can be connected to a precharged 
node. By arranging the n-stacks to perform a multiplexor 
operation we can ensure that, for each evaluation phase, only 
a single stack is connected to the precharged node. This 
approach - which is employed whenever possible in this 
work - significantly reduces charge sharing problems. For 
example, if the circuit in figure 2 is operated as a multiplexor, 
inputs ‘inl’ and ‘in2’ are used to select which n-stack will be 
connected to the precharged summand node, thereby limiting 
the number of discharged nodes that can be connected to 
form a capacitive divider. 

Figure 2 also illustrates the use of an extra transistor (the 
‘foot’) which, during precharge, prevents a potential short- 
circuit through the n-stack to ground. 
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6: Thumb Decoder Implementations 

It is assumed for each implementation that the Thumb 
decoder is embedded in a processor constructed using the 
same design style. For example, we assume that the dual-rail 
implementation receives data from upstream dual-rail stages 
and outputs its results to downscream dual-rail stages. This 
removes the need to consider the costs of decoding/encoding 
data as it passes through the Thumb decoder stage and allows 
the evaluation of different methods for controlling the inter- 
stage operation. 

6.1: Control Path 
The ARM architecture specifies its instruction set by a sta- 

tus bit called the ‘T-bit’. In AMULET3 this bit is included 
within the instruction packet, The Thumb decode stage uses 
the T-bit to determine whether an instruction packet contains 
an ARM instruction or Thumb instructions. 

Tar? I MP7 

Figure 3: Single-rail control 

Single-rail Control 
Figure 3 illustrates the control for a single-rail static logic 

implementation of the Thumb decoder. This design was used 
for the AMULET3 processor. 

The decoder performs a different sequence of operations 
depending on which instruction set is active. A select is pro- 
vided to steer the incoming request, ‘request-in’, straight to 
the downstream stage for ARM instructions or via the AND- 
gate and matched delay for Thumb instructions. This 
matched delay provides timing for a first Thumb decompres- 
sion. The downstream stage will respond with ‘ack-out’ when 
it has latched the results. If a second decompression is 
required ‘ack-out’ can be steered through a further sequence 
of matched delays. The consequent ‘ack-out’ will then 
directly provide the acknowledge for the upstream stage. A 
rising edge on ‘repeat-ack‘ is used to change to ‘last-cycle’ 
thereby switching the select and the datapath multiplexor. 

Matched delays were used to provide timing as the datap- 
ath was constructed using static logic. They also provide 

Figure 4: Synchronising dynamic logic 

setup times for data against the rising edge of a q u e s t  signal. 
As significant hold times were not required, asymmetric 
delay matching circuits could be emplolyed in most cases; the 
full delay is provided for a rising edge: and a minimal delay 
for a falling edge. 

Timing for the first decompressioin is provided by the 
matched delay ‘processing delay’ in conjunction with ‘setup 
delay’, the T-bit select and the two logic gates. The matched 
delay ‘mux delay’ provides time for the datapath multiplexor 
to switch. This allows the second Thumb instruction to flow 
into the decompression logic where decompressing starts. 
Simultaneously, the RTZ actions on thie ‘request-out’, ‘ack- 
out’ handshake pair will be initiated. 

Timing the second decompression is more complex as part 
of the decompression time is concurrent with the RTZ actions 
on the control path. Additionally, the miitched delay ‘process- 
ing delay’ provides timing twice; firstly for the falling edge 
and then again for the rising edge of ‘request-out’. A further 
complication is that the static logic - whose timing is being 
matched - is a complex structure with widely variable logic 
depths. In these circumstances maintaining the correct timing 
relationships between the control path and the datapath is a 
demanding task and considerable margins must be employed 
for safety. 

DI Control 
A DI implementation simplifies the design of the control 

path as completion detection replaces delay matching and 
setup times are not required as the logic will automatically 
wait until the required data arrives. 

To enable this wait the control path i~ses static logic (only 
the datapath is dynamic) and SO the length of time the control 
path can wait is unrestricted. In conhast, for the dynamic 
datapath, leakage currents (severely) restrict this waiting 
time. If the waiting time needs to be increased charge- 
replacement keepers must be employed. The maximum time 
a dynamic circuit must wait is determined by its evaluate and 
precharge strategy. Figure 4 illustrates a typical approach. 
This is based on the structure first proposed by Williams 141 
to control multiple stages of dynamic Cl1 logic. 

Each functional block has a completion detector which 
provides control for the preceding stage (figure 4 demon- 
strates the technique for an RTZ dual-raid implementation and 
so a NOR-gate provides completion detection). Crucially the 
operation of this and other schemes [8] requires that, once a 
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particular stage has precharged, its preceeding stage is forced 
to return to the undriven state where it waits for the arrival of 
data. The length of time that a stage is undriven is determined 
by the throughput of data. Whilst this strategy works well for 
systems where the throughput can be anticipated, for a 
number of reasons it is inappropriate as a control strategy for 
the AMULET3 pipeline. 

Firstly, the AMULET3 pipeline can stall due to a large 
variety of causes with the consequence that an individual 
stage may be forced to spend long periods of time neither 
driven by evaluate nor precharge. Thus a direct application of 
this approach would require both precharge and evaluate 
keepers on all domino gates to prevent a loss of state. 

More seriously, the decompression logic may be undriven 
- waiting for data - for considerable periods of time; for 
example a program coded in ARM instructions will never use 
it. During this time the dynamic nodes within each domino 
gate are not refreshed, precharge is sustained merely by the 
charge replacement supplied by the very-small weak-feed- 
back transistors present in its precharge keepers. As the reli- 
ability of this approach is open to question this work takes an 
alternative approach keeping the dynamic logic in precharge 
- driven by large precharge transistors - until it is required. 
Unfortunately, compared to Williams’ scheme, this will 
increase the latency of each stage as delays through the con- 
trol path result in the data arriving slightly before the 
dynamic logic is taken out of precharge. 

Request activated DI control 
Figure 5 illustrates a control strategy devised to coordinate 

the activities for a DI implementation of the Thumb decode 
stage. The structure and operation is very similar to that 
employed for single-rail control (figure 3). The most signifi- 
cant difference lies in the removal of circuitry to provide the 
setup and timing delays. 

The datapath (multiplexor, processing logic and comple- 
tion detector) is implemented using domino logic. It is held 
in precharge until it is enabled (‘enabldprech’) by an explicit 
request (‘request-in’) from the preceeding stage -the datap- 
ath is thus request activated. The ‘done’ signal, produced by 
the completion detection circuitry, is used to form the request 
to the next stage. This is different from Williams’ design 
where the done signal is fed back to control the preceeding 
stage and the request to the downstream stage is implicit in 
the arrival of the encoded data. 

A disadvantage of this request activated scheme is that it 
requires an extra signal ‘request-out’ to be passed with the 
result to the following stage. The advantage of this scheme is 
that the provision of this enable signal (‘done’) allows latch- 
ing stages to be implemented using low cost transparent 
latches and standard latch controllers (for safety completion 
detection could be provided on the output of these latches) 
instead of the expensive C-element based latching stages oth- 
erwise required. This minimises the changes required to con- 
vert the AMULET3 pipeline from a single-rail to a DI 
implementation. 

- 

Control 

Figure 6: Acknowledge activated control 

Figure 5: Request activated control 

Acknowledge activated DI control 
The request activated strategy has the disadvantage that 

the decode stage is allowed to stall waiting for the down- 
stream latches to become available. Safe operation therefore 
requires evaluate keepers to maintain the dura state. The 
charge replacement provided by keepers is sufficient during 
these pipeline stalls as the stall only lasts for short periods of 
time, typically a fraction of a stage cycle time. 

Previous work has shown that the precharge and evaluate 
keepers can be removed if it is guaranteed that downstream 
latches are available before the domino logic evaluates [61. 
This is achieved by generating the enable signal (‘enable/ 
prech’) from the downstream acknowledge (‘ack-out’), rather 
- 
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than from the upstream request (‘request-in’); the acknowl- 
edge will be raised when the downstream latch is available 
and will only be lowered, retuming the dynamic logic to pre- 
charge, after the result has been latched. This control struc- 
ture is illustrated in figure 6. 

In this scheme the request is not available to be used to 
enable the latches so a separate signal ‘done-out’, generated 
by the completion detection circuitry, is used instead. 
‘request-out’ and ‘done-out’ are combined within the latch 
controller (not shown) to generate ‘ack-out’[6]. To allow the 
same downstream latch-controller to be used for ARM as 
well as Thumb instructions ‘done-out’ is supplied for both. 

The removal of keepers requires an increase in the com- 
plexity of the control and the latency of the stage. However 
there is however a reduction in costs for the datapath of two 
transistors per gate output. Whether this reduction in costs 
justifies this increase in control will be evaluated later. 

6.2: Data Path 
The data path is dominated by multiplexers which are used 

to select between ARM and Thumb instructions. They also 
perform the decompression by selecting information from the 
appropriate Thumb instruction fields and steering it to the 
corresponding ARM instruction fields. 

Figure 7 illustrates the structure of the datapath for the 
Thumb decode. The following stage (ARM decode) receives 
either an ARM instruction and an immediate value or a 
decompressed Thumb instruction and an immediate value. 

The following discussion will focus on the Thumb i”e- 
diate processor unit as the task it performs is easy to under- 
stand yet the obstacles to its DI implementation embody 
those for the whole unit. The task of the immediate processor 
is to produce either literal values or the offsets to be used in 
address calculations. This task is performed very frequently 
as immediate values are present in fourteen of the twenty-one 
Thumb instruction formats. 

To obtain an immediate value a partial decoding of the 
instruction is required to find the length and position of the 
immediate field (if any) for that particular format. Immediate 
fields can be 3 bits, 5 bits, 7 bits, 8 bits or 11 bits in length and 
the position of the field within the 16 bit instruction varies 
according to the particular format. 

Immediate values are use to form literals or address off- 
sets. If the immediate value is to be used as a literal after 
decoding it can be passed straight onto the following pipeline 
stage. If the value is to be used as an address offset it must 
first be scaled according to the size of the data transfer. If the 
offset is to be used by a branch operation it must also be sign- 
extended. 

The operations required of the immediate processor can be 
categorised according to the range of sizes of immediate val- 
ues used. Three categories were distinguished small i”e- 
diates (3-bit and 5-bit), big immediates (7-bit and 8-bit) and 

Inslruction fetch 

Figure 7: Thumb decode! datapath 

branch immediates (8-bit and 1 l-bit). 
Within each category different operations (scaling, sign- 

extending, ...) are performed according to the particular 
instruction. Use of these categories simplifies (and so speeds 
up) decoding of the instructions. 

To achieve high speed operation each category specula- 
tively produces results for all Thumb instructions. This is 
illustrated in figure 7 where results an: produced by ‘small 
i“.’, ‘big imm.’ and ‘branch imm.’ and a multiplexor is 
used to select the desired result. Speculation allows decoding 
and processing to be undertaken using a staged-refinement 
approach. For each category the deccding and processing 

Figure 8: Stage control 
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task is divided into a number of stages, where each stage per- 
forms a multiplexor-type operation. The stages are arranged 
such that the control information for the first stage requires 
very little decoding of the instruction and so allows this con- 
trol information to be generated very quickly. Subsequent 
stages are ordered so that generation of the control for later 
stages requires an increasing amount of instruction decoding 
and hence an increasing amount of time to perform (figure 8). 
The time overhead for these later, slower stages is hidden as 
these operations are performed concurrently with the 
processing of the earlier stages. This is essential as the oper- 
ation of the later multiplexor controllers is complex requiring 
their dynamic logic to be split into multiple, independently 
precharged sections to avoid charge sharing. 

The single-rail design was taken from the AMULET3 
processor and so the target cycle time for the dual-rail and 1- 
of4 designs were based on its performance. Rapid cycle- 
time was the primary design criterion. 

The characteristics of the implementation technology 
(VLSI Technology 0.35pm three-layer metal) limit the 
number of series transistors in the n-stack (and hence the cir- 
cuit inputs) to four. Operations which require more than this 
number of inputs have to be realised as multiple stage logic 
with resultant increases in cost and delay. 

Single-rail and dual-rail implementations of an operator 
require a similar number of series transistors in the n-stack. 
Significantly, the 1-of-4 encoding generally allows an opera- 
tor to be implemented using fewer series transistors and thus 
multiple input operators in a smaller number of stages. These 
savings occur because the 1-of4 encoding requires fewer 
symbols to encode the binary inputs of a multiple input gate. 
For example, a two input 1-of4 circuit can process four 
binary digits, whereas a two input dual-rail circuit can only 
process two binary digits. A 1-of4 implementation typically 
results in a circuit with a wide NOR-structure. This limits the 
size of operation that can be realised in a single stage of logic 
because of problems with charge-sharing and reduced drive. 

Cycle-time constraints and similarities in the depth of 
logic required to implement operators meant that for the sin- 
gle-rail and dual-rail realisations only very similar design 
optimizations were available. However for the 1-of4 realisa- 
tion the different circuit costs allowed different design opti- 
mizations. 

To achieve the required performance the design requires 
each of the three categories of immediate to be evaluated 
speculatively and, if required, one of these results selected. A 
substantial amount of energy could be saved if the decoding 
and processing tasks were invoked only as and when neces- 
sary. This could be achieved if the first stage of control i s  able 
to identify for each category whether or not an instruction 
format belongs to that category. If the format does not belong, 
then the control will not enable the corresponding first stage 
multiplexor preventing data from passing through to enable 
the subsequent stages. To identify formats requires partial 

instruction decoding; unfortunately Thumb instructions have 
a dense and non-uniform encoding and so it can take six or 
more bits to identify a format. For both the single-rail and 
dual-rail representations this would require six or more sym- 
bois, a corresponding number of transistors in series (in most 
cases this number can be reduced by grouping formats, but 
not in every case) and so a multi-stage logic realisation. This 
arrangement is too slow to meet the maximum cycle time 
restrictions. 

The 1-of-4 encoding can represent 6 bits using only three 
symbols (2 bitslsymbol), only requiring three transistors in 
series (a single stage of logic) and so the decoding operation 
can be performed within the available time. 

In this scheme formats which do not require immediate 
processing do not produce results and so consequently com- 
pletion detection will not occur. To overcome this an extra 
block of control, called the ‘bypass detector’ (figure 8) is 
required to detect all formats that do not require immediate 
processing. If one of these is detected the ‘bypass detector’ 
triggers completion detection directly. 

s1 so 

0 0 1 0  0 0 1 0  

0 1 0 0  0 1 0 0  

1 0 0 0  1 0 0 0  

Figure 9: l-of-4 field extraction 

Unfortunately the 1-of-4 approach also resulted in extra 
costs not incurred by the other data representations. These 
occur as a consequence of encoding multiple bits within a 
single codeword. This creates problems in a range of situa- 
tions: one occurs when the operator requires inputs or outputs 
which are neither aligned on the appropriate boundaries nor 
are multiples of two bits. For example, figure 9 illustrates the 
process of decoding a 3-bit immediate value (bit[O], bit111 
and bit[2]). Two 1-of4 symbols (SO and S 1) are required to 
encode the 3-bits. As shown in the figure only the lower digit 
position (corresponding to bit[%] in symbol (S 1)) is required. 
The upper digit position in S 1 will be used to represent infor- 
mation for some other field in the instruction and the state of 
this should be ignored. The decoding process employs two 
logical OR operations. The ‘set’ OR tests to see if bit[2] is set 
by checking for a ‘1’ in the digit positions corresponding to 
code values for ‘3’ and ‘l’in the 1-of4 symbol. Whereas the 
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‘not set’ OR checks digit positions for values ‘2’ or ‘0’. Nei- 
ther the dual-rail nor single-rail codes require this decoding. 

Extra logic is also required for a shift operation: in both 
single-rail and dual-rail representations a symbol represents 
a single bit, so a one place shift is merely a wiring operation; 
in a 1 -0f-4 code this requires appreciable logic. 

~ 

1.2111s 

1.10 ns 

1.14ns 

1 . 1 2 ~  

0.71 ns 

0.75ns 

0.73 lls 

I I I 

single-rail(worst) 2.2911s I 2.29ns I 1.00 

- 

2.3211s 1.01 

1.93 ns 0.84 

2.01 ns 0.88 

1.98ns 0.86 

1 . 5 3 ~  0.69 

1 . 6 2 ~  0.71 

1.59 ns 0.69 

I dual-rail (best) I 1.04ns I 2.14ns I 0.93 I 
1 dual-rail (worst) I 1.26ns I 2.41 ns 1- 1.05 I 

dual-rail (average) 

1 -0f-4 (best) 

1-of4 (worst) 

l-of-4(average) 

bypass (best) 

bypass (worst) 

bypms(avemge) 

Table 3: Request activated datapath 

7: Results 

For each of the different implementations a similar design 
approach was used. The logic was constructed using gates 
(static or dynamic) obtained from standard cell libraries. The 
single-rail implementation used a commercial static standard 
cell library whereas cell libraries for the dynamic dual-rail 
and 1-of-4 gates had to be constructed for this project. The 
same design rules were employed for all circuits based on a 
VLSI Technology, Inc 0.35 pm three-layer metal process. 

The following numbers were obtained by simulating sche- 
matics using the EPIC Powermill and Timemill simulation 
tools. The conditions used for the simulation were ‘typical’ 
silicon, Vdd=3.3V and 20°C. The three implementations 
were excited using the same stimulus, the exception being the 
removal of the spacer for the single-rail design. The stimulus 
operated by cycling through all the Thumb instruction for- 
mats presenting each format to the circuit whilst varying the 
number of zeros and ones present in the immediate and reg- 
ister fields. All numbers include the overheads due to the 
input multiplexor and completion detection (if required). 

7.1: Datapath performance 
Table 3 summarises the performances for each approach. 

The cycle times include the time taken to precharge (if 
required). For single-rail design the worst case performance 
is presented as this value @lus a significant safety margin) 
defines the timing of the delay matching circuits. 

The 1-of-4 design clearly outperforms the other two 
approaches when processing immediates and it increases its 
advantage for formats that are able to lbypass the immediate 
unit. 

The performance of the DI implementations depends on 
instruction format and so will vary according to the particular 
instruction mix of the code. To simplify the presentation of 
results, average values are used in table: 4. 

It can be seen from table 4 that the removal of the keepers 
for the acknowledge activated design results in a marginal 
increase in performance compared to the request activated 
scheme shown in table 3. 

average cycle-times 

I 1-of-4 I 1.98ns I 1.95 ns I 0.99 I 
Table 4: Datapath cyc:le times 

7.2: Datapath power 
Table 5 presents the average power consumed whilst 

applying the stimulus. The single-rail design consumes the 
least power which can be attributed to its static operation. 

The 1-of4 design without the power saving optimization 
consumed about a third less power than dual-rail design. This 
is slightly worse than the reduction by a half anticipated by 
table 2. The additional power is consumed by the extra cir- 
cuitry used to overcome problems encoding multiple bits 
within a single code word. 

However, through the exploitation of the design strengths 
of 1-of-4 encoding, a further power reduction is obtained. 
‘The 1-of4 with power saving (supporting bypass) consumes 
less than half the power of the dual-]rail design and only 
slightly more than the single-rail design. 

73: Datapath size 
Results were obtained by comparing the number of tran- 

sistors in each implementation, These results do not include 
the additional transistors that would be required for the delay 
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8: Conclusions request 
activated 

normalized 
power 

single-rail 12 mW 
I 1 

1 .o 
I dual-rail I 38mW I 3.2 I 

1 -of4 

I I 

1378 1.8 

I 1-of-4 I 24mW I 2.0 I 
1-of-4 I 16mW I 1.3 I 

(power saver) 

Table 5: Datapath power consumption 

matching circuity in the single-rail design. 
The choice of a multiplexor based design prevented the 

use of the 1-of4 encoding from supplying the area reductions 
that were identified in section 6.2. The 1-of4 implementation 
only required half as many multiplexers as the dual-rail 
design, but each of these was twice the size of a dual-rail mul- 
tiplexor. In addition the l -of-4 encoding requires considera- 
ble extra logic (196 transistors) to implement the one bit shift 
required for half-word aligning the address offsets. (This is 
performed as a wiring operation for the other two 
approaches.) 

The elimination of keepers from the domino gates by the 
application of acknowledge activated control resulted in a 
15% reduction in the number of transistors for both the dual- 
rail and 1-of-4 approaches. This small reduction and a mar- 
ginal increase in datapath performance were achieved by a 
large increase in the complexity of the control path. Overall 
it is probably better to use the request activated control and 
retain the keepers to improve the noise immunity and thus the 
robustness of the design. 

request normalized 
activated 

single-rail 

dual-rail 1201 1.6 

It is possible to produce asynchronous circuits in a number 
of styles, each with its own advantages. The appropriate cir- 
cuit style can vary with the application, however the results 
of this study suggest that delay insensitive codes have a great 
deal of promise for fast, safe circuits. 

The most surprising result was that the 1-of4 data repre- 
sentation was not only significantly more power-efficient 
than the dual-rail style but more power-efficient than 
expected. This is primarily due to the different circuit costs 
which facilitated different design optimisations.The major 
disadvantage of this design style occurs when the required 
field of a data word does not match a whole number of 
encoded symbols. If such codes are to be employed the align- 
ment of the symbols is an important configuration - for 
example in a processor instruction two ‘adjacent’ bits may 
not always be the most appropriate choice. 
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