
A Practical Comparison of Asynchronous Design Styles

D.W. Lloyd' & J. D. Garside2

'Micro Cores Development Division, STMicroelectronics, Bristol, U.K,
2Department of Computer Science, The University of Manchester, U.K:.

dave.lloyd@st.com, jgarsideo cs.man.ac.uk

Abstract

It is well known that single-rail, bundled-delay cir-
cuits provide good area eficiency but it can be dificult to
match them with appropriate delay models. Conversely
delay insensitive circuits such as those employing dual-
rail codes are larger but it is easier to ensure timing cor-
rectness. In terms of speed, bundled-delay circuits need
conservative timing but dual-rail circuits can require an
appreciable completion detection overhead.

This paper compares designs in both of these styles
and also a delay-insensitive I-of4 coded circuit using the
practical example of an ARM Thumb instruction decodel:
The results show that, through the application of careful
optimizations, the I-of-4 circuits out-performed single-rail
circuits and reduced the power compared to dual-rail cir-
cuits.

1: Introduction

A robust VLSI design not only matches circuit design
style to the function to be implemented, but also exploits
the chosen fabrication technology. Single-rail datapaths are
area-efficient in representing data in an asynchronous sys-
tem requiring, only a single wire per bit. Their correct oper-
ation, however, requires a 'data-valid' control signal to
indicate that a functional unit has completed its operation.

The required 'data-valid' signal may be obtained from
the input signal(s) either by replicating the critical path of
the functional unit or employing a discrete delay circuit
which must embrace the worst-case delay of the slowest
data signal through the unit and defines its operational
speed.

Datapath elements, such as register files, are easily mod-
elled when produced in custom VLSI layout; both switch-
ing and wiring delays can be duplicated. Other units, such

as &Us etc. are more problematic and the difficulties are
exacerbated by the differences in wiring delay introduced
by compiling the circuit.

Extensive validation is required to ensure that the timing
relationships are maintained in all circumstances. As tech-
nology shrinks, parasitic elements make accurate delay
matching increasingly difficult and time-consuming. This
problem increases with the size and complexity of asyn-
chronous systems. There has been a consequent escalation
in the size of safety margins added to the matched delays
and a growing dependence on the accuracy of sophisticated
and expensive design tools.

Asynchronous design is particularly sensitive to errors
in delay matching; slowing down a global clock to achieve
timing closure is not an option here. Design approaches
which remove the need to match delays thus present an
attractive altemative. One such approach is to encode the
data using a delay insensitive (DI) code which enables a
functional unit to detect the completion of each operation
using circuitry which generates a 'data-valid' signalling the
result (a new codeword).

The use of a DI code has overheads however, with the
choice of code affecting the pexformance, cost and power
consumption. This paper compares the original single-rail
design of the AMULET3 Thumb decoder with designs
employing two DI encdigs: a dual-1161 code and a 1-of4
code.

The Thumb decoder was chosen as it has unusual delay
characteristics (detailed in section 6.1) which created sig-
nificant matching problems for the singlle-rail design used
in AMULET3. The lack of static timing analysis tools in
the present AMULET design flow meant that the critical
path had to be deduced from extensive simulation directed
by manual analysis. The extra confidence and reduction in
the required timing validation provided by completion
detection would be very welcome. These benefits should be
obtained with the smallest overhead. To achieve this
dynamic logic and an engineering appraach are employed.

36
1522-8681/01 $10.00 0 2001 EEE

mailto:dave.lloyd@st.com
http://cs.man.ac.uk

2: Thumb Instruction Capability

‘Thumb’ is an extension to the ARM architecture and may
be viewed as a compressed form of a subset of the ARM
instruction set. It comprises twenty one instruction formats
drawn from the standard 32-bit ARM instruction set recoded
into 16-bit op-codes to increase the code density [11.

AMULET3 is the first asynchronous ARM to include
Thumb capability; it use a separate Thumb decompression
stage prior to the main ARM decode. If a packet received
from memory contains an ARM instruction then the Thumb
stage collapses, forwarding the instruction through to the next
stage with minimal delay. If the packet contains Thumb
instructions the stage expands to allow sufficient time to per-
form the Thumb decompression. The decompressed instruc-
tions are then passed to the following stage where they are
decoded as ARM instructions. A similar approach is used in
the ARM7TDMI, but the clocked pipeline used on this proc-
essor prevents the time slot collapsing when running ARM
code.

AMULET3 can fetch two Thumb instructions on each
memory access which are passed as a packet to the Thumb
stage; this perform two cycles, decompressing each in turn.
The elastic nature of the asynchronous pipeline accommo-
dates this ‘one-in, two-out’ behaviour automatically. The
clocked pipelines used by the ARM7TDMI and ARM9TDMI
processors cannot readily allow this behaviour and so, to sim-
plify pipeline control, a single Thumb instruction only is
fetched per memory access. This doubles the required
number of memory cycles.

3: Thumb Decompression Logic

The decompressor performs a direct translation from 16-
bit Thumb instructions to 32-bit ARM instructions. The
AMULET3 Thumb decompressor implements THUMBv 1
defined by ARMv4t instruction set architecture [11.

A one-to-one mapping between Thumb instructions and
their ARM equivalents simplifies the decompression logic.
Decompression is achieved by filling each field in the equiv-
alent ARM instruction from the corresponding field in the
Thumb instruction. This process is illustrated in figure 1. The
example converts the Thumb ADD of a constant to a register
(ADD rd, #Constant) into its ARM equivalent (ADD rd, rd,
#Constant). A simple lookup table produces major and minor
opcodes and the immediate value and register specifiers are
zero-extended to fill the larger ARM instruction fields.

This means that the Thumb decoder - at least in
AMULET3 -comprises a relatively small amount of random
logic and a significant number of wide multiplexers. This is
important as multiplexers are particularly suited to a dynamic
CMOS implementation.

ADD rd, #Constant
16-bit Thumb I 001 I 10 I Rd I &bit immedmte

mqoropcodc dcnonng muaropcodc &.~~at lon and unm&te

W l r h lmmcdlatc value ~ ~ - 0 n

always -. condttion . codc ADD rd,rd, #Constant
32-bit ARM

Figure 1 : Thumb decompression

4: Representation of Data

The AMULET processors have, to-date, been constructed
using single-rail datapaths, the designers being influenced by
the low cost and the ease of design they offer.

In a single-rail design a ‘data-valid’ control signal is bun-
dled with the result wires to indicate that a functional unit has
completed a processing task. Additional circuity is provided
to delay its passage such that it becomes valid only after the
result is valid. Single-rail datapaths can only support data-
dependent operation if a complex iterative function allows
early termination. Operation dependence can be achieved by
providing different task-dependent matched delays. The
Thumb decode stage exploits the latter of these approaches to
increase its performance (see section 6.1).

A DI code implementation also uses additional circuitry to
produce a ‘data-valid’ signal. However this circuitry is
employed to monitor the output of the unit to detect the pro-
duction of new results, rather than trying to match the delay
through the unit. This allows the DI code implementation to
exploit whatever data and operational dependence the unit
displays. Unfortunately, unlike delay matching, completion
detection can take place only after the result has been pro-
duced. This clearly adds an extra overhead to the cycle-time
of the functional unit. Circuit techniques to reduce this over-
head are discussed in section 5.

Completion detection is the process of identifying certain
codewords from the pattems of ones and zeros that appear on
the wires. Faster detection can be achieved if all wires are
returned to the zero state - called the spacer - between the
transmission of each code word this is called retum-to-zero
(wrz) signalling.

Completion detection can be further simplified by restrict-
ing the number of logic ones that can appear on the wires for
each codeword. l-of-N or l-Hot codes 121 represent data such
that only a single wire of a set of N can be raised to logic one
for each codeword. Thus completion detection is now
reduced to a simple logical-OR of the wires.

Dual-rail codes are the most widely used form of l-of-N

37

codes for constructing asynchronous systems [23. The dual-
rail code is a 1-of-2 code, employing two wires to encode
each bit; a logic one is represented by raising one of the two
wires high, a logic zero by raising the other wire high. The
spacer is represented by both wires being held low.

Part of the popularity of the dual-rail code can be attrib-
uted to their relatively low cost representation of a large
number of data wires. The cost of the 1-of-N codes as N -and
hence the required number of wires - increases soon becomes
excessive. It is far more efficient to represent a large number
of bits as a set of concatentated dual-rail codes. Whilst this
requires an OR-AND function to detect completion of the
evaluation phase across the multiple pairs of wires it still only
requires an OR function to detect the reset phase.

Recently [3] interest has focused on 1-of4 codes. As can
be seen from table 1, a 1-of4 code encodes two bits onto four
wires [2] using an approach similar to dual-rail encoding.
This proves to be a very efficient encoding.

dual-rail (RTZ)

dual-rail (NRTZ)

1-of-4 (WrZ)

1 -of4 ("2)

l===kk spacer

~ ~~

2 2

2 1

2 1

2 1 12

I I O O o l I
I 01 I 0010 I

10 0100

11 lo00

Table 1 : 1-of-4 encoding

Table 2 illustrates the reasons for the interest in 1-of-4
codes. It presents a comparison of the 1-of-N codes and the
single rail representation considered in terms of two metrics:

Area efficiency: the number of wires required to encode

Energy efficiency: the number of wire transitions required

This table does not consider the relative implementation
costs, the costs of indicating data validity or the overheads
required for handshaking. These are presented in later sec-
tions. For completeness the table does include the area and
energy efficiency for dual-rail and 1 -of-4 non-return-to-zero
(NKlZ) codes. These encodings have the advantage of not
requiring the insertion of the spacer between consecutive
codewords; each new codeword is indicated by a transition on
one of the wires.

It should also be noted that whereas the table presents the
average case energy efficiency for the single-rail approach, it
presents the obligatory energy for the DI codes. If two con-
secutive bits applied to the circuit are at the same logic level,
the single-rail approach can convey this information with no

each bit.

to send each bit.

changes on the data wires. In contrast, the DI codes require a
change on the data wires to indicate th,at these are two sepa-
rate data.

transitionslbit

single-rail 112 (average)
I I

Table 2 suggests that for word lengths that are multiples of
2-bits, the RTZ l-of-4 code has the same area cost per bit as
the IiTz dual-rail code but provides hvice the energy effi-
ciency. Results presented in section 7.2 demonstrate that fur-
ther efficiency increases are possible. Ostensibly using a
NRTZ code allows the power to be reduced even further;
however the use of signal transitions rather than levels makes
completion detection far more costly.

5: Dynamic versus Static Circuits Styles

There are area and delay overheads iesulting from repre-
senting the datapath using a dual-rail olr 1-of-4 code. These
arise from:

the additional wiring required to support the 1 -of-N

the extra circuitry required for completion detection.
This additional logic contributes to the delay overhead.

However, the most significant contribuition arises from the
need to extend the cycle time to accommodate the IYM, phase.
The incorporation of this phase can result in a doubling of the
cycle time.

The designer can make the most significant reductions in
these costs by changing from a static to a dynamic circuit
style. Unfortunately these reductions are usually traded for an
increase in design effort or a reduction in the robustness of
the design.

Both static and dynamic CMOS circuits have been used to
construct single-rail datapaths for the AlMULET processors.
Significantly, dynamic logic is employed wherever a replica-
tion of a critical path is required for timing purposes. For
example, it is used in the register bank and for arithmetic
operations. This is a consequence of the monotonic operation
of dynamic logic which make it easier to conrrol and to char-
acterise. Conversely, if a functional unit is constructed using

encoding.

38

static logic, separate delay matching circuits are used to pro-
vi& timing information.

Construction of static CMOS circuits to support a 1-of-N
code is straightforward. The evaluation function is realised in
the n-stack whilst the reset (RTZ) function is constructed in
the p-stack. The arrival of a spacer dictates to the circuit that
it should enter the reset phase of operation. This is detected
using transistors in the p-stack. As the number of inputs to a
circuit increases the required number of p-transistors also
increases with the result that the cost of the circuit rapidly
becomes untenable.

Dynamic logic aims to reduce area and speed costs by
eliminating the need to implement both the evaluation and the
reset functions using transistor stacks. The expensive p-stack
employed for the reset function is replaced with a single p-
transistor. This p-transistor is used to precharge the summand
node (figure 2).

Removal of the p-stack reduces the area cost and
decreases the circuit delay. These reductions are obtained at
the price of several operational and constructional con-
straints. For a single-rail implementation these constraints
would present a cost overhead but, for a l-of-N code operat-
ing using an RTZ protocol, they closely match the required
operational implementation characteristics:

dynamic logic must precharge between each evaluation.
This matches the reset phase required by the RTZ oper-
ation of the DI codes. Further, because the reset phase is
initiated by a precharge signal (‘nprech’ in figure 2) rath-
er than the passage of the spacer it permits multiple cir-
cuit stages to precharge concurrently. Recharge also
provides opportunities to simpliy completion detection
allowing the circuitry employed to detect completion of
precharge to be replaced by a matched delay E51.

dynamic logic is an incomplete logic as it can only imple-
ment non-inverting functions. Thus if a single-rail im-
plementation requires an inverted version of the signal a
separate path must be built for it. This is not an addition-
al overhead for 1-of-N codes as the required multiple
paths are already present.

Domino circuits use an inverting static gate on their out-
puts to ensm that, after precharge, the gate output - which
forms the input to next gate - is at logic zero [7]. The domino
gate shown in figure 2 uses a static inverter.

Domino logic does not offer the same robustness as static
logic: the summand node in a domino logic is only driven
whilst the circuit is precharging or evaluating. When un-
driven it is vulnerable to loss of state as a consequence of
leakage current, poor noise immunity and charge sharing.
These potential failure mechanisms can be controlled either
by careful control of the operation of each domino gate or by
adding extra failure prevention circuitry to each gate. It is
possible to optimise a design by rradmg between more con-
trol or extra circuitry. This is explored in section 6.1.

F L - . ,
.#i-iL farecharge retainer

I .-
i n u r ir . -

1ur I

i n a N 4 13
‘7 17 I

Figure 2: Generalised domino gate

Figure 2 illustrates the use of precharge and evaluate keep-
ers. These replace charge lost through leakage. Use of keep-
ers adds a small area overhead due to the extra transistors and
a small increase in delay caused by the half-latch hysteresis.
Keepers are not required if the period of time for which the
gate is undriven is guaranteed to be sufficiently small.

The keepers can also perform the secondary task of
improving noise immunity. Domino gates can fail if noise is
capacitively coupled into the domino gate during the evalua-
tion phase of its cycle causing false output states. The use of
DI codes provides a reduction in capacitive coupling; by
interdigitating the wires required for a dual-rail implementa-
tion the coupling can be reduced as only (at most) one of the
adjacent wires can switch in any evaluation. This effect is fur-
ther enhanced using a l -of4 encoding.

The floating nodes present in domino logic make it partic-
ularly sensitive to charge sharing. This occurs when transis-
tors within the domino gate are connected to form a
capacitive chvge divider resulting in a reduction in the pre-
charge voltage which may cause the output to switch falsely.
Charge sharing can be decreased by reducing the number of
discharged transistors that can be connected to a precharged
node. By arranging the n-stacks to perform a multiplexor
operation we can ensure that, for each evaluation phase, only
a single stack is connected to the precharged node. This
approach - which is employed whenever possible in this
work - significantly reduces charge sharing problems. For
example, if the circuit in figure 2 is operated as a multiplexor,
inputs ‘inl’ and ‘in2’ are used to select which n-stack will be
connected to the precharged summand node, thereby limiting
the number of discharged nodes that can be connected to
form a capacitive divider.

Figure 2 also illustrates the use of an extra transistor (the
‘foot’) which, during precharge, prevents a potential short-
circuit through the n-stack to ground.

39

6: Thumb Decoder Implementations

It is assumed for each implementation that the Thumb
decoder is embedded in a processor constructed using the
same design style. For example, we assume that the dual-rail
implementation receives data from upstream dual-rail stages
and outputs its results to downscream dual-rail stages. This
removes the need to consider the costs of decoding/encoding
data as it passes through the Thumb decoder stage and allows
the evaluation of different methods for controlling the inter-
stage operation.

6.1: Control Path
The ARM architecture specifies its instruction set by a sta-

tus bit called the ‘T-bit’. In AMULET3 this bit is included
within the instruction packet, The Thumb decode stage uses
the T-bit to determine whether an instruction packet contains
an ARM instruction or Thumb instructions.

Tar? I MP7

Figure 3: Single-rail control

Single-rail Control
Figure 3 illustrates the control for a single-rail static logic

implementation of the Thumb decoder. This design was used
for the AMULET3 processor.

The decoder performs a different sequence of operations
depending on which instruction set is active. A select is pro-
vided to steer the incoming request, ‘request-in’, straight to
the downstream stage for ARM instructions or via the AND-
gate and matched delay for Thumb instructions. This
matched delay provides timing for a first Thumb decompres-
sion. The downstream stage will respond with ‘ack-out’ when
it has latched the results. If a second decompression is
required ‘ack-out’ can be steered through a further sequence
of matched delays. The consequent ‘ack-out’ will then
directly provide the acknowledge for the upstream stage. A
rising edge on ‘repeat-ack‘ is used to change to ‘last-cycle’
thereby switching the select and the datapath multiplexor.

Matched delays were used to provide timing as the datap-
ath was constructed using static logic. They also provide

Figure 4: Synchronising dynamic logic

setup times for data against the rising edge of a q u e s t signal.
As significant hold times were not required, asymmetric
delay matching circuits could be emplolyed in most cases; the
full delay is provided for a rising edge: and a minimal delay
for a falling edge.

Timing for the first decompressioin is provided by the
matched delay ‘processing delay’ in conjunction with ‘setup
delay’, the T-bit select and the two logic gates. The matched
delay ‘mux delay’ provides time for the datapath multiplexor
to switch. This allows the second Thumb instruction to flow
into the decompression logic where decompressing starts.
Simultaneously, the RTZ actions on thie ‘request-out’, ‘ack-
out’ handshake pair will be initiated.

Timing the second decompression is more complex as part
of the decompression time is concurrent with the RTZ actions
on the control path. Additionally, the miitched delay ‘process-
ing delay’ provides timing twice; firstly for the falling edge
and then again for the rising edge of ‘request-out’. A further
complication is that the static logic - whose timing is being
matched - is a complex structure with widely variable logic
depths. In these circumstances maintaining the correct timing
relationships between the control path and the datapath is a
demanding task and considerable margins must be employed
for safety.

DI Control
A DI implementation simplifies the design of the control

path as completion detection replaces delay matching and
setup times are not required as the logic will automatically
wait until the required data arrives.

To enable this wait the control path i~ses static logic (only
the datapath is dynamic) and SO the length of time the control
path can wait is unrestricted. In conhast, for the dynamic
datapath, leakage currents (severely) restrict this waiting
time. If the waiting time needs to be increased charge-
replacement keepers must be employed. The maximum time
a dynamic circuit must wait is determined by its evaluate and
precharge strategy. Figure 4 illustrates a typical approach.
This is based on the structure first proposed by Williams 141
to control multiple stages of dynamic Cl1 logic.

Each functional block has a completion detector which
provides control for the preceding stage (figure 4 demon-
strates the technique for an RTZ dual-raid implementation and
so a NOR-gate provides completion detection). Crucially the
operation of this and other schemes [8] requires that, once a

40

particular stage has precharged, its preceeding stage is forced
to return to the undriven state where it waits for the arrival of
data. The length of time that a stage is undriven is determined
by the throughput of data. Whilst this strategy works well for
systems where the throughput can be anticipated, for a
number of reasons it is inappropriate as a control strategy for
the AMULET3 pipeline.

Firstly, the AMULET3 pipeline can stall due to a large
variety of causes with the consequence that an individual
stage may be forced to spend long periods of time neither
driven by evaluate nor precharge. Thus a direct application of
this approach would require both precharge and evaluate
keepers on all domino gates to prevent a loss of state.

More seriously, the decompression logic may be undriven
- waiting for data - for considerable periods of time; for
example a program coded in ARM instructions will never use
it. During this time the dynamic nodes within each domino
gate are not refreshed, precharge is sustained merely by the
charge replacement supplied by the very-small weak-feed-
back transistors present in its precharge keepers. As the reli-
ability of this approach is open to question this work takes an
alternative approach keeping the dynamic logic in precharge
- driven by large precharge transistors - until it is required.
Unfortunately, compared to Williams’ scheme, this will
increase the latency of each stage as delays through the con-
trol path result in the data arriving slightly before the
dynamic logic is taken out of precharge.

Request activated DI control
Figure 5 illustrates a control strategy devised to coordinate

the activities for a DI implementation of the Thumb decode
stage. The structure and operation is very similar to that
employed for single-rail control (figure 3). The most signifi-
cant difference lies in the removal of circuitry to provide the
setup and timing delays.

The datapath (multiplexor, processing logic and comple-
tion detector) is implemented using domino logic. It is held
in precharge until it is enabled (‘enabldprech’) by an explicit
request (‘request-in’) from the preceeding stage -the datap-
ath is thus request activated. The ‘done’ signal, produced by
the completion detection circuitry, is used to form the request
to the next stage. This is different from Williams’ design
where the done signal is fed back to control the preceeding
stage and the request to the downstream stage is implicit in
the arrival of the encoded data.

A disadvantage of this request activated scheme is that it
requires an extra signal ‘request-out’ to be passed with the
result to the following stage. The advantage of this scheme is
that the provision of this enable signal (‘done’) allows latch-
ing stages to be implemented using low cost transparent
latches and standard latch controllers (for safety completion
detection could be provided on the output of these latches)
instead of the expensive C-element based latching stages oth-
erwise required. This minimises the changes required to con-
vert the AMULET3 pipeline from a single-rail to a DI
implementation.

-

Control

Figure 6: Acknowledge activated control

Figure 5: Request activated control

Acknowledge activated DI control
The request activated strategy has the disadvantage that

the decode stage is allowed to stall waiting for the down-
stream latches to become available. Safe operation therefore
requires evaluate keepers to maintain the dura state. The
charge replacement provided by keepers is sufficient during
these pipeline stalls as the stall only lasts for short periods of
time, typically a fraction of a stage cycle time.

Previous work has shown that the precharge and evaluate
keepers can be removed if it is guaranteed that downstream
latches are available before the domino logic evaluates [61.
This is achieved by generating the enable signal (‘enable/
prech’) from the downstream acknowledge (‘ack-out’), rather
-

41

than from the upstream request (‘request-in’); the acknowl-
edge will be raised when the downstream latch is available
and will only be lowered, retuming the dynamic logic to pre-
charge, after the result has been latched. This control struc-
ture is illustrated in figure 6.

In this scheme the request is not available to be used to
enable the latches so a separate signal ‘done-out’, generated
by the completion detection circuitry, is used instead.
‘request-out’ and ‘done-out’ are combined within the latch
controller (not shown) to generate ‘ack-out’[6]. To allow the
same downstream latch-controller to be used for ARM as
well as Thumb instructions ‘done-out’ is supplied for both.

The removal of keepers requires an increase in the com-
plexity of the control and the latency of the stage. However
there is however a reduction in costs for the datapath of two
transistors per gate output. Whether this reduction in costs
justifies this increase in control will be evaluated later.

6.2: Data Path
The data path is dominated by multiplexers which are used

to select between ARM and Thumb instructions. They also
perform the decompression by selecting information from the
appropriate Thumb instruction fields and steering it to the
corresponding ARM instruction fields.

Figure 7 illustrates the structure of the datapath for the
Thumb decode. The following stage (ARM decode) receives
either an ARM instruction and an immediate value or a
decompressed Thumb instruction and an immediate value.

The following discussion will focus on the Thumb i”e-
diate processor unit as the task it performs is easy to under-
stand yet the obstacles to its DI implementation embody
those for the whole unit. The task of the immediate processor
is to produce either literal values or the offsets to be used in
address calculations. This task is performed very frequently
as immediate values are present in fourteen of the twenty-one
Thumb instruction formats.

To obtain an immediate value a partial decoding of the
instruction is required to find the length and position of the
immediate field (if any) for that particular format. Immediate
fields can be 3 bits, 5 bits, 7 bits, 8 bits or 11 bits in length and
the position of the field within the 16 bit instruction varies
according to the particular format.

Immediate values are use to form literals or address off-
sets. If the immediate value is to be used as a literal after
decoding it can be passed straight onto the following pipeline
stage. If the value is to be used as an address offset it must
first be scaled according to the size of the data transfer. If the
offset is to be used by a branch operation it must also be sign-
extended.

The operations required of the immediate processor can be
categorised according to the range of sizes of immediate val-
ues used. Three categories were distinguished small i”e-
diates (3-bit and 5-bit), big immediates (7-bit and 8-bit) and

Inslruction fetch

Figure 7: Thumb decode! datapath

branch immediates (8-bit and 1 l-bit).
Within each category different operations (scaling, sign-

extending, ...) are performed according to the particular
instruction. Use of these categories simplifies (and so speeds
up) decoding of the instructions.

To achieve high speed operation each category specula-
tively produces results for all Thumb instructions. This is
illustrated in figure 7 where results an: produced by ‘small
i“.’, ‘big imm.’ and ‘branch imm.’ and a multiplexor is
used to select the desired result. Speculation allows decoding
and processing to be undertaken using a staged-refinement
approach. For each category the deccding and processing

Figure 8: Stage control

42

task is divided into a number of stages, where each stage per-
forms a multiplexor-type operation. The stages are arranged
such that the control information for the first stage requires
very little decoding of the instruction and so allows this con-
trol information to be generated very quickly. Subsequent
stages are ordered so that generation of the control for later
stages requires an increasing amount of instruction decoding
and hence an increasing amount of time to perform (figure 8).
The time overhead for these later, slower stages is hidden as
these operations are performed concurrently with the
processing of the earlier stages. This is essential as the oper-
ation of the later multiplexor controllers is complex requiring
their dynamic logic to be split into multiple, independently
precharged sections to avoid charge sharing.

The single-rail design was taken from the AMULET3
processor and so the target cycle time for the dual-rail and 1-
of4 designs were based on its performance. Rapid cycle-
time was the primary design criterion.

The characteristics of the implementation technology
(VLSI Technology 0.35pm three-layer metal) limit the
number of series transistors in the n-stack (and hence the cir-
cuit inputs) to four. Operations which require more than this
number of inputs have to be realised as multiple stage logic
with resultant increases in cost and delay.

Single-rail and dual-rail implementations of an operator
require a similar number of series transistors in the n-stack.
Significantly, the 1-of-4 encoding generally allows an opera-
tor to be implemented using fewer series transistors and thus
multiple input operators in a smaller number of stages. These
savings occur because the 1-of4 encoding requires fewer
symbols to encode the binary inputs of a multiple input gate.
For example, a two input 1-of4 circuit can process four
binary digits, whereas a two input dual-rail circuit can only
process two binary digits. A 1-of4 implementation typically
results in a circuit with a wide NOR-structure. This limits the
size of operation that can be realised in a single stage of logic
because of problems with charge-sharing and reduced drive.

Cycle-time constraints and similarities in the depth of
logic required to implement operators meant that for the sin-
gle-rail and dual-rail realisations only very similar design
optimizations were available. However for the 1-of4 realisa-
tion the different circuit costs allowed different design opti-
mizations.

To achieve the required performance the design requires
each of the three categories of immediate to be evaluated
speculatively and, if required, one of these results selected. A
substantial amount of energy could be saved if the decoding
and processing tasks were invoked only as and when neces-
sary. This could be achieved if the first stage of control i s able
to identify for each category whether or not an instruction
format belongs to that category. If the format does not belong,
then the control will not enable the corresponding first stage
multiplexor preventing data from passing through to enable
the subsequent stages. To identify formats requires partial

instruction decoding; unfortunately Thumb instructions have
a dense and non-uniform encoding and so it can take six or
more bits to identify a format. For both the single-rail and
dual-rail representations this would require six or more sym-
bois, a corresponding number of transistors in series (in most
cases this number can be reduced by grouping formats, but
not in every case) and so a multi-stage logic realisation. This
arrangement is too slow to meet the maximum cycle time
restrictions.

The 1-of-4 encoding can represent 6 bits using only three
symbols (2 bitslsymbol), only requiring three transistors in
series (a single stage of logic) and so the decoding operation
can be performed within the available time.

In this scheme formats which do not require immediate
processing do not produce results and so consequently com-
pletion detection will not occur. To overcome this an extra
block of control, called the ‘bypass detector’ (figure 8) is
required to detect all formats that do not require immediate
processing. If one of these is detected the ‘bypass detector’
triggers completion detection directly.

s1 so

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

1 0 0 0 1 0 0 0

Figure 9: l-of-4 field extraction

Unfortunately the 1-of-4 approach also resulted in extra
costs not incurred by the other data representations. These
occur as a consequence of encoding multiple bits within a
single codeword. This creates problems in a range of situa-
tions: one occurs when the operator requires inputs or outputs
which are neither aligned on the appropriate boundaries nor
are multiples of two bits. For example, figure 9 illustrates the
process of decoding a 3-bit immediate value (bit[O], bit111
and bit[2]). Two 1-of4 symbols (SO and S 1) are required to
encode the 3-bits. As shown in the figure only the lower digit
position (corresponding to bit[%] in symbol (S 1)) is required.
The upper digit position in S 1 will be used to represent infor-
mation for some other field in the instruction and the state of
this should be ignored. The decoding process employs two
logical OR operations. The ‘set’ OR tests to see if bit[2] is set
by checking for a ‘1’ in the digit positions corresponding to
code values for ‘3’ and ‘l’in the 1-of4 symbol. Whereas the

43

‘not set’ OR checks digit positions for values ‘2’ or ‘0’. Nei-
ther the dual-rail nor single-rail codes require this decoding.

Extra logic is also required for a shift operation: in both
single-rail and dual-rail representations a symbol represents
a single bit, so a one place shift is merely a wiring operation;
in a 1 -0f-4 code this requires appreciable logic.

~

1.2111s

1.10 ns

1.14ns

1 . 1 2 ~

0.71 ns

0.75ns

0.73 lls

I I I

single-rail(worst) 2.2911s I 2.29ns I 1.00

-

2.3211s 1.01

1.93 ns 0.84

2.01 ns 0.88

1.98ns 0.86

1 . 5 3 ~ 0.69

1 . 6 2 ~ 0.71

1.59 ns 0.69

I dual-rail (best) I 1.04ns I 2.14ns I 0.93 I
1 dual-rail (worst) I 1.26ns I 2.41 ns 1- 1.05 I

dual-rail (average)

1 -0f-4 (best)

1-of4 (worst)

l-of-4(average)

bypass (best)

bypass (worst)

bypms(avemge)

Table 3: Request activated datapath

7: Results

For each of the different implementations a similar design
approach was used. The logic was constructed using gates
(static or dynamic) obtained from standard cell libraries. The
single-rail implementation used a commercial static standard
cell library whereas cell libraries for the dynamic dual-rail
and 1-of-4 gates had to be constructed for this project. The
same design rules were employed for all circuits based on a
VLSI Technology, Inc 0.35 pm three-layer metal process.

The following numbers were obtained by simulating sche-
matics using the EPIC Powermill and Timemill simulation
tools. The conditions used for the simulation were ‘typical’
silicon, Vdd=3.3V and 20°C. The three implementations
were excited using the same stimulus, the exception being the
removal of the spacer for the single-rail design. The stimulus
operated by cycling through all the Thumb instruction for-
mats presenting each format to the circuit whilst varying the
number of zeros and ones present in the immediate and reg-
ister fields. All numbers include the overheads due to the
input multiplexor and completion detection (if required).

7.1: Datapath performance
Table 3 summarises the performances for each approach.

The cycle times include the time taken to precharge (if
required). For single-rail design the worst case performance
is presented as this value @lus a significant safety margin)
defines the timing of the delay matching circuits.

The 1-of-4 design clearly outperforms the other two
approaches when processing immediates and it increases its
advantage for formats that are able to lbypass the immediate
unit.

The performance of the DI implementations depends on
instruction format and so will vary according to the particular
instruction mix of the code. To simplify the presentation of
results, average values are used in table: 4.

It can be seen from table 4 that the removal of the keepers
for the acknowledge activated design results in a marginal
increase in performance compared to the request activated
scheme shown in table 3.

average cycle-times

I 1-of-4 I 1.98ns I 1.95 ns I 0.99 I
Table 4: Datapath cyc:le times

7.2: Datapath power
Table 5 presents the average power consumed whilst

applying the stimulus. The single-rail design consumes the
least power which can be attributed to its static operation.

The 1-of4 design without the power saving optimization
consumed about a third less power than dual-rail design. This
is slightly worse than the reduction by a half anticipated by
table 2. The additional power is consumed by the extra cir-
cuitry used to overcome problems encoding multiple bits
within a single code word.

However, through the exploitation of the design strengths
of 1-of-4 encoding, a further power reduction is obtained.
‘The 1-of4 with power saving (supporting bypass) consumes
less than half the power of the dual-]rail design and only
slightly more than the single-rail design.

73: Datapath size
Results were obtained by comparing the number of tran-

sistors in each implementation, These results do not include
the additional transistors that would be required for the delay

44

8: Conclusions request
activated

normalized
power

single-rail 12 mW
I 1

1 .o
I dual-rail I 38mW I 3.2 I

1 -of4

I I

1378 1.8

I 1-of-4 I 24mW I 2.0 I
1-of-4 I 16mW I 1.3 I

(power saver)

Table 5: Datapath power consumption

matching circuity in the single-rail design.
The choice of a multiplexor based design prevented the

use of the 1-of4 encoding from supplying the area reductions
that were identified in section 6.2. The 1-of4 implementation
only required half as many multiplexers as the dual-rail
design, but each of these was twice the size of a dual-rail mul-
tiplexor. In addition the l -of-4 encoding requires considera-
ble extra logic (196 transistors) to implement the one bit shift
required for half-word aligning the address offsets. (This is
performed as a wiring operation for the other two
approaches.)

The elimination of keepers from the domino gates by the
application of acknowledge activated control resulted in a
15% reduction in the number of transistors for both the dual-
rail and 1-of-4 approaches. This small reduction and a mar-
ginal increase in datapath performance were achieved by a
large increase in the complexity of the control path. Overall
it is probably better to use the request activated control and
retain the keepers to improve the noise immunity and thus the
robustness of the design.

request normalized
activated

single-rail

dual-rail 1201 1.6

It is possible to produce asynchronous circuits in a number
of styles, each with its own advantages. The appropriate cir-
cuit style can vary with the application, however the results
of this study suggest that delay insensitive codes have a great
deal of promise for fast, safe circuits.

The most surprising result was that the 1-of4 data repre-
sentation was not only significantly more power-efficient
than the dual-rail style but more power-efficient than
expected. This is primarily due to the different circuit costs
which facilitated different design optimisations.The major
disadvantage of this design style occurs when the required
field of a data word does not match a whole number of
encoded symbols. If such codes are to be employed the align-
ment of the symbols is an important configuration - for
example in a processor instruction two ‘adjacent’ bits may
not always be the most appropriate choice.

9: Acknowledgements

The VLSI design work has leant heavily on CAD tools
from Compass Design Automation (now part of Avant!) and
EPIC Design Technology, Inc. (now part of Synopsis).

The authors would also like to thank other members of the
AMULEX research group at Manchester University.

10: References

Jaggar, D., “Advanced RISC Machines Architecture Reference
Manual”. Prentice Hall, 1996. ISBN 0- 13-736299-4.
Verhoeff T, “Delay-insensitive codes - an overview”, Disbib-
uted Computing vol3. 1998.
Abrial A, Bouvier J, Renaudin, M, Vivet P “A Contactless
Smart-Card Chip based on an Asynchronous 8-bit Microcon-
troller” Proc. 4th ACID Workshop, Grenoble, France, January
31st, 2000.
Williams T, Homwitz M, “A Zero-Overhead Self-Timed 160
ns 54b CMOS Divider”, IEEE Journal of Solid State Circuits
26(11) November 1991.
Chou W, Beerel P. A, Ginosar R, Kol R, Myers C. J, Rotem S,
Stevens K, Yun K:Y, “Average-case optimized technology
mapping of one-hot domixio circuits” Roc. Asynch’98, 1998.
Furber S, Liu J, “Dynamic Logic in Four-Phase Micmpipe-
lines”, F’IKIC. Async 96, Aizu-Wakamatsu, Japan, March 18-21
1996.
Dally W.J, Poulton J. W, “Digital Systems Engineering”. Cam-
bridge University Press, 1998. ISBN 0 521 59292 5.
Singh M, Nowick S, “High-Throughput Asynchronous Pipe-
lines for Fine-Grain Dynamic Datapaths”, Roc. Aync’2000,
Eilat, April 2000.

45

