
A Low-Power Self-Timed Viterbi Decoder

P. A. Riocreux, L. E. M. Brackenbury, M. Cumpstey, S. B. Furber
{peter.riocreux,lemb,cumpstem,sfurber}@cs.man.ac.uk

Amulet Group, Dept. Computer Science, University of Manchester,
Oxford Rd.. Manchester, M13 9PL, UK.

Abstract

Viterbi decoders are used for decoding data encoded us-
ing convolutional forward error correction codes or data
that suffers from inter-symbol interference. They occur in a
large proportion of digital transmission and digital record-
ing systems, including digital mobile telephony and digital
TV broadcast, CD-ROM and magnetic disk reading. This
paper describes a design for a selftimed Viterbi decoder.
The new design is based upon serial, unary arithmetic for
the manipulation and storage of metrics. In the trace-back
system, multiple concurrent trace-backs may be running
and trace-backs are terminated as soon as they cease to be
useful. The new architecture occupies between 29% and
23% less area than a selection of synchronous implementa-
tions with the same design parameters which use the same
process and cell-library.

1 Introduction to the Viterbi algorithm

The Viterbi algorithm[6, 31 is used widely in the digital
transmission field as a means of decoding convolutional for-
ward error correction (FEC) codes. The Viterbi algorithm is
a maximum likelihood probability (MLP) method; the out-
put of the decoder is the sequence most likely to have been
transmitted, given an observed received sequence.

Convolutional encoding is a highly asymmetric coding
scheme - encoding is trivial, but decoding is very compu-
tationally expensive. As a result of this and the fact that
the decoding is often performed at the same time as other
computationally intensive tasks, decoders are often imple-
mented in dedicated hardware, although smaller decoders
and those operating at lower data rates have come within
reach of software in recent years.

1.1 The encoding process

In order to understand the decoding process, the encod-
ing process must first be understood. The basic building

1522-8681/01 $10.00 0 2001 IEEE

block of the encoder is a convolution and parity calcula-
tion. The last k bits of the input stream are stored in a shift
register and these are convolved (XORed) with a k-bit long
pattern and the parity of the resulting stream is the encoder’s
output corresponding to the most recent input bit.

Redundancy (and hence FXC) is added to the bit stream
by outputting multiple bits for each input bit, with each of
the output bits being the result of using a different pattern
in the convolution process. The ratio of input bits to out-
put bits (v / n) , called the rate, may be any rational number
less than 1 but must be selected at design time. Artificial
rates lying between the real rate and 1 can be produced by
“puncturing”, and this is the usual means of obtaining rates
between 1 /2 and 1. Standard convolution patterns exist for
each (non-punctured) value of v / n and k that have been
shown to be optimal for additive, white, Gaussian noise.
The decoder described herein is a 1 /2-rate decoder with a
constraint length (k) of 7 and therefore 64 states.

The presence of k storage elements in the encoder means
that it acts as a state machine of 2k-’ states. Every state has
two routes from it, corresponding to the bit arriving most
recently being a zero or a one, and two routes into it, cor-
responding to the bit which has just exited the shift register
being a zero or a one.

It should be noted that a transition into exactly half the
states corresponds to the encoding of a one and the other
half to the encoding of a zero.

1.2 The decoding process

When the received pair of encoded bits arrives at the de-
coder, the decoder must infer, from what is received, the
data that were fed to the encoder. The encoded version
of these data may have been corrupted on its journey from
source to destination, so the decoder must be able to infer
the intended values from this corrupted stream.

As a transmitted pair has different significance depend-
ing on the state the encoder was in when it generated them,
so must the receiver attach different significance to a re-
ceived pair depending on which state it believes the encoder

15

mailto:peter.riocreux,lemb,cumpstem,sfurber}@cs.man.ac.uk

to be in. As the decoder does not know anything about the
state the encoder was in when it generated the received pair,
it must hypothesise about this and test the hypothesis in
some way.

This is done by generating, for each possible state that
the decoder can be in, a measure (called a branch metric or
BM) of how far the received data is from the “perfect” data
that receiver would expect to see for the error-free transmis-
sion of a 0 and a 1. To complete the hypothesis testing, these
BMs are combined with a measure (called a state metric or
SM) of the likelihood, based upon previously received data,
that the encoder was in each state. These combinations of
state and branch are called path metrics (PMs) and are mea-
sures of the likelihood of each branch being correct.

In other words, the decoder calculates simultaneously for
each state and branch - what is the likelihood that this state
is the correct one to be in, and therefore that the data re-
ceived is due to the encoding of data corresponding to this
brunch.

As each destination state has two routes into it, and each
route has an associated PM, it will be seen that the likeli-
hood of a state being the correct starting point for the next
cycle is the higher of the two likelihoods leading to it, i.e
the more likely of the two routes to it. This higher likeli-
hood is saved and becomes the SM for that state in the next
cycle. The identity of the path into a state that had the high-
est likelihood (the local winner) is also recorded in the sur-
vivor memory for use later to establish which path through
the state space the encoder took.

In practice the likelihood metrics are reversed in sense,
so that the most likely path has the lowest metric. This
means that when the data are error-free, the winning branch
from the correct state - the global winner - has a zero value
BM associated with it in each cycle and therefore its PM
and hence SM also remain at zero.

The decision made by the trellis system regarding the
best path is based only upon the most recently received k
bits. A burst error could easily last longer than this so an-
other stage which accumulates information over a longer
period is used as well. Any state will, if its ancestry is fol-
lowed back a sufficient number of time intervals, prove to
be descended from the correct path, and the local winner
values encountered along the route indicate the path taken
through the state space to get there. Thus the local win-
ner data can be used to find the correct path through the
state space when a large number of sets of local winners are
stored. The process of following these local winner indica-
tions to find the path is known as a trace-back.

The data output by the decoder is taken from the oldest
set of local winners in the memory, and thus the system
effectively accumulates evidence for the correctness of its
estimate for a number of cycles equal to the depth of the
survivor memory.

2 A conventional decoder

In the reference decoder design from our industrial part-
ner, the architecture is largely determined by following the
algorithm as described in the previous section. There are
three basic sections to the design, the branch metric unit
(BMU) the path metric unit (PMU) and the survivor mem-
ory unit. The BMU is responsible for creating the BM val-
ues from the incoming data that are passed to the PMU. The
PMU is responsible for adding the B:Ms to the SMs to cre-
ate PM values and determining local winners, which in their
turn become SMs. The survivor memlory unit is responsible
for recording the local winner identities and producing the
output stream by performing trace-back.

2.1 Conventional PMU

The PMU accumulates BM values, and determines the
lower value of a pair of these accumulated totals. This add-
compare-select (ACS) operation is almost invariably imple-
mented in a parallel fashion in high speed decoders as it is in
this design, with there being a discrete unit corresponding
to each state.

In order to avoid arithmetic overflow of the PMs as they
grow, two different methods are commonly used, both of
which exploit the fact that the greatest possible span of PMs
(the difference between the largest and smallest) is (k - 1) x

The first of these is to subtract a proportion of the max-
imum accumulated value when all of the states have accu-
mulated at least that. This is practical provided the arith-
metic width of the metrics is sufficiently large as there is a
predictable minimum number of cycle,s between the last cy-
cle during which not all of the metrics were greater than the
chosen value, and the first cycle in which any of them could
overflow[5].

The second is to use arithmetic units that ignore the over-
flow condition, but where the comparison system under-
stands that an apparently small value may in fact be a larger
value which has wrapped around[4].

In this reference architecture, no effort is made to find
the global winner (the state whose SM is the smallest).

EM,, [71.

2.2 Conventional survivor memory unit

The survivor memory unit is a design somewhere be-
tween a one-pointer trace-back and a k-pointer trace-back
(k = 2) architecture[2] with equal size write, merge and de-
code blocks, plus a further block in which to store the data
that are to be written out.

The memory is split into four units whose function ro-
tates. Local winner identities are written into the first, pri-
mary and secondary trace-back are performed in the second

16

primary backtrace secondary backtrace
r I

-
older data

Figure 1. Primary and secondary trace-back.

and third, and the fourth is idle. Figure 1 illustrates the pri-
mary and secondary trace-back process; the quadrilaterals
represent an array of local winners (each column represent-
ing a time interval, the youngest on the left hand side where
the trace-back process starts), the thicker line indicates the
true path through the states and the thinner one the path
taken by the trace-back process.

In primary trace-back, it is assumed that an)’ starting
state will eventually converge on the correct path, so an ar-
bitrary location (say the top row in Figure 1) is chosen and
trace-back begins there. This method attempts to find the
global winner at the far end of this primary trace-back by
assuming this convergence. The state at which this primary
trace-back finishes is then used as the starting location for
the secondary trace-back. The states navigated in this sec-
ondary trace-back are recorded so that the bit for which they
encode may be determined (recall that all possible paths that
end at half of the states indicate the encoding of a one and
those ending in the other half of the states indicate the en-
coding of a zero).

The two stage process is necessary because, as can be
seen from Figure 1, until convergence occurs, the wrong
path is taken through the memory. If this path were used to
generate the output then the wrong data would be generated.

3 A new, self-timed architecture

In this new architecture the design is a mixture of 2-
phase and 4-phase circuits. 4-phase operation was chosen
for the control aspects of the architecture for ease of design.
The datapath is implemented as an event storage based cir-
cuit with a number of 2-phase handshakes being enclosed
by the 4-phase control system. 2-phase is chosen here for
reasons of speed (a halving of the number of events, whilst
not doubling the speed does bring a significant improve-
ment) and area (a 2-phase FIFO has half the number of con-
trol elements of its 4-phase equivalent). An additional con-

sideration is the requirement for the unambiguous detection
of full and empty states on FIFOs, which is substantially
more difficult with a 4-phase implementation than with 2-
phase.

The three sections described below and illustrated in Fig-
ure 2 fulfil basically the same functions as their equivalent
in a synchronous system. The presence of a clock signal in
Figure 2 is due to the design being created for integration in
a larger, synchronous system, which requires synchronised
input of received data and output of decoded data.

The sections can operate in separate pipeline stages and,
in the case of the BMU and history unit (HU, known as sur-
vivor memory unit in synchronous architectures), these are
sub-pipelined. Unfortunately, due to the nature of the re-
circulation of data in the PMU, it is impossible to further
pipeline its operation, although some pseudo-pipelining is
achieved by overlapping non-exclusive parts of the opera-
tion.

An additional constraint on the PMU is that in our de-
sign it requires a self-synchronisation point, at the interface
between the PMU and the HU. This synchronisation point
is caused by the need to have found (or at least attempted
to find) the global winner state, which requires all the local
winner states to have been found.

3.1 Asynchronous BMU

As a design aid, a C program was written to quickly al-
low the simulation of this system with different policies on
the sizes of BMs, and many other properties of the design.
In order to reduce the arithmetic size of the BMs, prescal-
ing, predecrementing, and capping[11 are desirable. Use of
the C simulator allowed us to verify that reduction of the
maximum size of BM that must be handled from 98 (as a 3-
bit soft decision system is used) to only 6 would still permit
the required error correction performance from the decoder.

The BMs are not represented as binary values however,
but rather as the pattern of states that would be seen in
a 2-phase micropipeline event-FIFO built from Muller C-
elements if that number of transactions had been completed
on its input port. The BMs are formatted this way to fa-
cilitate their loading into the PMU - it describes the state
the C-elements must be set to. Because the event FIFO is
2-phase, the number of events is represented by the number
of changes of phase in the pattern.

Thus a zero is encoded as 000000, one as 1 1 1 1 1 1, two as
000001, three as 111101, four as 000101, etc. The encod-
ings for 0 and 1 appear to be the same but the event-FIFOs
are reset between cycles so there is an implicit 0 to the right
of the patterns. There is also an implicit bit to the left of the
patterns that matches the left most bit.

17

Clock -

BM BM

1 Ack Ack

Decoded --
Output

Figure 2. The asynchronous architecture.

SM FIFO SM out

pairing

BM FIFO
SM in

Figure 3. A pair of nodes from the path metric
unit.

3.2 Asynchronous PMU

The PMU in this new design is a fully parallel system as
was the reference design, but differs from it in that is has
no conventional arithmetic, and values are stored in a se-
rial, unary manner, as a number of events in a micropipeline
event-FIFO. The Viterbi algorithm only cares about the rel-
ative sizes of the BMs or SMs to be chosen between, rather
than the absolute size of any of them, and this is easily com-
putable with this unconventional representation of the data.
The absolute value of the smaller BM must be preserved,
but its value need not be known or expressed explicitly.

The flow of data to and from a pair of state processors
(known as nodes) is illustrated in Figure 3. Node-pairs are
almost invariably used as the unit of replication in Viterbi
designs because, due to the nature of the “butterfly” inter-
connection network between the right-hand and left-hand
sides of the nodes, particular pairs of nodes have similar
routing requirements. Making the unit of replication a pair
simplifies the placement and routing stage of design[13.

3.2.1 Event add-compare-select

The ACS function is implemented as two parts in the new
architecture. The BMs are bit-parallel loaded into the BM
FIFOs and then the SMs are added to them as a series of
events on the FIFO input port.

In order to compare the sizes of two values stored in the
BM FIFOs, the output requests of the two FIFOs are fed
via a Muller C-element to another event-FIFO, so that this
lower FIFO ends up with a number of events in it equal
to the smaller number of events in the upper two FIFOs.
Thus the local winner value is determined, and the local
winner identity is merely an encoding of which of the two
branch metric FIFOs became empty first. This equates to
the compare-select part of the ACS.

A more detailed diagram of the datalpath of a single node
is shown in Figure 4. Here we see the overflow units which
allow us to try to pass up to 7 tokens from the feeding SM
FIFO into a BM FIFO which may already contain 6 (of its
maximum 7) without error. Normally the overflow units
pass the requests to the BM FIFO and pass the acknowl-
edges it receives from the BM FIFO back to the SM FIFO
that is feeding it. This continues until the BM FIFO in-
dicates that it is full. From that point input requests are
diverted straight to input acknowledges.

The phase compensators are required because the SM
FIFOs that are feeding the BM FIFOs have unknown phase
(they can be in state all- 1 s or all-Os when empty). This also
impacts the value loaded into the BM FIFOs, which must be
inverted if the SM FIFO is in the all-1s state when empty.
The complexity of the data path between the output of the
SM FIFOs and the input of the BM FIFOs represents a se-
rious bottleneck for this design.

3.2.2 Global winner determination

As the global winner identity is required immediately in ev-
ery cycle in our architecture (unlike in most conventional ar-
chitectures) this must be determined from the values stored
in the SM FIFOs. The Viterbi algorithm requires only that
the relative sizes of the SMs be correct so we may subtract

18

SM

SM

SM FIFO

d SM

SM

Figure 4. A path metric unit node data path.

an arbitrary value from all SMs. Thus the global winner
may be found simply by subtracting 1 from each of the SM
FIFOs (removing an event) repeatedly until one or more
of them is empty (an easy condition to detect from a cir-
cuit standpoint). This is only practical to do if SMs remain
small, but if it is done whenever possible, the SMs do re-
main small.

Using the C simulator program, analysis of the distribu-
tion of the global winner’s score prior to this global decre-
menting shows that for the majority of the cycles the global
winner has a 0 score, and in most of the remaining cases
the score is 1; the frequency with which the global winner
has a score of more than 2 is so low that we may treat it as
a pathological error case and decide that no special efforts
should be taken to improve performance for this case. This
distribution of global winner scores is due to the fact that the
majority of received data are, in practice, error-free, even at
poor SNRs.

In light of this fact, it was decided to change the algo-
rithm for decrementing all the SMs and rather than decre-
ment until a zero score was found, to decrement either zero
or one times and defer this decrement until the following
cycle. This was done in order to simplify the high-level
control of the design, whilst maintaining the same overall
mode of operation.

If a decrement is needed and thus no global winner were
available this is indicated to the HU which does not initi-
ate a trace-back for that cycle. In this manner, the global
decrementing system need not perform a decrement and
search-for-zero loop in order to try to establish when a zero
is available; this could be very slow for a large number of
nodes and would require synchronisation after each decre-
ment. The fact that a state has a SM value of zero may be
detected by the pairing system, and thus confirmation of the
presence of at least one SM with a zero value is available

before it would be possible to detect this solely from the
contents of the SM FIFOs.

Once the global winner has either been established or is
determined to be unknown, the SMs can be recycled across
the butterfly network under local control and the whole cy-
cle recommences. During this recycling process, if a global
decrement is needed, the first transaction on the BM FIFOs’
input ports is simply acknowledged without any action.

Everything in the core of the PMU is controlled by ex-
tremely local handshakes, except the butterfly network con-
nections and the determination of whether any node has a
SM value of zero. The butterfly routing problem can also
be largely overcome by use of appropriate floor-planning
which allows the node-pairs to be placed so that none must
connect to anything more than 3 replication units distant.

3.2.3 SM capping

Other analysis of the system dynamics revealed that states
with scores above a certain value were almost never incor-
porated into the path, so retaining much information about
their score was pointless. This means that we may place an
artificial limit on the maximum value that the FIFOs need
be able to store, and discard incoming events once this value
is reached. It is desired to keep the SMs to the smallest
size consistent with meeting the specification as the size of
the SMs has an impact on the area, power consumption and
speed of the design. The effect of this is illustrated in Fig-
ure 5 , which shows the BERs for various capping limits rel-
ative to the uncapped case.

It can be seen that a limit of 6 is clearly too little, but that
7 quickly converges with the uncapped case and is coinci-
dent with it by a SNR of 5dB. In the case of our k = 7 , n = 2
decoder this limit need only be 7, as this still allowed us to
meet our design specification.

19

2.2 b/
0
C 3

2 -
U
(U Q
n 8 1.8

c 9 1.6
.- c a

...... A ga
10

-

'. K... :- ________-

.

...........

....."\\\,,,,,,,, vm --..

-
!!

m
[r 1.4 x.
w

X%--

...................... a-. '. '. %... - - - _ _ -%.,

.........

1.2 %*.

---s..-
I + -..A I .. I , I -

-.._ a- ..-_. -.-.-__, .-_
1 - -

SNWdB

Figure 5. BER for various capping levels rela-
tive to uncapped values.

The capping is performed in our design by the use of
the relatively short BM FIFOs and the overflow units. This
proved to be an extremely problematic aspect of the design.
In addition to the overflow action this overflow unit also
handles the discarding of the first increment request in order
to perform the decrement operation described in the previ-
ous section. It is believed that this unit represents the most
significant bottleneck in the design and had the complexity
of this unit been anticipated, a different system might have
been designed.

3.3 Asynchronous HU

The HU also differs significantly from the survivor mem-
ory unit found in most conventional architectures. In our
design, the local winner data are not stored in a RAM-like
structure, but instead in distributed storage structure which
is currently implemented as an array of latches. This ap-
pears a much less efficient means of storage from an area
point of view but it is effectively 65-ported in its read ac-
cess and single ported in its write access. This structure is
necessary to allow the operation described below. A 65-port
structure would normally have an astronomical cost, but in
this case each read access port need only ever connect to
one address.

In this new HU design, instead of having three or four

blocks of memory that are used for trace-back, all four op-
erations (data entry, primary and secondary trace-back and
readout) take place in one region. This single block of stor-
age acts as a sliding window, holding data from the last D
cycles of the PMU. In addition to containing the local win-
ner data it also contains the global winner data. The value of
D may be chosen at implementation time and can have any
value desired. There exists a rule-of-thumb that the trace-
back history should be at least five times k for to ensure
convergence in (practically) all circunnstances, in this case
35. For our design a value of 65 was chosen for D as we
were unsure of the efficacy of our traceback unit.

The output from the HU is derived from the oldest en-
try in the winner memory. As may be recalled, exactly half
of the encoder and decoder states correspond to the most
recent bit being a zero, and the other half to a one. If the
binary numbering of the states is performed in the correct
manner, the least significant bit (LSB:) of the state number
indicates to which it corresponds. So the global winner cor-
responding to the oldest entry encodes, in its LSB, the da-
tum that should be output.

3.3.1 Asynchronous trace-back

It may be recalled that the global winner cannot be relied
upon to be correct at all times, so a tracle-back process is still
required. When a new local and global winner entry is made
into the winner memory (by overwriting the slice contain-
ing oldest entry), the hypothesised previous global winner is
computed and passed to the slice containing the entry made
in the previous cycle; parent computation is trivial, simply
involving a 1-bit shift and the replacement of the emptied
bit with the local winner that led to the current global win-
ner. This next slice compares the hypothesised value with
the winner that it has recorded and if it is the same, and the
winner path therefore continuous, the trace-back operation
is retired. If the two values differ, the hypothesised value is
assumed to be correct, the stored value is overwritten with
it, and a new hypothesised value for the next oldest entry is
computed etc. In this way, the trace-back continues down
the history (backwards in time) until exactly the point at
which it will no longer change anything in the store.

This trace-back operation is managed at an entirely local
level, by handshake between adjacent slices of the history
memory, without the need for any global control and is de-
coupled from the other processes in the HU as soon as it is
initiated. It can also be seen that because of this fire-and-
forget nature, multiple concurrent trace-backs may operate
at any time without any performance overhead. In addition,
the speed at which the trace-back process operates is unim-
portant as the trace-back and data storage processes move
in opposite directions around the HU and are entirely sepa-
rated from one another.

20

Multiple concurrent trace-backs are required to enable
errors in the global winner determined by the PMU to be
corrected. When the trellis first diverges from what is actu-
ally the correct path because of corruption of the received
data, a trace-back is initiated because the previous and cur-
rent winner are not continuous. When the trellis returns to
the correct path some short interval after the received data
cease to be sufficiently corrupt, a second trace-back must
start as there is again a discontinuity (there may be many
others during the corrupt period). The first trace-back will
converge with the existing path reasonably quickly as when
an error first occurs it cannot have diverged from the true
path very far. The final trace-back will continue to at least
the same point as the first, to correct the erroneous changes
made by the first or intermediate trace-backs. If at any point
the trellis indicates that it has not found the global winner
then a trace-back process is simply not initiated.

This mechanism appears at first glance to be a k-pointer
trace-back architecture[2] with k = D, but it differs in some
important respects:

the value of D is not constrained by the algorithm in
any manner, only by the error-correction performance
required

no part of the storage has a particular purpose at any
time: it is not split into write, merge and decode blocks

a variable and unknown number of trace-back passes
will occur over every slice of the HU

there are a variable and unknown number of trace-
backs running at any time

the best estimate of the global winner is maintained at
each slice of the HU.

There is a theoretical chance that a pathological data set
could cause a trace-back to run all the way to the oldest
entry of the memory and collide with the data entry phase
occurring at the other end of the HU. In these circumstances
the trace-back must be forcibly retired, and prevented from
interfering with the data entry. To do this a mutual exclusion
element is used to ensure that both operations cannot try to
access the same resource. This required the use of the only
custom element in the design, which was otherwise built
using only the elements available in our industrial partner’s
standard cell library.

3.3.2 HU implementation

The trace-back architecture is illustrated in Figure 6 which
shows the concept of the HU as a sliding window on the
data. The evaluate channel handles the multiple trace-backs
while the token channel handles which slice of the HU is at
the head, receiving new data and outputting decoded data.

The control unit of each slice is responsible for tracking the
stored global winner, managinghetiring the trace-backs and
passing the head token.

The winner store’s non-RAM based implementation is
driven by the multiple concurrent trace-back algorithm:
many slices of the memory may be accessed simultaneously
and asynchronously with respect to each other. The access
patterns are also unusual in that writing into the store is per-
formed on all the bits (one for each state) in one slice si-
multaneously, but only a single bit from each of possibly
multiple slices is read at a time. Because of the desire to
implement as much of the design as possible with standard
cells, this unusual structure was implemented with 2-to- 1
multiplexers acting as latches, and a tree of 4-to-1 multi-
plexers selecting the single bit. Multiplexers were used as
the storage element because the 2-to-1 multiplexer was sig-
nificantly smaller than the simplest latch in the cell library.
Undoubtedly this could be implemented in a much more ef-
ficient manner if full-custom design were used.

4 Comparison of conventional and new ar-
chitectures

The decoder was designed as part of a colIaborative
project to examine low-power techniques. Each of four
partners at separate institutions designed a decoder (the
other three synchronous) to the same specification using
the same fabrication process and, if appropriate, cell library.
The relative merits and demerits of the four approaches (the
industrial reference design, asynchronous, SPL logic and
algorithmically aware synthesis) are to be examined.

The four designs have finished fabrication on a 0.35pm
3-layer metal process and are undergoing more extensive
performance testing at the time of writing. A test board has
been designed to allow high-speed testing with a real video
signal, and the supporting system to do this is currently un-
dergoing final construction and test. As a result, detailed
performance figures are not yet available

Unfortunately the layout parameter extraction rules sup-
plied by the industrial partner for the process in which the
designs are being fabricated do not allow reliable capac-
itance extraction so accurate power figures are were not
available through simulation. However the fabricated de-
vices have been tested and decoding an uncorrupted stream
at a rate of 25Msymbol/s the decoder parts of the devices
(excluding the peripheral block which is common to all de-
signs, and the pads) consume 203mW (reference), 88mW
(SPL), 70mW (synthesis) and 9.2mW (our design). This
represents a much larger reduction in power dissipation than
the authors’ wildest hopes believed possible, so some doubt
regarding the testing remains.

As mentioned above, a C simulator of the new architec-
ture was created to determine required parameters for the

21

Rin
Ain

global
winner

local winners

7 r- I

local
winners
memory

local
winners
memory

Figure 6. The asynchronous trace-back mechanism.

new design. Figure 7 shows the bit error rates (BERs) ver-
sus the signal to noise ratio (SNR) for the C simulator, the
Verilog simulations of the architecture, the design specifi-
cation and the performance that would be achieved if no
coding scheme were used.

The C simulator prediction crosses the required perfor-
mance curve for a short segment around the corner of the
specification, but it will be observed that the performance
as predicted by the Verilog simulations is consistently better
than that predicted by the C simulations, and is comfortably
within the performance specification at all times. This dis-
crepancy is due to the performance of the trace-back mech-
anism. The C simulator perfectly reflects the operation of
the BMU and PMU, but has much more difficulty with the
multiple concurrent trace-backs and cannot perfectly reflect
their operation. Despite many hypotheses and attempts to
discover the true cause for this discrepancy, no firm expla-
nation has been forthcoming, and thus it has been impos-
sible to make the C simulator more accurately reflect the
Verilog simulation results.

Our design has an interesting and possibly advantageous
characteristic of its power consumption in that it will vary

data-out
Aout

depending on the SNR of the received signal: when the
SNR is low, more trace-backs will be required and those that
are done will be longer on average. This will increase the
power consumption in those circumstances, although with-
out accurate extraction data it is not clear how much this
will affect the overall power consumption.

Area figures show that the usual asynchronous area over-
head is not present here, in fact our design is the smallest
by a significant margin: 29% smaller than the reference
design (a commercial product) and 23% smaller than the
SPL-based design. A large part of this, gain was achieved
by the removal of the SRAM that all thie other designs use
in their survivor memory units. The reference design uses
four single-ported 64-bit by 128 word S U M S while the
other synchronous designs use one, dual-ported 64-bit by
128 word, one 6-bit by 128 word SRAM and two small
single-ported SRAMS. Our design use:s only 64-bit by 65
word storage, and the area of that, even though implemented
with multiplexers is about the same as the one large dual-
ported SRAM.

In order to avoid as far as possible ithe creation of new
cells for use in the design, functions such as Muller C-

22

z
m w
0
0

U

-

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

Figure 7. Error correction performance of the
new architecture.

elements were built from standard cells (and-or complex
functions in the case of Muller C-elements) and these were
significantly slower than the speeds we believe could have
been achieved with custom cells. In addition, where C-
elements have to be resettable (most of them), using the
standard cell implementation required the insertion of an
extra gate delay in both the forward and feedback paths. As
the whole of the datapath makes heavy use of 2-input C el-
ements and they are liberally used elsewhere, a custom cell
would undoubtedly improve the speed. A significant area
reduction would also result from the use of custom cells as
the standard cell implementations'of the Muller C-element
are highly non-optimal and custom versions could be imple-
mented with fewer transistors (8 instead of 12 for a 2-input
Muller C-element).

Further area savings are also possible as the design that
was fabricated was automatically placed and routed from a
flattened cell netlist. Subsequent work has established that
the cell density may be raised from the x 85% in this de-
sign to greater than 99% for the HU and more than 95% in
the PMU by hand placement and hand optimisation of au-
tomatic routing; these two units account for x 95% of the
total cell area of the design. In this case hand placement and
hand optimised routing is practical because the enormous
amount of replication that exists in those two units mean
that only a handful of blocks need be done in this way.

One of the principal advantages, from an architectural
standpoint, of our design is the reduction in latency. In
the reference design the latency is 540 bits, more than eight
times the 67 that is required in our design. The latency in
our design has been artificially increased to around 144 so
that all three of the new designs may share a test system -
the other designs require a latency of at least 134.

Latency is important in the area of digital TV decoding
(the application of the reference design) as in a typical ap-
plication the higher level control system will have unknown
operating conditions (such as the code rate, receiver char-
acteristics, etc.) and a multi-variable parameter space must
be searched to find the correct parameters. This is done by
re-encoding the decoded data and comparing them with the
received data to decide when the correct parameter values
have been chosen - the error rate will be about 50% if the
parameters are wrong. A high latency means that a larger
number of samples of received data must be stored and more
samples are required before any error counting may begin.

The drawback of our design is its speed of operation
which in simulation varies between 77% and 44% of what
was sought (45Msymbol/s). Where punctured codes are
used the rate of samples presented to the decoder is a func-
tion of the coding rate and the symbol rate at the receiver.
When the same clock rate is used for all code rates, as here,
the "invalid" symbols that pad the data stream are simply ig-
nored by our decoder so that for code rates where these are
more prevalent (e.g. 1/2) we can achieve a higher propor-
tion of the desired performance. Testing of the fabricated
silicon indicates that the decoder is functional up to at least
25Msymbol/s.

The ideas developed in the design of the HU could be
applied to a clocked design, albeit in a perhaps less efficient
manner and maybe requiring a larger design overhead. In-
deed, an earlier version of the HU design underlies the sur-
vivor memory unit used in the two new clocked designs.
The storage mechanism for the local winners presents a dif-
ficult design problem in this respect. Either a structure simi-
lar to that used in this design is required, or if a conventional
multi-ported RAM structure were used, a complex arbitra-
tion system to govern access to the ports is required.

The PMU design cannot, however, be used in a clocked
design as the means of performing arithmetic on and storage
of the data are essentially a self-timed concept.

The PM comparison method if ported to a synchronous
system would require the repeated incrementing and decre-
menting of an up-down counter; this would be an inefficient
way to find the smaller value and would require an imprac-
tically high clock speed to allow the sort of performance
that is sought. It would perhaps be possible to use a one-
hot encoding scheme instead of a binary representation for
the values, although communicating values encoded in this
way around the butterfly would have a prohibitively large

23

.

Figure 8. The asynchronous decoder silicon.

routing overhead.
The partners creating synchronous designs have adopted

some of the architectural elements of our design whilst re-
maining in a synchronous framework. In particular a single-
memory trace-back system is used, but it only allows one
active trace-back, plus up to 16 suspended trace-backs to be
operational. They must also find the global winner, which is
done by means of a collapsing tree of binary comparators;
they do not have a zero SM score other than by chance.

A photograph of the manufactured silicon containing our
design is shown in Figure 8. The picture shows the PLL
needed by the common, synchronous, peripheral block in
the top left corner, the peripheral block itself across the rest
of the top of the die, and our decoder occupying the space
below. The large amount of unused die area around the
edges of the decoder are due to the fact that all of the de-
signs were to occupy the same pad ring.

5 Conclusions

We have described a new, self-timed architecture for a
Viterbi decoder. It occupies somewhat less area than alter-
native synchronous designs with manifold sources of fur-
ther area reduction available.

The power consumption also appears to be approxi-
mately an order of magnitude less than that of the the other
novel designs, and twice that again less than the reference
design (when decoding an uncorrupted stream).

The design cannot be translated directly into a syn-
chronous decoder and given that it should have the prop-
erty of low EM emissions which is particularly desirable
in a communications-related circuit, it has the potential to
demonstrate the commercial appeal of asynchronous cir-
cuits.

In the authors’ view, the most exciting aspect of the ar-
chitecture was the the exploitation in tlhe HU of one of self-
timed technology’s greatest assets - doing nothing when
there is nothing useful to do. This has had a significant
impact on the power consumption when good signal condi-
tions exist, but should not in any way compromise perfor-
mance when signal conditions are poor. This aspect of the
architecture is also the one which is least possible to trans-
late into a synchronous system.

An interesting aspect of the design is that it illustrates
the use of both high-speed serial operation (in the PMU)
and lower speed, (possibly very) parallel operation (in the
HU) in the same architecture. These two approaches were
applied where their use seemed most appropriate. This di-
versity of architectural styles would have been considerably
more difficult to achieve in a clocked design.

6 Acknowledgements

The work described above was supported by the EPSRC
PowerPack project (project code GRL27930) and the EU
PREST project (project code EP25242).

The authors wish to acknowledge the assistance of Keith
Lyons of Mite1 Semiconductor (formerly GEC Plessey
Semiconductor) in understanding Mitell’s design.

References

G. C. Clark Jr. and J. B. Cain. Error-(Correcting Coding for
Digital Communication, chapter 6, pages 256-265. Plenum,
1981.
G. Feygin and P. G. Gulak. Survivor sequence memory man-
agement in Viterbi decoders. Technical Report CSRI-252,
University of Toronto, January 1991.
G. D. Forney Jr. The Viterbi algorithm. Proc. IEEE,
61(3):268-278, March 1973.
A. P. Hekstra. An altemative to metric rescaling in Viterbi
decoders. IEEE Trans. Commun., 37(1 1): 1220-1222, Nov
1989.
J. Spars@, H. N. Jorgensen, E. Paaske, and S. Pedersen. An
area-efficient topology for VLSI implementation of Viterbi
decoders and other shuffle-exchange type structures. IEEE J.
Solid-state Circuits, 26(2):90-97, Feb 1991.
A. J. Viterbi. Error bounds for convolutional codes and an
asymptotically optimum decoding algoiithm. IEEE Trans. In-
form. Theory, 13:260-269, April 1967.
A. J. Viterbi and J. K. Omura. Principles of Digital Communi-
cation and Coding, chapter 4, pages 258-261. McGraw Hill,
1979.

.

24

