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Abstract 

Viterbi decoders are used for decoding data encoded us- 
ing convolutional forward error correction codes or data 
that suffers from inter-symbol interference. They occur in a 
large proportion of digital transmission and digital record- 
ing systems, including digital mobile telephony and digital 
TV broadcast, CD-ROM and magnetic disk reading. This 
paper describes a design for a selftimed Viterbi decoder. 
The new design is based upon serial, unary arithmetic for 
the manipulation and storage of metrics. In the trace-back 
system, multiple concurrent trace-backs may be running 
and trace-backs are terminated as soon as they cease to be 
useful. The new architecture occupies between 29% and 
23% less area than a selection of synchronous implementa- 
tions with the same design parameters which use the same 
process and cell-library. 

1 Introduction to the Viterbi algorithm 

The Viterbi algorithm[6, 31 is used widely in the digital 
transmission field as a means of decoding convolutional for- 
ward error correction (FEC) codes. The Viterbi algorithm is 
a maximum likelihood probability (MLP) method; the out- 
put of the decoder is the sequence most likely to have been 
transmitted, given an observed received sequence. 

Convolutional encoding is a highly asymmetric coding 
scheme - encoding is trivial, but decoding is very compu- 
tationally expensive. As a result of this and the fact that 
the decoding is often performed at the same time as other 
computationally intensive tasks, decoders are often imple- 
mented in dedicated hardware, although smaller decoders 
and those operating at lower data rates have come within 
reach of software in recent years. 

1.1 The encoding process 

In order to understand the decoding process, the encod- 
ing process must first be understood. The basic building 
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block of the encoder is a convolution and parity calcula- 
tion. The last k bits of the input stream are stored in a shift 
register and these are convolved (XORed) with a k-bit long 
pattern and the parity of the resulting stream is the encoder’s 
output corresponding to the most recent input bit. 

Redundancy (and hence FXC) is added to the bit stream 
by outputting multiple bits for each input bit, with each of 
the output bits being the result of using a different pattern 
in the convolution process. The ratio of input bits to out- 
put bits ( v / n ) ,  called the rate, may be any rational number 
less than 1 but must be selected at design time. Artificial 
rates lying between the real rate and 1 can be produced by 
“puncturing”, and this is the usual means of obtaining rates 
between 1 /2 and 1. Standard convolution patterns exist for 
each (non-punctured) value of v / n  and k that have been 
shown to be optimal for additive, white, Gaussian noise. 
The decoder described herein is a 1 /2-rate decoder with a 
constraint length ( k )  of 7 and therefore 64 states. 

The presence of k storage elements in the encoder means 
that it acts as a state machine of 2k-’ states. Every state has 
two routes from it, corresponding to the bit arriving most 
recently being a zero or a one, and two routes into it, cor- 
responding to the bit which has just exited the shift register 
being a zero or a one. 

It should be noted that a transition into exactly half the 
states corresponds to the encoding of a one and the other 
half to the encoding of a zero. 

1.2 The decoding process 

When the received pair of encoded bits arrives at the de- 
coder, the decoder must infer, from what is received, the 
data that were fed to the encoder. The encoded version 
of these data may have been corrupted on its journey from 
source to destination, so the decoder must be able to infer 
the intended values from this corrupted stream. 

As a transmitted pair has different significance depend- 
ing on the state the encoder was in when it generated them, 
so must the receiver attach different significance to a re- 
ceived pair depending on which state it believes the encoder 
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to be in. As the decoder does not know anything about the 
state the encoder was in when it generated the received pair, 
it must hypothesise about this and test the hypothesis in 
some way. 

This is done by generating, for each possible state that 
the decoder can be in, a measure (called a branch metric or 
BM) of how far the received data is from the “perfect” data 
that receiver would expect to see for the error-free transmis- 
sion of a 0 and a 1. To complete the hypothesis testing, these 
BMs are combined with a measure (called a state metric or 
SM) of the likelihood, based upon previously received data, 
that the encoder was in each state. These combinations of 
state and branch are called path metrics (PMs) and are mea- 
sures of the likelihood of each branch being correct. 

In other words, the decoder calculates simultaneously for 
each state and branch - what is the likelihood that this state 
is the correct one to be in, and therefore that the data re- 
ceived is due to the encoding of data corresponding to this 
brunch. 

As each destination state has two routes into it, and each 
route has an associated PM, it will be seen that the likeli- 
hood of a state being the correct starting point for the next 
cycle is the higher of the two likelihoods leading to it, i.e 
the more likely of the two routes to it. This higher likeli- 
hood is saved and becomes the SM for that state in the next 
cycle. The identity of the path into a state that had the high- 
est likelihood (the local winner) is also recorded in the sur- 
vivor memory for use later to establish which path through 
the state space the encoder took. 

In practice the likelihood metrics are reversed in sense, 
so that the most likely path has the lowest metric. This 
means that when the data are error-free, the winning branch 
from the correct state - the global winner - has a zero value 
BM associated with it in each cycle and therefore its PM 
and hence SM also remain at zero. 

The decision made by the trellis system regarding the 
best path is based only upon the most recently received k 
bits. A burst error could easily last longer than this so an- 
other stage which accumulates information over a longer 
period is used as well. Any state will, if its ancestry is fol- 
lowed back a sufficient number of time intervals, prove to 
be descended from the correct path, and the local winner 
values encountered along the route indicate the path taken 
through the state space to get there. Thus the local win- 
ner data can be used to find the correct path through the 
state space when a large number of sets of local winners are 
stored. The process of following these local winner indica- 
tions to find the path is known as a trace-back. 

The data output by the decoder is taken from the oldest 
set of local winners in the memory, and thus the system 
effectively accumulates evidence for the correctness of its 
estimate for a number of cycles equal to the depth of the 
survivor memory. 

2 A conventional decoder 

In the reference decoder design from our industrial part- 
ner, the architecture is largely determined by following the 
algorithm as described in the previous section. There are 
three basic sections to the design, the branch metric unit 
(BMU) the path metric unit (PMU) and the survivor mem- 
ory unit. The BMU is responsible for creating the BM val- 
ues from the incoming data that are passed to the PMU. The 
PMU is responsible for adding the B:Ms to the SMs to cre- 
ate PM values and determining local winners, which in their 
turn become SMs. The survivor memlory unit is responsible 
for recording the local winner identities and producing the 
output stream by performing trace-back. 

2.1 Conventional PMU 

The PMU accumulates BM values, and determines the 
lower value of a pair of these accumulated totals. This add- 
compare-select (ACS) operation is almost invariably imple- 
mented in a parallel fashion in high speed decoders as it is in 
this design, with there being a discrete unit corresponding 
to each state. 

In order to avoid arithmetic overflow of the PMs as they 
grow, two different methods are commonly used, both of 
which exploit the fact that the greatest possible span of PMs 
(the difference between the largest and smallest) is ( k  - 1) x 

The first of these is to subtract a proportion of the max- 
imum accumulated value when all of the states have accu- 
mulated at least that. This is practical provided the arith- 
metic width of the metrics is sufficiently large as there is a 
predictable minimum number of cycle,s between the last cy- 
cle during which not all of the metrics were greater than the 
chosen value, and the first cycle in which any of them could 
overflow[5]. 

The second is to use arithmetic units that ignore the over- 
flow condition, but where the comparison system under- 
stands that an apparently small value may in fact be a larger 
value which has wrapped around[4]. 

In this reference architecture, no effort is made to find 
the global winner (the state whose SM is the smallest). 

EM,, [71. 

2.2 Conventional survivor memory unit 

The survivor memory unit is a design somewhere be- 
tween a one-pointer trace-back and a k-pointer trace-back 
( k  = 2) architecture[2] with equal size write, merge and de- 
code blocks, plus a further block in which to store the data 
that are to be written out. 

The memory is split into four units whose function ro- 
tates. Local winner identities are written into the first, pri- 
mary and secondary trace-back are performed in the second 
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Figure 1. Primary and secondary trace-back. 

and third, and the fourth is idle. Figure 1 illustrates the pri- 
mary and secondary trace-back process; the quadrilaterals 
represent an array of local winners (each column represent- 
ing a time interval, the youngest on the left hand side where 
the trace-back process starts), the thicker line indicates the 
true path through the states and the thinner one the path 
taken by the trace-back process. 

In primary trace-back, it is assumed that an)’ starting 
state will eventually converge on the correct path, so an ar- 
bitrary location (say the top row in Figure 1) is chosen and 
trace-back begins there. This method attempts to find the 
global winner at the far end of this primary trace-back by 
assuming this convergence. The state at which this primary 
trace-back finishes is then used as the starting location for 
the secondary trace-back. The states navigated in this sec- 
ondary trace-back are recorded so that the bit for which they 
encode may be determined (recall that all possible paths that 
end at half of the states indicate the encoding of a one and 
those ending in the other half of the states indicate the en- 
coding of a zero). 

The two stage process is necessary because, as can be 
seen from Figure 1, until convergence occurs, the wrong 
path is taken through the memory. If this path were used to 
generate the output then the wrong data would be generated. 

3 A new, self-timed architecture 

In this new architecture the design is a mixture of 2- 
phase and 4-phase circuits. 4-phase operation was chosen 
for the control aspects of the architecture for ease of design. 
The datapath is implemented as an event storage based cir- 
cuit with a number of 2-phase handshakes being enclosed 
by the 4-phase control system. 2-phase is chosen here for 
reasons of speed (a halving of the number of events, whilst 
not doubling the speed does bring a significant improve- 
ment) and area (a 2-phase FIFO has half the number of con- 
trol elements of its 4-phase equivalent). An additional con- 

sideration is the requirement for the unambiguous detection 
of full and empty states on FIFOs, which is substantially 
more difficult with a 4-phase implementation than with 2- 
phase. 

The three sections described below and illustrated in Fig- 
ure 2 fulfil basically the same functions as their equivalent 
in a synchronous system. The presence of a clock signal in 
Figure 2 is due to the design being created for integration in 
a larger, synchronous system, which requires synchronised 
input of received data and output of decoded data. 

The sections can operate in separate pipeline stages and, 
in the case of the BMU and history unit (HU, known as sur- 
vivor memory unit in synchronous architectures), these are 
sub-pipelined. Unfortunately, due to the nature of the re- 
circulation of data in the PMU, it is impossible to further 
pipeline its operation, although some pseudo-pipelining is 
achieved by overlapping non-exclusive parts of the opera- 
tion. 

An additional constraint on the PMU is that in our de- 
sign it requires a self-synchronisation point, at the interface 
between the PMU and the HU. This synchronisation point 
is caused by the need to have found (or at least attempted 
to find) the global winner state, which requires all the local 
winner states to have been found. 

3.1 Asynchronous BMU 

As a design aid, a C program was written to quickly al- 
low the simulation of this system with different policies on 
the sizes of BMs, and many other properties of the design. 
In order to reduce the arithmetic size of the BMs, prescal- 
ing, predecrementing, and capping[ 11 are desirable. Use of 
the C simulator allowed us to verify that reduction of the 
maximum size of BM that must be handled from 98 (as a 3- 
bit soft decision system is used) to only 6 would still permit 
the required error correction performance from the decoder. 

The BMs are not represented as binary values however, 
but rather as the pattern of states that would be seen in 
a 2-phase micropipeline event-FIFO built from Muller C- 
elements if that number of transactions had been completed 
on its input port. The BMs are formatted this way to fa- 
cilitate their loading into the PMU - it describes the state 
the C-elements must be set to. Because the event FIFO is 
2-phase, the number of events is represented by the number 
of changes of phase in the pattern. 

Thus a zero is encoded as 000000, one as 1 1 1 1 1 1, two as 
000001, three as 111101, four as 000101, etc. The encod- 
ings for 0 and 1 appear to be the same but the event-FIFOs 
are reset between cycles so there is an implicit 0 to the right 
of the patterns. There is also an implicit bit to the left of the 
patterns that matches the left most bit. 
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Figure 2. The asynchronous architecture. 
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3.2 Asynchronous PMU 

The PMU in this new design is a fully parallel system as 
was the reference design, but differs from it in that is has 
no conventional arithmetic, and values are stored in a se- 
rial, unary manner, as a number of events in a micropipeline 
event-FIFO. The Viterbi algorithm only cares about the rel- 
ative sizes of the BMs or SMs to be chosen between, rather 
than the absolute size of any of them, and this is easily com- 
putable with this unconventional representation of the data. 
The absolute value of the smaller BM must be preserved, 
but its value need not be known or expressed explicitly. 

The flow of data to and from a pair of state processors 
(known as nodes) is illustrated in Figure 3. Node-pairs are 
almost invariably used as the unit of replication in Viterbi 
designs because, due to the nature of the “butterfly” inter- 
connection network between the right-hand and left-hand 
sides of the nodes, particular pairs of nodes have similar 
routing requirements. Making the unit of replication a pair 
simplifies the placement and routing stage of design[ 13. 

3.2.1 Event add-compare-select 

The ACS function is implemented as two parts in the new 
architecture. The BMs are bit-parallel loaded into the BM 
FIFOs and then the SMs are added to them as a series of 
events on the FIFO input port. 

In order to compare the sizes of two values stored in the 
BM FIFOs, the output requests of the two FIFOs are fed 
via a Muller C-element to another event-FIFO, so that this 
lower FIFO ends up with a number of events in it  equal 
to the smaller number of events in the upper two FIFOs. 
Thus the local winner value is determined, and the local 
winner identity is merely an encoding of which of the two 
branch metric FIFOs became empty first. This equates to 
the compare-select part of the ACS. 

A more detailed diagram of the datalpath of a single node 
is shown in Figure 4. Here we see the overflow units which 
allow us to try to pass up to 7 tokens from the feeding SM 
FIFO into a BM FIFO which may already contain 6 (of its 
maximum 7) without error. Normally the overflow units 
pass the requests to the BM FIFO and pass the acknowl- 
edges it  receives from the BM FIFO back to the SM FIFO 
that is feeding it. This continues until the BM FIFO in- 
dicates that it is full. From that point input requests are 
diverted straight to input acknowledges. 

The phase compensators are required because the SM 
FIFOs that are feeding the BM FIFOs have unknown phase 
(they can be in state all- 1 s or all-Os when empty). This also 
impacts the value loaded into the BM FIFOs, which must be 
inverted if the SM FIFO is in the all-1s state when empty. 
The complexity of the data path between the output of the 
SM FIFOs and the input of the BM FIFOs represents a se- 
rious bottleneck for this design. 

3.2.2 Global winner determination 

As the global winner identity is  required immediately in ev- 
ery cycle in our architecture (unlike in most conventional ar- 
chitectures) this must be determined from the values stored 
in the SM FIFOs. The Viterbi algorithm requires only that 
the relative sizes of the SMs be correct so we may subtract 
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Figure 4. A path metric unit node data path. 

an arbitrary value from all SMs. Thus the global winner 
may be found simply by subtracting 1 from each of the SM 
FIFOs (removing an event) repeatedly until one or more 
of them is empty (an easy condition to detect from a cir- 
cuit standpoint). This is only practical to do if SMs remain 
small, but if it is done whenever possible, the SMs do re- 
main small. 

Using the C simulator program, analysis of the distribu- 
tion of the global winner’s score prior to this global decre- 
menting shows that for the majority of the cycles the global 
winner has a 0 score, and in most of the remaining cases 
the score is 1; the frequency with which the global winner 
has a score of more than 2 is so low that we may treat it as 
a pathological error case and decide that no special efforts 
should be taken to improve performance for this case. This 
distribution of global winner scores is due to the fact that the 
majority of received data are, in practice, error-free, even at 
poor SNRs. 

In light of this fact, it was decided to change the algo- 
rithm for decrementing all the SMs and rather than decre- 
ment until a zero score was found, to decrement either zero 
or one times and defer this decrement until the following 
cycle. This was done in order to simplify the high-level 
control of the design, whilst maintaining the same overall 
mode of operation. 

If a decrement is needed and thus no global winner were 
available this is indicated to the HU which does not initi- 
ate a trace-back for that cycle. In this manner, the global 
decrementing system need not perform a decrement and 
search-for-zero loop in order to try to establish when a zero 
is available; this could be very slow for a large number of 
nodes and would require synchronisation after each decre- 
ment. The fact that a state has a SM value of zero may be 
detected by the pairing system, and thus confirmation of the 
presence of at least one SM with a zero value is available 

before it would be possible to detect this solely from the 
contents of the SM FIFOs. 

Once the global winner has either been established or is 
determined to be unknown, the SMs can be recycled across 
the butterfly network under local control and the whole cy- 
cle recommences. During this recycling process, if a global 
decrement is needed, the first transaction on the BM FIFOs’ 
input ports is simply acknowledged without any action. 

Everything in the core of the PMU is controlled by ex- 
tremely local handshakes, except the butterfly network con- 
nections and the determination of whether any node has a 
SM value of zero. The butterfly routing problem can also 
be largely overcome by use of appropriate floor-planning 
which allows the node-pairs to be placed so that none must 
connect to anything more than 3 replication units distant. 

3.2.3 SM capping 

Other analysis of the system dynamics revealed that states 
with scores above a certain value were almost never incor- 
porated into the path, so retaining much information about 
their score was pointless. This means that we may place an 
artificial limit on the maximum value that the FIFOs need 
be able to store, and discard incoming events once this value 
is reached. It is desired to keep the SMs to the smallest 
size consistent with meeting the specification as the size of 
the SMs has an impact on the area, power consumption and 
speed of the design. The effect of this is illustrated in Fig- 
ure 5 ,  which shows the BERs for various capping limits rel- 
ative to the uncapped case. 

It can be seen that a limit of 6 is clearly too little, but that 
7 quickly converges with the uncapped case and is coinci- 
dent with it by a SNR of 5dB. In the case of our k = 7 ,  n = 2 
decoder this limit need only be 7, as this still allowed us to 
meet our design specification. 

19 



2.2 b/ 
0 
C 3 

2 -  
U 
(U Q 
n 8 1.8 

c 9 1.6 
.- c a 

...... A g ......a 
10 

- 

'. K... :- ________-  

. 

........... 

....."\\\,,,,,,,, vm --.. 

- 
!! 

m 
[r 1.4 x. 
w 

X%-- 

...................... .......... a-. ..... '. '. %... - - - _ _  -%., 

......... ........ 

1.2 %*. 

---s..- 
I +  -..A I .. I , I - 

-.._ a- ..-_. -.-.-__, .-_ 
1 - - 

SNWdB 

Figure 5. BER for various capping levels rela- 
tive to uncapped values. 

The capping is performed in our design by the use of 
the relatively short BM FIFOs and the overflow units. This 
proved to be an extremely problematic aspect of the design. 
In addition to the overflow action this overflow unit also 
handles the discarding of the first increment request in order 
to perform the decrement operation described in the previ- 
ous section. It is believed that this unit represents the most 
significant bottleneck in the design and had the complexity 
of this unit been anticipated, a different system might have 
been designed. 

3.3 Asynchronous HU 

The HU also differs significantly from the survivor mem- 
ory unit found in most conventional architectures. In our 
design, the local winner data are not stored in a RAM-like 
structure, but instead in distributed storage structure which 
is currently implemented as an array of latches. This ap- 
pears a much less efficient means of storage from an area 
point of view but it is effectively 65-ported in its read ac- 
cess and single ported in its write access. This structure is 
necessary to allow the operation described below. A 65-port 
structure would normally have an astronomical cost, but in 
this case each read access port need only ever connect to 
one address. 

In this new HU design, instead of having three or four 

blocks of memory that are used for trace-back, all four op- 
erations (data entry, primary and secondary trace-back and 
readout) take place in one region. This single block of stor- 
age acts as a sliding window, holding data from the last D 
cycles of the PMU. In addition to containing the local win- 
ner data it also contains the global winner data. The value of 
D may be chosen at implementation time and can have any 
value desired. There exists a rule-of-thumb that the trace- 
back history should be at least five times k for to ensure 
convergence in (practically) all circunnstances, in this case 
35. For our design a value of 65 was chosen for D as we 
were unsure of the efficacy of our traceback unit. 

The output from the HU is derived from the oldest en- 
try in the winner memory. As may be recalled, exactly half 
of the encoder and decoder states correspond to the most 
recent bit being a zero, and the other half to a one. If the 
binary numbering of the states is performed in the correct 
manner, the least significant bit (LSB:) of the state number 
indicates to which it corresponds. So the global winner cor- 
responding to the oldest entry encodes, in its LSB, the da- 
tum that should be output. 

3.3.1 Asynchronous trace-back 

It may be recalled that the global winner cannot be relied 
upon to be correct at all times, so a tracle-back process is still 
required. When a new local and global winner entry is made 
into the winner memory (by overwriting the slice contain- 
ing oldest entry), the hypothesised previous global winner is 
computed and passed to the slice containing the entry made 
in the previous cycle; parent computation is trivial, simply 
involving a 1-bit shift and the replacement of the emptied 
bit with the local winner that led to the current global win- 
ner. This next slice compares the hypothesised value with 
the winner that it has recorded and if it is the same, and the 
winner path therefore continuous, the trace-back operation 
is retired. If the two values differ, the hypothesised value is 
assumed to be correct, the stored value is overwritten with 
it, and a new hypothesised value for the next oldest entry is 
computed etc. In this way, the trace-back continues down 
the history (backwards in time) until exactly the point at 
which it will no longer change anything in the store. 

This trace-back operation is managed at an entirely local 
level, by handshake between adjacent slices of the history 
memory, without the need for any global control and is de- 
coupled from the other processes in the HU as soon as it is 
initiated. It can also be seen that because of this fire-and- 
forget nature, multiple concurrent trace-backs may operate 
at any time without any performance overhead. In addition, 
the speed at which the trace-back process operates is unim- 
portant as the trace-back and data storage processes move 
in opposite directions around the HU and are entirely sepa- 
rated from one another. 
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Multiple concurrent trace-backs are required to enable 
errors in the global winner determined by the PMU to be 
corrected. When the trellis first diverges from what is actu- 
ally the correct path because of corruption of the received 
data, a trace-back is initiated because the previous and cur- 
rent winner are not continuous. When the trellis returns to 
the correct path some short interval after the received data 
cease to be sufficiently corrupt, a second trace-back must 
start as there is again a discontinuity (there may be many 
others during the corrupt period). The first trace-back will 
converge with the existing path reasonably quickly as when 
an error first occurs it cannot have diverged from the true 
path very far. The final trace-back will continue to at least 
the same point as the first, to correct the erroneous changes 
made by the first or intermediate trace-backs. If at any point 
the trellis indicates that it has not found the global winner 
then a trace-back process is simply not initiated. 

This mechanism appears at first glance to be a k-pointer 
trace-back architecture[2] with k = D, but it differs in some 
important respects: 

the value of D is not constrained by the algorithm in 
any manner, only by the error-correction performance 
required 

no part of the storage has a particular purpose at any 
time: it is not split into write, merge and decode blocks 

a variable and unknown number of trace-back passes 
will occur over every slice of the HU 

there are a variable and unknown number of trace- 
backs running at any time 

the best estimate of the global winner is maintained at 
each slice of the HU. 

There is a theoretical chance that a pathological data set 
could cause a trace-back to run all the way to the oldest 
entry of the memory and collide with the data entry phase 
occurring at the other end of the HU. In these circumstances 
the trace-back must be forcibly retired, and prevented from 
interfering with the data entry. To do this a mutual exclusion 
element is used to ensure that both operations cannot try to 
access the same resource. This required the use of the only 
custom element in the design, which was otherwise built 
using only the elements available in our industrial partner’s 
standard cell library. 

3.3.2 HU implementation 

The trace-back architecture is illustrated in Figure 6 which 
shows the concept of the HU as a sliding window on the 
data. The evaluate channel handles the multiple trace-backs 
while the token channel handles which slice of the HU is at 
the head, receiving new data and outputting decoded data. 

The control unit of each slice is responsible for tracking the 
stored global winner, managinghetiring the trace-backs and 
passing the head token. 

The winner store’s non-RAM based implementation is 
driven by the multiple concurrent trace-back algorithm: 
many slices of the memory may be accessed simultaneously 
and asynchronously with respect to each other. The access 
patterns are also unusual in that writing into the store is per- 
formed on all the bits (one for each state) in one slice si- 
multaneously, but only a single bit from each of possibly 
multiple slices is read at a time. Because of the desire to 
implement as much of the design as possible with standard 
cells, this unusual structure was implemented with 2-to- 1 
multiplexers acting as latches, and a tree of 4-to-1 multi- 
plexers selecting the single bit. Multiplexers were used as 
the storage element because the 2-to-1 multiplexer was sig- 
nificantly smaller than the simplest latch in the cell library. 
Undoubtedly this could be implemented in a much more ef- 
ficient manner if full-custom design were used. 

4 Comparison of conventional and new ar- 
chitectures 

The decoder was designed as part of a colIaborative 
project to examine low-power techniques. Each of four 
partners at separate institutions designed a decoder (the 
other three synchronous) to the same specification using 
the same fabrication process and, if appropriate, cell library. 
The relative merits and demerits of the four approaches (the 
industrial reference design, asynchronous, SPL logic and 
algorithmically aware synthesis) are to be examined. 

The four designs have finished fabrication on a 0.35pm 
3-layer metal process and are undergoing more extensive 
performance testing at the time of writing. A test board has 
been designed to allow high-speed testing with a real video 
signal, and the supporting system to do this is currently un- 
dergoing final construction and test. As a result, detailed 
performance figures are not yet available 

Unfortunately the layout parameter extraction rules sup- 
plied by the industrial partner for the process in which the 
designs are being fabricated do not allow reliable capac- 
itance extraction so accurate power figures are were not 
available through simulation. However the fabricated de- 
vices have been tested and decoding an uncorrupted stream 
at a rate of 25Msymbol/s the decoder parts of the devices 
(excluding the peripheral block which is common to all de- 
signs, and the pads) consume 203mW (reference), 88mW 
(SPL), 70mW (synthesis) and 9.2mW (our design). This 
represents a much larger reduction in power dissipation than 
the authors’ wildest hopes believed possible, so some doubt 
regarding the testing remains. 

As mentioned above, a C simulator of the new architec- 
ture was created to determine required parameters for the 
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Figure 6. The asynchronous trace-back mechanism. 

new design. Figure 7 shows the bit error rates (BERs) ver- 
sus the signal to noise ratio (SNR) for the C simulator, the 
Verilog simulations of the architecture, the design specifi- 
cation and the performance that would be achieved if no 
coding scheme were used. 

The C simulator prediction crosses the required perfor- 
mance curve for a short segment around the corner of the 
specification, but it will be observed that the performance 
as predicted by the Verilog simulations is consistently better 
than that predicted by the C simulations, and is comfortably 
within the performance specification at all times. This dis- 
crepancy is due to the performance of the trace-back mech- 
anism. The C simulator perfectly reflects the operation of 
the BMU and PMU, but has much more difficulty with the 
multiple concurrent trace-backs and cannot perfectly reflect 
their operation. Despite many hypotheses and attempts to 
discover the true cause for this discrepancy, no firm expla- 
nation has been forthcoming, and thus it has been impos- 
sible to make the C simulator more accurately reflect the 
Verilog simulation results. 

Our design has an interesting and possibly advantageous 
characteristic of its power consumption in that it will vary 

data-out 
Aout 

depending on the SNR of the received signal: when the 
SNR is low, more trace-backs will be required and those that 
are done will be longer on average. This will increase the 
power consumption in those circumstances, although with- 
out accurate extraction data it is not clear how much this 
will affect the overall power consumption. 

Area figures show that the usual asynchronous area over- 
head is not present here, in fact our design is the smallest 
by a significant margin: 29% smaller than the reference 
design (a commercial product) and 23% smaller than the 
SPL-based design. A large part of this, gain was achieved 
by the removal of the SRAM that all thie other designs use 
in their survivor memory units. The reference design uses 
four single-ported 64-bit by 128 word S U M S  while the 
other synchronous designs use one, dual-ported 64-bit by 
128 word, one 6-bit by 128 word SRAM and two small 
single-ported SRAMS. Our design use:s only 64-bit by 65 
word storage, and the area of that, even though implemented 
with multiplexers is about the same as the one large dual- 
ported SRAM. 

In order to avoid as far as possible ithe creation of new 
cells for use in the design, functions such as Muller C- 
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Figure 7. Error correction performance of the 
new architecture. 

elements were built from standard cells (and-or complex 
functions in the case of Muller C-elements) and these were 
significantly slower than the speeds we believe could have 
been achieved with custom cells. In addition, where C- 
elements have to be resettable (most of them), using the 
standard cell implementation required the insertion of an 
extra gate delay in both the forward and feedback paths. As 
the whole of the datapath makes heavy use of 2-input C el- 
ements and they are liberally used elsewhere, a custom cell 
would undoubtedly improve the speed. A significant area 
reduction would also result from the use of custom cells as 
the standard cell implementations'of the Muller C-element 
are highly non-optimal and custom versions could be imple- 
mented with fewer transistors (8 instead of 12 for a 2-input 
Muller C-element). 

Further area savings are also possible as the design that 
was fabricated was automatically placed and routed from a 
flattened cell netlist. Subsequent work has established that 
the cell density may be raised from the x 85% in this de- 
sign to greater than 99% for the HU and more than 95% in 
the PMU by hand placement and hand optimisation of au- 
tomatic routing; these two units account for x 95% of the 
total cell area of the design. In this case hand placement and 
hand optimised routing is practical because the enormous 
amount of replication that exists in those two units mean 
that only a handful of blocks need be done in this way. 

One of the principal advantages, from an architectural 
standpoint, of our design is the reduction in latency. In 
the reference design the latency is 540 bits, more than eight 
times the 67 that is required in our design. The latency in 
our design has been artificially increased to around 144 so 
that all three of the new designs may share a test system - 
the other designs require a latency of at least 134. 

Latency is important in the area of digital TV decoding 
(the application of the reference design) as in a typical ap- 
plication the higher level control system will have unknown 
operating conditions (such as the code rate, receiver char- 
acteristics, etc.) and a multi-variable parameter space must 
be searched to find the correct parameters. This is done by 
re-encoding the decoded data and comparing them with the 
received data to decide when the correct parameter values 
have been chosen - the error rate will be about 50% if the 
parameters are wrong. A high latency means that a larger 
number of samples of received data must be stored and more 
samples are required before any error counting may begin. 

The drawback of our design is its speed of operation 
which in simulation varies between 77% and 44% of what 
was sought (45Msymbol/s). Where punctured codes are 
used the rate of samples presented to the decoder is a func- 
tion of the coding rate and the symbol rate at the receiver. 
When the same clock rate is used for all code rates, as here, 
the "invalid" symbols that pad the data stream are simply ig- 
nored by our decoder so that for code rates where these are 
more prevalent (e.g. 1/2) we can achieve a higher propor- 
tion of the desired performance. Testing of the fabricated 
silicon indicates that the decoder is functional up to at least 
25Msymbol/s. 

The ideas developed in the design of the HU could be 
applied to a clocked design, albeit in a perhaps less efficient 
manner and maybe requiring a larger design overhead. In- 
deed, an earlier version of the HU design underlies the sur- 
vivor memory unit used in the two new clocked designs. 
The storage mechanism for the local winners presents a dif- 
ficult design problem in this respect. Either a structure simi- 
lar to that used in this design is required, or if a conventional 
multi-ported RAM structure were used, a complex arbitra- 
tion system to govern access to the ports is required. 

The PMU design cannot, however, be used in a clocked 
design as the means of performing arithmetic on and storage 
of the data are essentially a self-timed concept. 

The PM comparison method if ported to a synchronous 
system would require the repeated incrementing and decre- 
menting of an up-down counter; this would be an inefficient 
way to find the smaller value and would require an imprac- 
tically high clock speed to allow the sort of performance 
that is sought. It would perhaps be possible to use a one- 
hot encoding scheme instead of a binary representation for 
the values, although communicating values encoded in this 
way around the butterfly would have a prohibitively large 
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Figure 8. The asynchronous decoder silicon. 

routing overhead. 
The partners creating synchronous designs have adopted 

some of the architectural elements of our design whilst re- 
maining in a synchronous framework. In particular a single- 
memory trace-back system is used, but it only allows one 
active trace-back, plus up to 16 suspended trace-backs to be 
operational. They must also find the global winner, which is 
done by means of a collapsing tree of binary comparators; 
they do not have a zero SM score other than by chance. 

A photograph of the manufactured silicon containing our 
design is shown in Figure 8. The picture shows the PLL 
needed by the common, synchronous, peripheral block in 
the top left corner, the peripheral block itself across the rest 
of the top of the die, and our decoder occupying the space 
below. The large amount of unused die area around the 
edges of the decoder are due to the fact that all of the de- 
signs were to occupy the same pad ring. 

5 Conclusions 

We have described a new, self-timed architecture for a 
Viterbi decoder. It occupies somewhat less area than alter- 
native synchronous designs with manifold sources of fur- 
ther area reduction available. 

The power consumption also appears to be approxi- 
mately an order of magnitude less than that of the the other 
novel designs, and twice that again less than the reference 
design (when decoding an uncorrupted stream). 

The design cannot be translated directly into a syn- 
chronous decoder and given that it should have the prop- 
erty of low EM emissions which is particularly desirable 
in a communications-related circuit, it has the potential to 
demonstrate the commercial appeal of asynchronous cir- 
cuits. 

In the authors’ view, the most exciting aspect of the ar- 
chitecture was the the exploitation in tlhe HU of one of self- 
timed technology’s greatest assets - doing nothing when 
there is nothing useful to do. This has had a significant 
impact on the power consumption when good signal condi- 
tions exist, but should not in any way compromise perfor- 
mance when signal conditions are poor. This aspect of the 
architecture is also the one which is least possible to trans- 
late into a synchronous system. 

An interesting aspect of the design is that it illustrates 
the use of both high-speed serial operation (in the PMU) 
and lower speed, (possibly very) parallel operation (in the 
HU) in the same architecture. These two approaches were 
applied where their use seemed most appropriate. This di- 
versity of architectural styles would have been considerably 
more difficult to achieve in a clocked design. 
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