
Adaptive Pipeline Structures for Speculation Control

Aristides Efthymiou Jim D. Garside

Department of Computer Science, The University of Manchester,
Oxford Road, Manchester M13 9PL, UK
E-mail: fae,jdgg@cs.man.ac.uk

Abstract

Pipelining is a common method for improving the
throughput of a system, especially when the majority of
the processing is sequential. Unfortunately when the se-
quentiality is broken, a pipelined system suffers additional
delay and, most importantly for this work, energy waste
which is roughly proportional to the pipeline depth. Stan-
dard pipelines cannot be modified once they are built so
their depth is fixed. This paper proposes a method that al-
lows the dynamic adaptation of the structure of an asyn-
chronous pipeline, so that pipeline stages can be merged
and split at run-time, allowing greater flexibility. It is based
on novel latch controllers that can be configured dynami-
cally as ‘normal’ or ‘collapsed’, i.e. keeping their latches
permanently transparent. Using these controllers a model
of AMULET3 was designed that is capable of changing its
pipeline depth dynamically when branches are anticipated,
in order to alleviate the energy loss when the branch finally
arrives.

1. Introduction

Pipelining has long been used by engineers as an in-
expensive method to improve the performance of systems
such as processors. Its major disadvantage is control haz-
ards, when the sequentiality of its operation is broken by
a (taken) branch, when the pipeline is drained and later re-
filled. Apart from the well-known speed implications, this
wastes energy for the instructions that have already entered
the pipeline and are discarded.

Because branches happen quite frequently it has become
standard, even for embedded processors, to employ branch
prediction. Branch prediction generally predicts correctly
most of the branches and, as it is usually not on the criti-
cal path, it has a positive impact on speed. However, the
branch prediction hardware consumes energy in every cy-
cle, so it is questionable if the total energy consumption for
the execution of a program is reduced.

Generally pipelining can be considered as a form of
speculative execution: instructions are fetched into the pro-
cessor pipeline before knowing that they are going to be
executed. For energy consumption, speculation is always
wasteful compared to the ideal situation where the only
instructions allowed in the pipeline are those that are ex-
ecuted. Primarily, energy is wasted in instructions that
are fetched and processed, but are later discarded due to
a branch. Prediction techniques can reduce this source of
energy waste, but at the expense of a per instruction-fetch
energy penalty, which is also wasteful.

Asynchronous pipelines [11] are capable of energy effi-
ciency equivalent to perfect clock-gating without the prob-
lem of power supply ringing due to large variation in
switching current found in synchronous circuits [7]. De-
spite their energy efficiency, the above mentioned problem
of wasting energy for every branch is still present in asyn-
chronous pipelines. Moreover the replacement of global
synchronisation with local communication makes it harder
to broadcast the occurrence of a branch from the stage that
determines the next PC to its upstream stages, so that these
can discard the instructions they are currently processing.
To transmit this information would require separate hand-
shakes with all upstream pipeline stages and arbitration (or
synchronisation) in each one of them; as a result the pipeline
throughput could drop. Thus the common practice is to let
the upstream stages continue normally and discard the ‘un-
wanted’ instructions at the stage that resolves the branch.
This clearly wastes more energy compared to a synchronous
equivalent, since all instructions fetched after the branch
will be processed in all pipeline stages up to the one that
resolves the branches.

In summary, every instruction flow change incurs a sig-
nificant energy cost for a pipelined processor. This cost is
greater in asynchronous processors and it increases as the
pipeline gets deeper.

This paper presents a method that can change the con-
figuration of an asynchronous pipeline dynamically so that
its effective pipeline depth can be controlled. It is based on
selectively making some latches transparent which, in ef-

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC’03)
1522-8681/03 $17.00 © 2003 IEEE

fect, joins pipeline stages together. Shortening the pipeline
depth, means that less energy is wasted when branches hap-
pen, but this comes at the expense of speed loss. The
method presented here allows tradeoffs to be made not at
the design time, as in common pipelines, but at run-time.

The next section presents the idea of dynamically mak-
ing pipeline latches ‘permanently’ transparent. Section 3
describes common latch controller types and how their col-
lapsed equivalents could be operating, while section 4 pro-
vides detail in the specifications for the new latch con-
trollers. An application of the method is given in the re-
maining of the paper. A variation of AMULET3 [5] that
uses the new latch controllers is described in section 6 and
a method for determining dynamically when to reduce the
pipeline depth is shown and evaluated in section 7. Finally
section 8 concludes the paper.

2. Adapting the pipeline structure

A pipeline is defined by the position of the pipeline regis-
ters/latches in the circuit. As there is no way to move these
registers after the circuit is fabricated, the only alternative
is to control when they are transparent or opaque. When
a pipeline latch is made ‘permanently’ transparent, its two
neighbouring pipeline stages are effectively joined in one
stage. With this method the pipeline structure can be al-
tered dynamically to suit the power and performance levels
required by the system at any particular time.

The ability to join pipeline stages simply by making the
latch between them always transparent is unique to asyn-
chronous pipelines because the pipeline stages are self-
contained and all communication is explicit. It is not possi-
ble to do the same in a synchronous circuit; control is global
and correct operation relies on the delivery of results after
a predetermined number of clock cycles. Even if this is
managed — a tricky but soluble problem — a synchronous
pipeline is normally balanced so that pipeline stages would
have to be collapsed in (for example) alternate pairs accom-
panied by a simultaneous halving of the clock frequency.
Thus collapsing in synchronous circuits would not be as
general as in asynchronous ones.

In micropipeline-style asynchronous circuits, in order to
be able to merge pipeline stages, reconfigurable latch con-
trollers, that can be either ‘permanently transparent’ (col-
lapsed) or ‘normal’, are needed. A collapsed latch con-
troller must ‘pretend’ that it only connects the inputs and
outputs together, as if they were the same wire, while al-
ways keeping the latch transparent. So, an input request will
be passed on to the output, and will only be acknowledged
when the output side has been acknowledged. In a series of
collapsed latch controllers, the first will have to wait for the
last one to be acknowledged (and propagated back) before
it can give its acknowledgement.

R1 R1d

A1

R2 R2d

A2
En

latch

ctrl stage 2

pipe

stage 1

pipe latch

ctrl

latch

ctrl

(a) A 2-stage pipeline

En collapsed

done

done

idle idle

idle

A2

R2d

Stg2

Stg1

A1

R2

R1

R1d

processing

processing

(b) Collapsing pipeline waveforms

Figure 1. Timing of pipeline collapsing

The pipeline latches cannot be collapsed at any time.
Figure 1 shows a two stage pipeline where the latch con-
troller in the middle becomes collapsed and the signal wave-
forms at the time of collapse. The correct time to change
from normal mode to collapsed is when a new input request
has been received and the latches are about to be loaded. At
this time the downstream pipeline stage (stg2) has finished
processing the previous data and it is safe to merge the two
pipeline stages. After the collapse the upstream stage is not
acknowledged (A1) immediately, as it would normally be,
because the new, joined pipeline stage has not finished pro-
cessing the current data; its second half still has work to do.
When the output acknowledgement (A2) is received, which
means that processing at the second half of the stage has fin-
ished and the output data are safely stored at the next latch,
the upstream latch controller is acknowledged, notifying the
upstream stage that the whole pipeline stage is finished.

Splitting a previously merged pipeline stage also hap-
pens when a new request is received. After the latches have
loaded the input data, the load enable signal is deasserted,
making the latches opaque and acknowledging the input
side. Concurrently the output request is issued as usual.
The pipeline stages are now split and the first stage is free
to receive the next data item for processing.

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC’03)
1522-8681/03 $17.00 © 2003 IEEE

As the operating mode of a latch controller can only
change at the time of new requests, the signal that sets the
latch controller mode, collapse, must be locally synchro-
nised with the input request signal. This makes it hard to
have a global collapse signal if the latch controllers are to
be reconfigured while the pipeline is operating. The solu-
tion is to have collapse bundled locally with the rest of the
data signals that are latched at the pipeline stage. Section 5
investigates further on this issue.

3. Latch controller types

Latch controllers are an important element of the control
part of an asynchronous processor. So it is not surprising
that there is a great variety of latch controller types that
can be built. This section considers the set of four-phase
(return to zero) controllers implementing protocols used in
AMULET3 [8].

Depending on how long the data are kept valid when
the handshake signals return to zero, there are a number of
handshake protocols and corresponding controllers. Two of
the most commonly used protocols are discussed here (see
figure 2):

Broad Data are kept valid until the acknowledgement
becomes low.

Broadish Data are kept valid until the request
becomes low.

Broadish is generally faster but assumes that the return to
zero of the acknowledgement is ‘dead’ time for the down-
stream circuits. Some circuits need the data to be held for
this time, in which case a broad protocol must be used. As
different parts of a system have different use for the ac-
knowledgement return to zero time, generally both types of
controllers are used in a system.

For each of the above protocols there can be two vari-
ations depending on when the latches become transparent
[8]:

Normally closed After the input request has been received
and (obviously) before the input acknowledgement is
asserted.

Broadish

Broad
Data

Ack

Req

Figure 2. Broad, broadish protocol timing.

Normally open When the output side is not busy (which
depends on the protocol) the latch becomes transpar-
ent, regardless of an input request.

Normally-closed latches isolate the downstream circuits
from any spurious transitions while new data is expected
but they suffer from the extra delay of having to open the
latches after the data is ready. Thus normally-closed latch
controllers lead to more energy efficient pipelines, while
normally-open controllers lead to faster pipelines. To en-
able this trade off at run-time, reconfigurable latch con-
trollers that can be either normally-open or closed have al-
ready been developed [8] and are incorporated in the design
of AMULET3.

Another type of latch controller, early-open [9], uses a
‘pre-request’ signal, becoming valid some time before the
input request, to open the latches just in time. As such a
signal might not always be available, early-open controllers
are not considered here. Nevertheless, when the pre-request
signal is available, it is straightforward to apply the early-
open concept to the latch controllers presented here.

3.1. Collapsed latch controller types

This section determines if the protocols described above
are still meaningful when the latch controller is collapsed.
Since the broad and broadish protocols differ only in the
way the return to zero of the acknowledge signal relates to
the data validity, the following discussion focusses only on
this phase of the protocol.

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

latch
ctrlstage

input
stage
output

Ai

Ri

Ao

Ro

collapsed

Figure 3. Pipeline with collapsed broad latch
controller.

For broad protocol, the output stage expects the data to
be kept valid until it has returned the input acknowledge-
ment (Ao, figure 3) to zero. As the latch controller is col-
lapsed, its latch(es) will always be transparent, so it can-
not directly guarantee the above condition. Thus this re-
quirement must be guaranteed by the upstream stage. If
the upstream stage adheres to the broad protocol, it will not
change the data until its output acknowledgement (Ai) has
returned to zero. Consequently, for correct operation, the
collapsed latch controller must not allow its input acknowl-
edgement (Ai) return to zero until the output acknowledge-

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC’03)
1522-8681/03 $17.00 © 2003 IEEE

ment (Ao) has; in other words the controller behaves as if
Ai, Ao were the same wire.

For the broadish controller type, the return to zero of the
input acknowledge (Ai) can happen at any time after the in-
put request becomes low, as its return to zero is not related
to the data validity. So the collapsed, broadish controller
can take a short-cut and allow the return to zero of the in-
put acknowledgement right immediately the input request
has fallen regardless of the state of the output acknowledge-
ment. In this case the behaviour is different: Ai and Ao do
not have to appear as if they were on the same wire.

3.2. Normally open/closed controllers

By definition a collapsed latch should be always open
to let data pass through as if it weren’t there. So it may
seem that the normally-closed variation is of no use when
the latch controller is collapsed.

In reality the unwanted energy consumption caused by
glitch propagation [1] — which triggered the idea for nor-
mally closed latches — still happens with collapsed latches.
Moreover it is well known that glitch-induced energy in-
creases with the logic depth between latches [2], which is
precisely what happens when collapsing a pipeline latch.
So the benefit of reducing speculative operations by limit-
ing the pipeline depth may back-fire because of the increase
in the energy consumed by glitches.

Having a collapsed latch controller which only opens
when the request input is ready would help, because the
request is asserted only when the data are ready; all in-
termediate values are stopped from propagating down the
pipeline. Obviously in this case the latch itself is not really
collapsed, but the controller still gives this impression, so
the term “collapsed” is still used here.

From the above discussion, all four types of latch con-
trollers presented above are still meaningful when they are
collapsed, thus circuits for all of them need to be built. The
reconfigurable normally open/closed operating mode [8], is
an attractive feature, so it is retained in the proposed latch
controllers. The next section defines two (collapsible) latch
controllers (for the broad and broadish protocols) that are
configurable as collapsed or normal and as normally open
or closed.

4. Collapsible latch controllers

A convenient way of describing the operation of asyn-
chronous circuits is by using state transition graphs (STG)
[10]. Figure 4 shows the STGs for normal (a-d), collapsed
(e-h), normally open and closed configurations for both
broad and broadish protocols.

A brief description of the operation of the broadish latch
controller is given below in both normal and collapsed oper-
ating modes, based on the STGs. The broad protocol is the
same with the exception that the latch enable signal is only
allowed to rise after both output handshake signals have re-
turned to zero.

4.1. Non-collapsed

In the quiescent state of normal, non-collapsed operating
mode (fig.4(a,b)), all signals are low, except for Na which is
high and En which depends on the normally open or closed
condition. Na is low when a request has been received but
not acknowledged yet. In normally-closed mode, an input
request (Rin) causes En to rise, making the latches transpar-
ent. The rising En causes Na to fall, which turns En back
low and makes Rout high, propagating the request down-
stream. After the latch has closed, Ain is asserted to ac-
knowledge the input. Rin could then fall which resets Na
to its quiescent value of 1, causing Ain to return to zero.
At the output side, the raised Rout will eventually be ac-
knowledged by a rising Aout. Then Rout falls re-enabling
En to rise, when the next input request arrives. The only
difference in normally-open mode is that En is set back to 1
whenever Rout falls, regardless of the state of Rin.

4.2. Collapsed

In collapsed, normally-closed mode (fig.4(f)) the opera-
tion is the same as above except for the rising transition of
Ain. This happens whenever Aout rises. At that time Rin is
still held high, so Na is low. Rin can now fall which makes
Na high, turning Ain low again. The high Na combined with
Aout will make Rout low. Na cannot fall again in response
to a new input request until Aout has returned back to zero.
In normally-open mode (fig.4(e)), En is forced high contin-
uously, so Na does not depend on it. All other operations
are exactly the same.

The STGs of the collapsed controllers have only two
added arcs compared to the normal controllers. By the def-
inition of the collapsed controller, arc Aout+ ! Ain+ is
added, so that the input can only be acknowledged when
the output is acknowledged. The corresponding arc for the
falling edge is only needed when the protocol is broad. For
the broadish version an arc from Aout- to Na- is added in-
stead. This makes sure that if a new input request is re-
ceived (Rin+) while the output acknowledgement has not
fallen yet, Ain will not be set high, mistaking Aout for a
new acknowledgement. When the latch is collapsed and
normally-open, the load enable is always on, so it is not
shown in the STGs. It should be noted that a number of
arcs in the collapsed STGs (4(e-h)) are not necessary but are

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC’03)
1522-8681/03 $17.00 © 2003 IEEE

Broadish Broad

Rout+

Rin−

Rin+

Ain+

Ain−

Na−

En−

Na+

En+

Aout+

Rout−

Aout−

(a) norm. open

Rout+

Rin−

Rin+

Ain+

Ain−

Na−

En−

Na+

En+

Aout+

Rout−

Aout−

(b) norm. closed

Rout+Rin+

Ain+

Rin−

Ain−

Na−

En−

Na+

En+

Aout+

Rout−

Aout−

(c) norm. open

Rin−

Rout+Rin+

Ain+

Ain−

Na−

En−

Na+

En+

Aout+

Rout−

Aout−

(d) norm. closed

Rout+Rin+

Ain+

Rin−

Ain−

Na−

Na+

Aout+

Rout−

Aout−

(e) norm. open

Rout+Rin+

Ain+

Rin−

Ain−

Na−

En−

Na+

En+

Aout+

Rout−

Aout−

(f) norm. closed

Ain− Aout−

Rout−

Aout+

Na+

Na−

Rin−

Ain+

Rin+ Rout+

(g) norm. open

Rout+Rin+

Ain+

Rin−

Ain−

Na−

En−

Na+

En+

Aout+

Rout−

Aout−

(h) norm. closed

Figure 4. STG’s of all latch controllers: (a-d) non-collapsed, (e-h) collapsed.

retained to show the similarities to the equivalent normal
STGs (e.g. Aout+! Rout-).

The collapsible latch controller circuits are described be-
low. They are based on the existing latch controllers by
Lewis et al. [8].

Figure 5 shows the proposed latch controller for the

Aout

collapse

Ain

Rin

collapseIn

collapse

lo
ad

ed

turbo

En

Na Rout

collapse

Aout

+C
−

+
+

C

QD

LD

Figure 5. Collapsible broadish latch con-
troller.

Ain

En

Rin turbo

Na Rout

Aout

+

−
C C

Figure 6. Existing broadish latch controller.

broadish protocol (figure 6 shows the existing controller).
It is designed by combining the synthesised STGs shown
earlier. The only circuits added to the synthesised circuit
are the latch holding the collapse signal, the XNOR gate
that drives loaded, and the extra + input of the C element
producing Na that is driven by loaded. Loaded becomes
low when a change in the configuration is going to happen
and rises again when collapse is loaded with the new value.

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC’03)
1522-8681/03 $17.00 © 2003 IEEE

Its connection to the C element, prevents Na from falling
— and thus any other action in the controller — before col-
lapse and the gates it drives are ready.

Figure 7 shows the proposed circuit for the broad proto-
col (fig. 8 shows the existing circuit). As with the broadish
circuit, the latch and the XNOR producing loaded are used.
In this case a C element is added to make sure that Ain is
only allowed to rise when collapse has been loaded and the
gates it drives are ready.

Na

Rin

Ain

collapseIn

Rout

Aout

lo
ad

ed

co
lla

ps
e

En

turbo

0

1

++C C

+C

LD

D Q

Figure 7. Collapsible broad latch controller.

The STGs in figure 4 were synthesised independently us-
ing Petrify [3] and the resulting equations were modified
slightly to be useful in all operating modes. The final cir-
cuits are speed independent in either operating mode. Dur-
ing the transitions between the collapsed and normal modes
though, speed independence cannot be guaranteed. For this
reason a few gates are added to ensure smooth transition be-
tween the operating modes with some timing assumptions.
These proved easy to guarantee and transistor-level simula-
tion in a 0.18um process showed that the latch controllers
are operating (and switching operating modes) correctly in
all process corners. The extra circuits added have an effect
on the speed of the controllers which have a 14% to 40%
slower minimum cycle time (in non-collapsed mode) com-
pared to the existing controllers.

5. Controlling the pipeline collapse

As explained earlier, collapse, the control signal setting
the operating mode of the collapsible latch controllers, must
be locally synchronised, i.e. bundled with the latch input
data. Thus a global collapse signal cannot be used. A pos-
sible implementation would be to have the first pipeline
stage produce the collapse signal for the first latch con-
troller, which is then propagated to subsequent controllers

Rin

Ain

Aout

Rout

En

turbo

Na
C+ +

C

Figure 8. Existing broad latch controller.

down the pipeline (figure 9(a)). On route, depending on lo-
cal conditions, the collapse signal can be changed by the
pipeline stages. Alternatively, for independent control of
each latch controller, the first stage can produce a set of col-
lapse signals which are latched and propagated to the ap-
propriate latch controller (figure 9(b)). In both cases the
first pipeline stage is the most suitable to generate the sig-
nals since, in asynchronous pipelines, it is easy to transmit
signals following the pipeline flow but considerably harder
in any other direction.

collapse

En En En En

req

ack

req

ack ack

reqreq

ack

pi
pe

lin
e

la
tc

h

pi
pe

lin
e

la
tc

h

pi
pe

lin
e

la
tc

h

pi
pe

lin
e

la
tc

h

ctrl

latchlatch

ctrl ctrl

latch

ctrl

latch

(a) Serially controlled

EnEnEnEn

collapse0
collapse1
collapse2
collapse3

req req

ack

req

ackack

req

ack

pi
pe

lin
e

la
tc

h

ctrl

latch

ctrl

pi
pe

lin
e

la
tc

h

latch

ctrl

latch

pi
pe

lin
e

la
tc

h

pi
pe

lin
e

la
tc

h

ctrl

latch

(b) Individually controlled

Figure 9. Collapsible signal distribution.

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC’03)
1522-8681/03 $17.00 © 2003 IEEE

���
���
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

indirPC

decouple #2

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

branch

collapse

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

multiCycle

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

Reg
ExecThumb &

Dec

Mem

Prefetch

Figure 10. Block diagram of AMULET3 with collapsible pipeline latches.

6. Integration in the processor

To evaluate the new latch controllers, AMULET3 was
modified to use them. This section describes the modified
processor core and the issues that were taken into consider-
ation.

Figure 10 shows an abstract block diagram of the
AMULET3 core showing which pipeline latches were
changed to use collapsible controllers. Only the latches
marked in the figure with grey waves need to be made col-
lapsible; all others, including those not shown in the figure,
are unaffected.

As can be inferred from the way the collapse signal is
drawn in the block diagram, there is only one such signal
propagating from the prefetch stage down the pipeline to
the execute stage, in the same fashion as explained earlier
in figure 9(a).

Nearly all the pipeline latches of the processor are mod-
ified to be of the collapsible type. A notable exception
is the decoupling latch, on the branch path from execute
to prefetch, which must not be collapsed. If it were, in a
configuration where all the latch controllers are collapsed,
branches would deadlock: the decoupling latch would try
to write the target address into the PC in the prefetch block,
but that would not be allowed until the instruction, i.e. the
branch, is acknowledged (completed). To break the dead-
lock, a second decoupling latch is added in the branch chan-
nel. This latch can be a standard latch, but then the branch
latency will be increased, which is undesirable. Alterna-
tively it can be a collapsible latch, which works in the op-
posite way to the other latches in the pipeline: it is collapsed
when there is at least one other latch in the pipeline that is

not collapsed. In other words, it works as a latch only when
all the other latches are collapsed, which is when the above
mentioned deadlock could happen.

In AMULET3 some instructions (e.g. long multiplica-
tions) require multiple execution cycles to complete. When
the pipeline stage between decode and execute is collapsed,
these instructions could not be executed. This is where the
flexibility of generating a local collapse signal is valuable.
For these instructions the collapse signal for the decode-
execute pipeline latch is temporarily disabled using the
AND gate in figure 10. This re-instates the pipeline stage
between decode and execute for the duration of the multi-
cycle instruction, so that multiple execution cycles can be
performed as required.

With the applied changes the processor can be config-
ured to have any pipeline latch collapsed and the operat-
ing mode of each latch controller can be changed for each
new input request if needed. The processor can operate
in the full range from top-speed, fully-pipelined to energy-
conserving single-stepping each instruction. An evaluation
of the processor’s speed and energy consumption for each
pipeline occupancy level is given in [4], where a set of
benchmarks was run at each pipeline occupancy level. Col-
lapsing the whole processor gives up to 15% of energy sav-
ings, at the cost of approximately halving the speed com-
pared to the fully-pipelined processor.

7. Dynamic pipeline-depth adaptation

Using the collapsible latch controllers to set a constant
processor pipeline depth for the duration of a program ex-
ecution, as shown above, is the most conservative way to

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC’03)
1522-8681/03 $17.00 © 2003 IEEE

use this new technique. In this section a dynamic approach
is used, where the whole pipeline is collapsed when there
is an indication that a branch may be imminent, so that the
energy waste of prefetching instructions beyond it is elimi-
nated.

Since over 80% of the branches are conditional [6], the
instruction that generates the branch condition could be
used as a hint that a branch is approaching. AMULET3 im-
plements the ARM architecture which uses condition codes
to specify the branch condition. Thus a technique that can
be applied is to start single-stepping the processor when
an instruction that changes the condition codes is detected,
as there is a high probability that it is closely followed by
a conditional branch. When the first instruction from the
branch target is fetched, the processor will resume its nor-
mal operating mode. For processors that do not use condi-
tion codes, comparison-type instructions could be detected
instead.

Detecting instructions that change the condition code is
simple in the ARM instruction set architecture as there is a
specific bit in the data-processing instruction format which
controls this. It is important that the detection occurs as
early as possible in the pipeline; the number of stages be-
tween prefetch and the detecting stage determine how many
instructions following the one that sets the condition code
have already been fetched and thus how much energy might
be wasted. In AMULET3 the detection can be done at the
first decoding stage (Thumb in figure 10), so only one in-
struction may be already fetched before the detection hap-
pens. This is very useful as over 50% of branches in the
benchmarks used here, immediately follow the instruction
(usually compare - CMP) that sets the condition codes.

In order to detect the condition-setting instructions as
early as possible, a more general opcode pattern could be
used for the detection which matches more instructions than
just those setting the conditions. This will obviously put the
processor into single-stepping mode for more of the pro-
gram execution, slowing it down but, if it allows the detec-
tion to be done at an earlier stage, it could save an extra
instruction fetch per taken branch.

As an alternative to detecting the condition-setting in-
struction as early in the pipeline as possible, an optimising
compiler could be used to insert some ‘neutral’ instructions
between the branch and the condition-setting instruction.
This would make the hardware implementation simpler and
could allow enough time to detect the condition-setting in-
structions in instruction-sets with complex encoding. Mod-
ifying the existing compiler was not possible for this work,
since the source code is not available. Thus the following
design of this technique tries to detect condition-setting in-
structions as early as possible.

7.1. Design

When an instruction that changes the condition code is
detected at the Thumb stage, the whole processor should be-
come just one pipeline stage, by collapsing all the pipeline
latches. As explained in section 5 this can only happen
gradually; as the condition code setting instruction moves
down the pipeline it collapses the pipeline latches on the
way. That would still leave the processor a two stage
pipeline, prefetch and the rest of the stages joined, so one in-
struction following the branch would be fetched and wasted
if the branch is taken.

In order to save this instruction too, the information that
a condition-setting instruction has been detected must be
sent back (e.g. counter-flowed) to the prefetch stage, so that
the remaining latch controller can be collapsed as well. The
simplest and safest way would be to pass this information
the next time the two stages ‘synchronise’, when the next
instruction is passed from prefetch to Thumb. This will
collapse the prefetch to Thumb latches (when they next get
loaded), making the whole processor a single pipeline stage.
Thus prefetch will not fetch another instruction until the ex-
ecution of the one following the detected, condition-setting
instruction is complete. Consequently, even if a branch fol-
lows immediately after the condition-setting instruction, no
extra instructions will be fetched.

When the first instruction from the branch target is
fetched, it resets the latches to their normal operating mode,
as it travels down the pipeline, returning the processor to its
normal, fully-pipelined operating condition.

In the ARM instruction set architecture all instructions
can be conditional (not only branches), so the above design
might be too conservative. For this reason a variation (CC
setting ext) was designed and evaluated that detects instruc-
tions that are conditional but not branches and forces the
processor to operate in fully-pipelined mode. Thus when
the condition code is set, the processor does not have to
operate in single-step mode until a branch occurs. This
method is expected to improve the execution delay without
compromising the energy savings achieved.

7.2. Evaluation

The condition-code setting detection techniques require
sufficiently small changes to the processor that can be eval-
uated using a simple evaluation methodology. Two Verilog
models were produced and simulated running a set of five
benchmarks: Dhrystone, DES encode, GSM filter, com-
press, ijpeg. Energy estimation is achieved by counting
the number of toggles for almost all of the circuit nodes
and multiplying with the capacitances extracted from the
AMULET3 netlist.

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC’03)
1522-8681/03 $17.00 © 2003 IEEE

Figure 11(a) shows the execution delay of each bench-
mark for the two variations described above and the un-
pipelined version (all pipeline latches are collapsed), nor-
malised relative to the fully-pipelined version. Figure 11(b)
shows the normalised energy consumption for the same pro-
grams and processor variations.

Dhrystone DES GSM_filter ijpeg compress0.8
0.9

1

1.5

2

2.5

3

3.5

N
or

m
al

is
ed

 d
el

ay

unpipelined
CC setting
CC setting ext.

(a) Delay

Dhrystone DES GSM_filter ijpeg compress0.8

0.85

0.9

0.95

1

N
or

m
al

is
ed

 e
ne

rg
y

unpipelined
CC setting
CC setting ext.

(b) Energy

Figure 11. Evaluation results for condition
code setting.

For DES encode there are insignificant energy savings
with any speculation control technique, as there are very
few branches and thus almost no speculative instruction
fetches. Thus, for this benchmark, the interest is in the ex-
ecution delay overhead of the method tested. In this case
both condition-setting detection variations managed to keep
the execution delay to the levels of the fully-pipelined ver-
sion. In contrast the unpipelined version is over three times
slower.

The difference in the two variations can be seen in a
benchmark like GSM filter. The execution delay of the first

variation is very close to that of the unpipelined processor,
while the execution delay of the second variation is almost
half of the first. As the GSM filter code has many condi-
tional data-processing instructions, it clearly benefits from
restoring the fully-pipelined mode early, as is done by the
second variation.

Generally, both variations managed to reduce the exe-
cution delay compared to the unpipelined processor, for a
small increase in energy consumption. This shows that the
dynamic approach was quite successful. The second varia-
tion is consistently faster than the first, but it also consumes
more energy. It is very useful for benchmarks that have
a large number of data-processing conditional instructions,
such as GSM filter.

8. Conclusions

A novel method for dynamically adapting the structure
of a pipeline is presented. It is based on new latch con-
trollers that can be configured to be collapsed, i.e. be-
have as if they do not exist, while keeping the latches they
control ‘permanently’ transparent. These collapsible latch
controllers can be used to control the occupancy and the
throughput of a pipeline and reduce the wasted energy when
branches occur.

As an application, AMULET3 was modified to use the
new latch controllers. Whenever an instruction that sets the
condition code is detected, the whole pipeline is collapsed
to a single stage, so that if there is a conditional branch fol-
lowing that instruction, no energy will be wasted fetching
and processing instructions following the branch.

Experiments illustrate that this strategy can save signif-
icant energy if timing requirements are not strict. The be-
haviour depends strongly on the type of code, as evidenced
by the variation in the behaviour of different benchmarks;
thus the facility to allow dynamic control of the pipeline
structure — even partially under software influence — may
be very valuable.

References

[1] L. Benini, M. Favalli, and B. Riccò. Analysis of hazard con-
tribution to power dissipation in CMOS IC’s. In Proceedings
of the International Workshop on Low Power Design, pages
27–32, May 1994.

[2] E. Boemo, S. Lopez-Buedo, C. Santos Perez, J. Jauregui,
and J. Meneses. Logic depth and power consumption: A
comparative study between standard cells and FPGAs. In
Proceedings of the XIII Design of Circuits and Integrated
Systems (DCIS) Conference, Nov. 1998.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Petrify: a tool for manipulating con-
current specifications and synthesis of asynchronous con-

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC’03)
1522-8681/03 $17.00 © 2003 IEEE

trollers. IEICE Transactions on Information and Systems,
E80-D(3):315–325, Mar. 1997.

[4] A. Efthymiou and J. D. Garside. Adaptive pipeline depth
control for processor power-management. In Proceedings of
International Conference on Computer Design, pages 454–
457. IEEE Computer Society Press, Sept. 2002.

[5] J. D. Garside, S. B. Furber, and S. Chung. AMULET3 re-
vealed. In Proceedings of the International Symposium on
Advanced Research in Asynchronous Circuits and Systems,
pages 51–59, Apr. 1999.

[6] J. Hennessy and D. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, second edition,
1996.

[7] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E.
Schuster, E. G. Mercer, and C. J. Myers. Synchronous in-
terlocked pipelines. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems,
pages 3–12. IEEE Computer Society Press, Apr. 2002.

[8] M. Lewis, J. D. Garside, and L. Brackenbury. Reconfig-
urable latch controllers for low power asynchronous circuits.
In Proceedings of the International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 27–
35, Apr. 1999.

[9] P. Riocreux, M. Lewis, and L. Brackenbury. Power reduction
in self-timed circuits using early-open latch controllers. IEE
Electronics Letters, 36(2):115–116, Jan. 2000.

[10] J. Sparsø and S. B. Furber, editors. Principles of Asyn-
chronous Circuit Design: A Systems Perspective. Kluwer
Academic Publishers, 2001.

[11] I. E. Sutherland. Micropipelines. Communications of the
ACM, 32(6):720–738, June 1989.

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC’03)
1522-8681/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

