
A Quasi-Delay-Insensitive Method to Overcome Transistor Variation

C. Brej, J.D. Garside
Dept. of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

{cbrej,jdg}@cs.man.ac.uk

Abstract
Synchronous design methods have intrinsic

performance overheads due to their use of the global clock
and timing assumptions. In future manufacturing processes
not only may it become impractical to distribute the clock
globally but any timing assumptions will require
increasingly large timing margins. This paper presents a
method of overcoming these overheads to take full
advantage of the improved manufacturing processes. By
removing the clock and using self-timed techniques clock
related constraints can be discarded. Removing its timing
assumptions allows a circuit to perform at a higher speed.
An asynchronous logic method allowing the generation of
results before the presentation of all input and techniques
to allow speculatively fetched data to be removed with a
reduced impact on the performance are presented.

1. Introduction
Synchronous circuits use worst case timing assumptions to

determine the maximum system clock speed. In addition to the
worst case delay the clock period must also take into account
an extra margin to compensate other effects such as clock
skew/jitter, environmental effects and variability and add them
to the slowest stage delay in the system. The effect being
“Some designs work twice faster than needed by spec”[1] (see
figure 1). Asynchronous computing tries to exploit these
margins by removing the clock.

1.1. Asynchronous logic
“Asynchronous logic” is a vague term describing any

system which does not rely on an external clock as a timing
reference. Over time, many categories of asynchronous design
styles have evolved. These categories can be split into three
groups depending on the method of their timing. Some
designers recreate a clock locally using distributed clock
generators[2]. The second group (“Bundled data”[3]) uses
local delays rather than a global clock to allow pipeline stages
of varying depth (and delay) to operate independently. As
environmental effects such as voltage and temperature swings
affect the delay as well as the logic the circuit can operate
correctly in conditions where the synchronous design would
require a downrated clock to avoid failure. Although this

asynchronous design style makes it easier to meet timing
assumptions than the globally clocked version, it still relies on
an accurate delay model. With shrinking process geometries
the behaviour of individual transistors will become more
varied [4][5]. As the gate area moves down towards atomic
scales and the number of dopant atoms drops, variation can
degrade the performance of some transistors. Using a global
clock forces all stages to run at the speed of the longest path in
the slowest stage with the worst possible transistors. This is in
addition to the clock jitter and skew effects[6] which require
even greater timing margins.

There is a third approach which places no assumptions on
the delay of any elements.

1.2. Delay insensitivity
Asynchronous designs can be split into classes depending

upon the type of timing assumptions they make. Of these
classes the most robust is called “Delay Insensitive”[7] (DI).
DI circuits make no assumptions on the amount of time a gate
or wire takes to propagate a signal. In this model all transitions
have to be acknowledged with another transition before the
signal can return to its original value. This ensures all
messages passed between units have been received correctly,
irrespective of the delay of the communication medium or time
taken by the receiving unit. Unfortunately due to the heavy
restrictions imposed in the DI class no computing circuits are
possible, but the ideal can be approached with a small
compromise.

1.3. Quasi-Delay-Insensitivity
The Quasi Delay Insensitive (QDI) circuit class is almost

as robust as DI. It admits isochronic forks [8] which allows the
generation of computing circuits. This is the smallest possible
compromise in robustness to the DI model. An isochronic fork
is a wire fork where a transition is sensed and acted upon on
one branch of the fork and assumed to have been noticed on
the other branch. This effectively allows a unit to send a single
message to two destinations but require only one to
acknowledge.

1.4. Four Phase Protocol
The four phase protocol [9] is one of the methods of

communicating between computing units in asynchronous
systems. The protocol uses the robust DI class of restrictions
enforcing an acknowledge transition for every transition of the
messaging signal. Transitions of these signals, named Request
(Req) and Acknowledge (Ack), are interleaved ensuring each
signal transition is acknowledged by its counterpart.

A message-pass between two units is often called a
handshake. The sequencing of a handshake is demonstrated in

Figure 1: Synchronous timing overheads

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

figure 2. The initiating signal, Req, rises to begin the sequence.
This is then acknowledged by the Ack upwards transition.
Although a message has been sent between the two units, both
wires are now in the ‘active’ position. The four phase protocol
only passes messages by the upwards transition and returns
wires to zero between messages. By dropping the request
signal which is acknowledged by the drop of the acknowledge
signal the system can return to its original state and another
handshake can begin.

Only using one (the upward) edge for message passing
might seem inefficient, for much the same reasons as the use
of only the rising edge of the clock in flip-flops to latch data,
the design becomes simpler. The return to zero also allows the
protocol to be used to perform computation as well as
communication.

1.5. Dual Rail
In order to create a computing system the units must be able

pass data, rather than just empty messages, and perform
logical operations on it. Bundled data designs pass data
alongside the handshaking channel and rely on timing
assumptions between the data computation and the matched
delay. Rather than bundling the data with the request and
assuming the delay the request signal must pass through is
longer than the data propagation, the data can be encoded onto
the request signal itself. Separating the request into two or
more wires allows a transition of each request to signify
different data being propagated. The same acknowledge signal
is used to acknowledge any of the requests.

Figure 3 shows the request being split into two signals
representing a ‘zero’ or a ‘one’. This “dual-rail” [7] system, a
subset of class of “1-of-n” data encoding, transmits one bit of
information per cycle.

1.6. Dual Rail Latches
Dual-rail latches retain and propagate data. Once the data

has arrived the latch will hold the value and acknowledge the
input. The latch will assert the output data, even if its input has
returned to zero, until it is acknowledged at its output. The
latch preserves the correct sequencing required by the four
phase protocol by only changing its outputs (request out or
acknowledge in) once the output’s counterpart has changed.

Figure 4 shows the design of a dual-rail latch. The
component marked with the letter ‘C’ is a C-element [7]. A C-

element is a commonly used asynchronous component whose
output only changes when all inputs are in the same state.
When all inputs are low the output becomes (or remains) low;
only when all inputs have become high will the output become
high; it will then remain high until all inputs have dropped
again. Because of the C-elements hysteretic property, it
latches the data. An OR gate then takes the outputs of the
latching C-elements and feeds back an acknowledge signal
whenever the latch is holding data. The second input of both
C-elements is the acknowledge from the output side. This
combination enables the latch to output data and acknowledge
the input until the acknowledge has arrived on the output and
the data has been released on the input. It will then wait until
the output acknowledge has been released and new data has
arrived before starting another cycle.

1.7. DIMS
Delay Insensitive Minterm Synthesis (DIMS) [7] is one

generally accepted method of creating QDI four-phase, dual-
rail logic. Figure 5 shows a typical gate constructed using the
DIMS method. Each of the four C-elements represents a
possible input combination (minterm). Minterms belonging to
each output are collected using OR gates. In situations where
there is only one minterm associated with an output (like the
one pictured) the single input OR gate can be omitted. The two
possible outputs (zero and one) can only be generated when
one of the minterm C-elements fires and is picked up by an OR
gate. On each cycle only one minterm can fire and this will
only happen once all inputs have arrived.

1.8. Composition
The three necessary components to create a computing

system (communication, computation and hysteresis) have
now been shown. Complex logic stages can be created by

Figure 2: Four-Phase Protocol

Figure 3: Dual-Rail Signalling

Figure 4: Dual-Rail Latch

Figure 5: DIMS Gate

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

connecting gates and latches using dual-rail channels.
Figure 6 shows one such composition. The only part not yet

discussed is the fork of the S channel. The request wires are
simply forked but the acknowledge wires need to be
synchronised with a C-element before being propagated back
to the input. This guarantees an input will only be
acknowledged once all the latches to which its data propagates
have acknowledged.

2. Early Output
DIMS circuits are very robust but this comes at a high cost

in both speed and area. In a comparison with their
synchronous equivalents, every two input DIMS gate is over
ten times larger and has two to three times longer delay. This
means the technology upon which the DIMS approach is
applied must have wildly varying transistor delays for the
method to have any beneficial effect.

In current high performance microprocessors the trade-off
between area and speed has often gone as far as doubling the
area for as little as 10% increase in performance[10] (see table
1). Increased caches, speculation units and overall complexity
have only given marginal performance boosts.

Even the industry’s current willingness to employ large
areas of silicon to increase performance would not warrant the
use of DIMS with its ten times larger area. In order to justify
a delay insensitive approach both the area and the speed of the
implemented circuits must be comparable with the
synchronous equivalents. Only then can the performance
benefits of removing the clock and the worst case delay
aspects be realised in the implementation.

The DIMS approach suffers on three fronts: speed, area and

the inability to generate results before all inputs have arrived.
“Early Output” logic [11] tackles all three areas in which
DIMS is lacking, yet still with the possibility of implementing
QDI circuits. The main reason DIMS circuits are so large is the
enforcement that all timing information is carried on the two
data wires. The output is only allowed to become valid once
all inputs are valid and released once all inputs are released.
Only with this restriction is it possible to acknowledge all
inputs safely in the knowledge that they have arrived.

Early output removes the restriction that the output of a
gate must signify both the data and the presence of all inputs.
Instead, only the data is signalled - the presence of inputs is
determined using separate ‘guarding’ logic. This separation of
tasks allows the generation of much smaller implementations
dealing only with the logical operation. The guarding ensuring
the presence of inputs prior to their acknowledgement is
described in subsection 2.2.

Figure 7 presents an early output gate implementation. The
early output gate has a delay equal to that of the synchronous/
bundled data delay, and an area only twice the size. Compared
to DIMS it is 2 to 3 times faster and over 5 times smaller. The
third advantage over the DIMS implementation is the ability
to output data once sufficient inputs have arrived.

2.1. Early Output Cases
Unlike DIMS logic, early output logic generates results as

soon as sufficient inputs have arrived to determine the output.
Early output cases are common in nearly all circuits. Logic
gates such as AND and OR have a 50% probability of
generating a result with only one of their inputs present. Other
structures such as multiplexers only require the select input
and the selected data to generate an output; other data inputs
are not necessary.

Most early output cases are intrinsic to circuits composed
from early output gates. No design effort needs to be spent on
catching most cases. The logic generated from these gates
even catches many early output cases the designer could easily
overlook, such as the multiplexer being able to generate an
output once all data inputs have arrived and are equal. There
are often situations where the composed logic does not catch
all cases, but a simple tool[12] can easily generate the ‘perfect’
implementation which can be fed back into the design. These
so called “perfect” implementations take advantage of all early
output cases.

Early output cases are beneficial to the system performance
but they also introduce hazards which must be protected
against. As mentioned before, the DIMS gate performs the
action of synchronization as well as the logical operation. The
output of the early output gate does not reflect the presence of

Figure 6: DIMS Multiplexer Stage

Table 1: Speed-Area trade-off

Pentium4
3.4GHz

Pentium4
3.4GHz

EE

%
Increase

Transistors (million) 55 169 207.27%

Area (mm2) 127 237 86.61%

Benchmarks:
XVid 6:15 6:06 2.46%

KirbiBench 9.01 9.85 9.32%
3D Mark 20173 21521 6.68%

Comanche 4 69.16 76.58 10.58%

X2 132.11 142.10 7.56%

Call of Duty 160.2 177.9 11.05%
Benchmark Average 7.95%

Figure 7: Early Output Gate

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

inputs. This means an input which was late in supplying data
unnecessary to complete the operation could receive an
acknowledge before presenting its data to the stage. This
would break the sequencing required by the four phase
protocol and can be considered a hazard. To ensure this does
not happen and the acknowledge is kept from the input latch
until it has presented its data, a form of guarding must be
implemented in the system.

2.2. Guarding
Guarding of early output circuits is essential to create

hazard free designs. Guarding relies on the use of an extra
signal (Valid) which indicates the presence of data. Validity is
indicated by latches and propagated with the data signals.
Once it enters the latch with the result of the computation it is
used to validate the acknowledgement. Only once the validity
has gone high can the acknowledge be propagated back down
the pipeline. Figure 8 shows the early output latch design with
its validity in and out ports (Vi and Vo). There are several
methods of guarding and the resultant designs have different
behaviours.

2.2.1. Loose Guarding
Loose guarding is the simplest and cheapest guarding

method. In a pipeline stage, each output latch gathers the
validity signals of all inputs using a C-element. The output of
this “gathering C-element” is accepted as the “valid in” input.
Only once all inputs are present will the gathering C-element
fire and allow the propagation of the acknowledge.

This guarding style treats the whole pipeline stage as a
single logic block. It is normal to assume that once a gate’s
inputs and its output have returned to zero the gate is reset.
Here, however, is a complex logic block with many wires
inside which are undetected on the outside; even if the inputs
and the output have returned to zero this does not signify the
circuit is fully reset. These long paths within the logic block
are often referred to as ‘orphans’[14]. At this point the data
from the next set of inputs could interact with the orphans and
possibly generating an incorrect result. For this reason the
resultant circuit is not QDI. Even though the timing
assumptions may be reasonable, in a future design process this
might not be the case.

2.2.2. Forward Guarding
In order to ensure the logic is fully reset before allowing

another phase of data to enter it, a test of all data wire pairs
must be made. OR gates are placed across the data wire pairs.
The outputs of these or gates signify the presence of data

which must be removed before the acknowledge is released.
Figure 9 presents the arrangement of each gate with forward
guarding. The validity signals from both inputs are combined
along with the output of the OR gate to create a validity of both
the inputs and the logic tree.

2.2.3. Backwards Guarding
Created with exactly the same components as forward

guarding, backward guarding simply reverses the direction in
which the circuit validity is tested. Instead of testing data
validity on the valid propagation it is tested on the
acknowledge propagation instead. The acknowledge can reach
valid gates but gates with only one valid input will not
propagate the acknowledge. Subsection 3.3 explains the
differences in the behaviour of the two guarding methods.

3. Results
Early Output is the first delay insensitive approach to match

the forward propagation performance of synchronous logic.
Comparisons between the logical parts of early output and
synchronous designs show exactly the same delays. As there
is no computational overhead, the design style should be
judged on its other performance enhancing properties.

3.1. Average Case Performance
One of the advantages of early output designs is its use of

average case performance. Systems which have to make
timing assumptions on the delay of a logic stage (be they
synchronous or asynchronous bundled data) must ensure the
time allowed for the stage to complete is greater than the worst
case delay of the stage. In circuits such as 32 bit ripple carry
adders the worst case delays are up to seven times larger than
the average case [13]. Most circuits do not have such a large

Figure 8: Early Output Latch

Figure 9: Forward Guarding

Figure 10: Backward Guarding

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

worst to average ratio due to their designers optimising the
worst case paths, often by sacrificing the average case
performance (e.g. carry lookahead adders). Instead by
optimising the modal (most often occurring) case paths it is
possible to increase the performance more substantially. Other
timing assumption based overheads totalling 130%, according
to [1], can also be removed.

3.2. Early output cases
The main benefit of using early output logic over other DI

methods is its ability to take advantage of the lossy nature of
logic. This performance can be judged by its ability to
generate outputs while ignoring the speculatively fetched data
inputs and its behaviour when awaiting the late unnecessary
inputs.

The generation of early outputs is dependent on the number
and the data of inputs presented to a stage. Taking as an
example a commonly used design such as a 2:1 multiplexer,
with one of its three inputs missing still has a high probability
of generating an output. With one input missing there are 12
possible input combinations. A circuit composed from early
output gates will be able to generate a result in 5 of the 12
situations, giving a probability of 41.67% of generating an
output with one input missing. Due to its coposition, it does
not generate a result whilst having both data inputs valid with
data values ‘one’ and the select input not valid. In this situation
neither of the AND gates (fig. 6) can forward a result to the OR
gate and so the stage cannot generate a result. This can be
improved by passing the circuit through the “Early” tool to
generate a perfect implementation which catches all early
outputs. In this case a perfect circuit would catch 6
combinations which is 50% of the total.

Figure 11 shows the composed circuit, the perfect circuit
generated by the “Early” tool before and after resynthesis of
the positive half of the 2:1 multiplexer (zero result generating
half in not shown). The “Early” tool generates Espresso [15]
style two level AND-OR circuits. This is not always optimal
and better results can often be reached by resynthesizing.

Figure 12 shows the probability of an early output in the
composed and the perfect circuits with varying number of
inputs present in a larger 8:1 multiplexer circuit with 11 inputs.
Composed circuit requires on average 9.29 (84.42%) valid
inputs to generate an output while the perfect circuit only
requires 8.97 (81.57%).

It is easy to see how multiplexers are able to generate early
outputs but they do not perform as well as other common
circuits. By running the early case test across many benchmark
circuits it is possible to see the general pattern of early output
generation with the presence of inputs. The benchmark
circuits were taken from synchronous designs. These include:

7 segment display encoder (segment A), a MIPS ALU slice,
an 8 input AND gate, bit 8 from an adder, a MIPS processor
branch unit, an 8 bit compare equal unit, an 8:1 Multiplexer,
MIPS processor memory shift unit, bit 4 of an 8 bit shifter and
an 8 input parity generator (XOR gate). The results are shown
in figure 13. The best performing circuits are the AND gate
and the Compare EQ. In the case of the AND gate just one low
input can determine the result and thus with the arrival of the
first input the probability of an output moves to 50%. The
compare equal unit is similar as it needs only a pair of inputs
to be different to generate a result. The worst performing unit
was the parity generator which always requires all inputs to be
present and no early output cases are possible.

3.3. Backward Guarding
Forward guarding and backward guarding might seem very

similar but they behave very differently. In the computation
phase neither of the two methods impede the data propagation.
During the reset phase the two techniques have different
advantages. The forward propagation parallelises the
detection of the circuit being valid with the data propagation
while the backwards guarding will only start to test the logic
validity once the result has been generated and the

Figure 11: Composed, Perfect and Resynhesized
Perfect positive half MUX implementations

Figure 12: Output probabilities of a composed
and a perfect MUX

Figure 13: Output probabilities of benchmarks

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

O
ut

pu
t p

ro
ba

bi
lit

y
(%

)

Inputs present (%)

Perfect
Composed

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

O
ut

pu
t p

ro
ba

bi
lit

y
(%

)

Inputs present (%)

7seg
ALU
AND

Adder
Branch

CmpEQ
MUX

Memory
Shifter

XOR

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

acknowledge starts propagating back through the logic. This
allows the forward guarding, which executes the circuit
validity checking in parallel with the data operation, to reset
faster and start computing the next set of data earlier. In
backwards guarding, circuit validity checking can start even
before all inputs have arrived, as long as the result has been
generated, and the acknowledge can reach the inputs which
have arrived and contributed to the generation of the result.
Any inputs which have yet to contribute data to the stage are
protected from being acknowledged as the acknowledge will
only propagate through gates with both inputs valid. The
acknowledged inputs can reset and even start another
computation cycle while the acknowledge signal surrounds
the remaining inputs until they present data to be
acknowledged. This allows inputs to desynchronise.

One of the often-stated benefits of asynchronous logic is its
composability. With standard interfaces it is possible to
connect stages of forward/backward/loose guarding early
output and DIMS or with protocol convertors to bundled data
and clocked circuits. Forward and backward guarding circuits
will perform best in different situations and mixing the
techniques across stages with different behaviours gives the
optimal result. Forward guarding works best in stages where
all inputs arrive at approximately the same time. Backward
guarding logic allows the computing stage to be
desynchronised from some speculatively fetched inputs. The
desynchronisation goes as far as allowing a stage to move onto
the next set of inputs while it is still acknowledging some late
and unnecessary speculative operations.

4. Conclusions
It is not possible to conduct a fair comparison using only

simulation data. Manufacturing process data sheets usually
only state the worst case transistor behaviour. The variation in
transistor delays is known to be increasing but little data is
available. Ultimately the only effects visible in a simulation
comparison are the “Worst - Average case delay” and the
“Unbalanced Stages”. Both of these are highly dependant on
the skill of the designer.

Early output logic does have overheads which may impact
performance. Early output gates may be smaller than DIMS
implementations but they are also much larger (aprox. 4 times)
than the synchronous equivalents. This can be justified on the
grounds of performance to area ratio if the resultant circuit
executes 20% faster. As tokens flowing through a pipeline are
separated by resetting stages, the pipeline occupancy is below
50%. Again this can be justified as asynchronous logic only
propagates data through a pipeline when necessary and there
is no need to pass spacers (nop instructions).

Often the critical path is much longer than necessary as the
last input to arrive at each stage is not always needed. Early
output moves the critical path to only the necessary data
operations but still keeping the coherency of the system by
waiting for the unnecessary data to arrive before removing it.

A common method of increasing performance is increasing
speculation. Backward guarding allows the slow,
speculatively executed but unnecessary operations to have a
minimal effect on the forward propagation in the system. This

is beneficial in modern designs where speculation is an
increasingly common method of improving performance.

In summary what has been presented is a method of
generating circuits which have the same element delay as the
synchronous implementations, yet they remove the overheads
of both the clock and timing assumptions. Additional
performance is gained by early output cases and highly
speculative operations with little to no penalty in performance.
With only the minimal timing assumptions the design can be
guaranteed to work when implemented with poor quality
materials and processes yet still operate at optimal speed in a
large range of environments with dynamic variations in
temperature and voltage.

5. References
[1] Peter A. Beerel, Jordi Cortadella and Alex Kondratyev,

"Bridging the gap between asynchronous design and design-
ers", VLSI Design Conference, Mumbai, January, 2004.

[2] Scott Fairbanks and Simon Moore, "The Distributed Clock
Generator", Second ACiD-WG Workshop, Munich, January,
2002.

[3] Ivan E. Sutherland, "Micropipelines", Communications of
the ACM , Vol. 32, No. 6, June 1989, pp. 720-738.

[4] Mariusz Niewczas, "Characterisation of the Threshold Volt-
age Variation: a Test Chip and the Results", Proc. of Intl.
Conf. on Microelectronic Test Structures, Monterey, pp. 169-
172, March 1997

[5] T. M. Mak, “Is CMOS more reliable with scaling?”, IEEE
Int. On-Line Testing Workshop, July 2002.

[6] H. Bakoglu. “Circuits, Interconnections, and Packaging for
VLSI”, Addison-Wesley Publishing Company, 1987.

[7] D. E. Muller and W. S. Bartky, "A theory of asynchronous
circuits," Proceedings of an International Symposium on the
Theory of Switching, Cambridge, MA: Harvard Univ. Press,
pp. 204-243, 1959.

[8] A. J. Martin, “The limitations to delay-insensitivity in asyn-
chronous circuits”, Advanced Research in VLSI, MIT Press,
1990, pp. 263-278.

[9] S. B. Furber and P. Day, Four-phase micropipeline latch con-
trol circuits, IEEE Transactions on VLSI Systems, vol. 4, pp.
247253, June 1996.

[10] Tarinder, “Intel Pentium 4 3.2GHz Prescott, 3.4GHz North-
wood, and 3.4GHz Northwood Extreme Edition”,
HeXus.net, 1 February 2004, “http://www.hexus.net/content/
reviews/
review.php?dXJsX3Jldmlld19JRD02OTYmdXJsX3BhZ2U9
MQ==”.

[11] C.F. Brej, “An automatic synchronous to asynchronous cir-
cuit convertor”, 11th UK Asynchronous Forum, 2001.

[12] “Early resynthesis tool”, http://www.cs.man.ac.uk/~brejc8/
early/

[13] J. D. Garside, "A CMOS VLSI implementation of an asyn-
chronous ALU”, IFIP Transactions on Asynchronous Design
Methodologies, Mancester, March 1993.

[14] K.M. Fant and S.A. Brandt. NULL conventional logic:
Acomplete and consistent logic for asynchronous digital cir-
cuit synthesis, International Conference on Application spe-
cific Systems, Architectures, and Processors, Chicago,
August 1996.

[15] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, "Logic Minimization Algorithms for VLSI Syn-
thesis", Kluwer Academic Publishers, 1984.

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

