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Abstract
This paper presents a Distributed Signcryption with
Verifiable Partial Signature (DiSigncryption) protocol
that allows a mobile agent owner, participating in e-
commerce transaction, to securely delegate and
distribute his/her signing capability among a set of
trusted third party hosts (TTP-hosts) via a mobile
agent. The protocol incorporates three schemes: a
novel Distributed Reputation Management scheme, a
modified version of the Distributed Signcryption
method proposed in [11], and the Agent-based
Threshold Proxy Signcryption (ATPS) protocol
proposed in [1]. The most notable feature of the
DiSigncryption protocol is that, in addition to
allowing secure distributed proxy signature
generation, it enables the agent owner to
quantitatively assess the trust and reliability of each of
the TTP-hosts that s/he has dealt with. These trust and
reliability values are then aggregated into an index to
guide the agent owner in making his/her decision as
which TTP-hosts should be used in his/her next
dealing. The security properties of the proposed
protocol are analyzed, and the protocol is compared
with the most related work.
Keywords: Proxy signature, security protocols, mobile
agent-based e-commerce, reputation management.

1.Introduction
The use of mobile agents to commit to transactions on
behalf of a user has recently become a topic of interest.
Mobile agents, however, face the problem of execution
in a hostile environment where the host executing the
agent has access to all the data that an agent carries,
e.g. a signature key. Therefore, the problem of
enabling an agent to sign a transaction on behalf of its
owner, i.e. acting as a proxy signer, has become an
attractive research area. Previous research works [6, 7,
10, 12] have proposed some solutions to the above
problem. However, these solutions have mainly
focused on the protection of the signature key against
third party perpetrators, and are weak in tackling
threats imposed by the other side of the business deal,

i.e. the merchant host. For example, the work by [7,
12] has failed to provide non-repudiation of signature
receipt service. The work by [10] does not protect the
signature key from being misused by the merchant
host. Though Kim [6] has recognized and addressed
some of these weaknesses, but the solution proposed is
computationally expensive.

However, one problem with the above solutions is
that the agent is still given the power to sign a
transaction, subject to the requirements/constrains
specified earlier by the agent owner. Thus, while the
constrains may limit the nature and the value of a
transaction, a malicious host may force an agent to
commit to a transaction much less satisfactory than
could be achieved. To further protect against malicious
hosts, an agent owner may wish to employ more than
one entity, i.e. trusted third party hosts (TTP-hosts),
and have those entities jointly agree on a transaction
and sign a relevant document. Hence, an agent owner
may delegate N proxy signers (the agent + (N-1) TTP-
hosts) with criteria that at least T of them performs the
required operations correctly. An obvious solution is to
employ a threshold proxy signature scheme, which
allows the N proxy signers to sign (partially) a
document and then, on receipt of a sufficient number
of ‘correct’ partial signatures, the owner’s proxy
signature can be reconstructed. Vast amount of
research has been conducted in the area of threshold
signature [4, 8, 9, 15, 16]. However, in these solutions,
all the proxy signers, i.e. TTP-hosts, are used
indiscriminately for each protocol execution without
taking into account their past behaviour, i.e. reputation.
To further enhance the threshold proxy signature
scheme, the agent owner may decide on a group of
TTP-hosts that have acceptable level of reputation to
participate in the transaction.

In this paper, we give a brief description of our
novel Distributed Reputation Management scheme
suited to the agent-based threshold signature delegation
scenario mentioned earlier. This scheme allows an
agent owner to assign and update trust and reliability
values for each TTP-host that the agent owner has dealt
with. These values reflect a credit level for the TTP-
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host over time, and the credit level may increase or
decrease depending on the behaviour of the TTP-host
concerned. This reputation management scheme is then
integrated into an extended version of our ATPS
protocol [1] and a modified version of the Distributed
Signcryption proposed in [11], resulting in a novel
Distributed Signcryption with Verifiable Partial
Signature (DiSigncryption). It provides a secure and
efficient approach to mobile agent-based signature
delegation and facilitates proxy signers’ (TTP-hosts’)
reputation management.

The remainder of the paper is organized as
follows. Section 2 outlines the security requirements
for the design of the DiSigncryption protocol. Section
3 introduces the Distributed Trust Management
scheme. Section 4 presents the DiSigncryption
protocol. In Section 5, the protocol is analyzed against
the requirements specified and compared with related
work, and finally, our conclusions and future work are
given in Section 6.

2. Security Requirements
(S1) Proxy key confidentiality: A proxy key delegated
to a mobile agent should enjoy confidentiality
protection, i.e. to protect it from being disclosed to any
single entity, e.g. a merchant host, a TTP-host, or any
other host or agent.
(S2) Partial proxy key share Confidentiality: A proxy
key share shi should only be revealed to one proxy
entity TTP-hosti.
(S3) Proxy signature unforgeability: It should be
difficult for an entity other than the agent owner to
forge a proxy signature, i.e. to generate a valid proxy
signature.
(S4) Partial proxy signature verifiability: Partial proxy
signatures should be verifiable, i.e. the validity of a
partial proxy signature should be verifiable through the
use of a commitment. This enables the signature
verifier to detect and exclude any invalid partial proxy
signature during the proxy signature construction
process.
(S5) Non-repudiation of signature origin: It should be
difficult for the original signer (i.e. the agent owner) of
a proxy signature to falsely deny that it has delegated
the signing power to the agent.
(S6) Non-repudiation of signature receipt: It should be
difficult for a signature recipient to falsely deny that it
has received the proxy signature, if this signature is
taken as the proof of a deal agreed between the proxy
signer (i.e. the agent) and the recipient.
(S7) Fairness: This requirement indicates that, once a
deal is agreed, then either the original signer and the
signature recipient have both received the proxy

signature on the deal, or neither of them has received
anything useful.
(S8) TTP-hosts accountability: Any misbehavior by a

TTP-host should be detected and accounted for.

3. Distributed Reputation Management
Scheme
In our distributed reputation model, a TTP-host’s
reputation is measured in terms of a trust level and a
reliability level, both of which are aggregated over a
specified past period. The trust level reflects the
truthfulness of the TTP-host in executing a transaction
and the reliability level reflects its robustness in
providing the TTP service. Both levels are functions of
the following parameters: (1) Transaction outcome
feedback; (2) Total number of transactions performed;
(3) Transaction value; (4) Total number of malicious
incidents; and finally (5) Reputation of the source of
feedback.

Considering the above parameters, two algorithms
are designed to allow an agent owner to distribute a
security-sensitive task among a set of N trusted hosts,
TTP-hosti, where i ∈{1, .., N}. The first algorithm,
called TTP-hosts Subgroup Selection (TSS) algorithm,
allows the agent owner to select a subgroup of Y most
trustworthy TTP-hosts from N available ones based
upon their trust and reliability values. The second
algorithm, called Trust and Reliability Updating (TRU)
algorithm, allows the agent owner to evaluate and
assign trust and reliability values to each TTP-host that
s/he has employed based upon the feedback received
from his/her merchant host. In the following, we give
assumptions used for the design of the algorithms.
Their detailed description can be found in [2].
• The agent owner maintains a table TA (Trust

Assessment) containing trust and reliability values
associated with each of the TTP-hosts that the agent
owner has dealt with in the past period Th.

• The agent owner also maintain a table MR
(Merchant Reputation) containing reputation values
associated with each of the merchants that the agent
owner has dealt with in the past time period Tm.

• The merchant, once agreed on a deal with the mobile
agent, creates a table TM, containing the trust and
reliability values for all the participating TTP-hosts.
The merchant fills table TM with the values
correspond to the transaction outcome with each of
the participating TTP-hosts. The merchant then
passes table TM to the agent owner, via the mobile
agent for him to update table TA accordingly.

• As mentioned above, we have specified validity
periods Th and Tm for the tables TA and MR,
respectively. This can help the agent owner in
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maintaining the freshness of the relevant data and
reduce memory and computational expenses.

4. DiSigncryption Protocol
In this section, we integrate the Distributed Reputation
Management scheme presented in Section 3 to the
Agent-based Threshold Proxy Signcryption (ATPS)
protocol [1] to derive out novel DiSigncryption
protocol. In other words, in the DiSigncryption
protocol to be presented shortly, a set of multiple TTP-
hosts are dynamically selected on per-transaction basis,
and these TTP-hosts are jointly perform the role of a
proxy signer. In the following, we will first summarize
the notation, and state the assumptions, used in the
protocol design, and then present the protocol formally.

4.1 Notation
The notation to be used throughout the rest of this
paper is summarized as follows.
• H(x) is a one-way collision free hash function, e.g.,

SHA-1.
• Ek(x) and Dk(x) express the encryption and

decryption of a data item x using a symmetric key k
and a symmetric cryptosystem, e.g., DES or AES.

• )(xEnc
ipk expresses the ciphertext of a data item x

encrypted with the public key pki using ElGamal
public-key cryptosystem.

• =)(xSig
isk ),( sr denotes a digital signature on a

data item x generated using a private key ski of party
i and a signature scheme such as DSS.

• shi denotes the proxy key share assigned to a party i.
• (c2, r2, psi) denotes the partial signature generated by

party i using a proxy key share shi, to be explained in
section 4.3.5.

• Commi denotes a commitment generated by TTP-
hosti to authenticate its partial signature (c2, r2, psi).

• A →E B: m denotes that party A sends party B a
message m via an external channel such as a
telecommunication network.

• A →I B: m denotes that party A sends party B a
message m internally via an internal message passing
mechanism.

4.2 Assumptions
• Every party i (i ∈ {A, B, TTP-hostk}, and k ∈ {1, …,

N}) has a pair of private and public ElGamal keys,

expressed as ski ∈R
*
qZ and pki = iskg . The public

key pki is certified in the form of a digital certificate
Cert(i) that is signed by a certification authority
(CA) trusted by all parties.

• TTP-hosts, in addition to assisting in the proxy
signature generation, also assist in proxy signature

verification and to store transaction evidences for
dispute resolution. It is assumed that TTP-hosts may
collude with each other, but F out of N TTP-hosts
are trustworthy.

• B is assumed to provide mechanisms to protect the
mobile agents it hosts from being eavesdropped on
their contents by other agents hosted also by B. B
can use existing solutions, e.g. tamper-resistant
hardware [14] and time limited blackbox security
[5], to provide such mechanisms.

4.3 Protocol Description
The DiSigncryption protocol has beautifully integrated
the Distributed Reputation Management scheme
presented in Section 3 and the cryptographic primitives
presented in Section 4.3 to achieve distributed agent-
based proxy signature delegation/generation. Here, in
the following, the protocol is described as a seven-step
procedure.
Step 1 – Execution initialization: During this stage,
the agent owner specifies the shopping requirements
and generates the parameters needed for the proxy
signature delegation. In detail, A performs the
following setup operations prior to the protocol
execution.
1. A executes the TSS algorithm to select a subset of

TTP-hosts from table TA, i.e. the AS list containing
Y members, which would satisfy the risk threshold
specified.

2. A generates a group public key G for the Y
participating TTP-hosts [11] as follows. A first
generates Y secrets xi ∈ Zp, and send each xi securely
to the corresponding TTP-hosti. Only A and TTP-
hosti have the knowledge about the secret xi. A then
construct a polynomial function of order Y as
follows:

),q(modxa)xx()x(f
Y

1i

Y

0i

i
ii-=

= =
(2)

where the set {ai}, i ∈ {0, .., Y} are the coefficients .It

is worth noting that =
=

Y

i

i
ji xa

0
0 . Having obtained the

set {ai}, A constructs the corresponding exponential
values, i.e. the group public key G

= }g...,,g,g{}g...,,g,g{ Y10
aaa Y10 � . All elements

are computed under modulo p. Note that 1g
Y

0i

x
i

i
j =

=
.

3. A prepares a document MA that specifies the
purchase or signature generation requirements, e.g.
description of goods to be purchased or the contract
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to be signed. MA is signed with A’s private key skA

using DSS.
4. A generates a proxy key prA from its private key skA

as described in [1]. A then constructs a message M
containing the signed MA along with items for proxy
signature verification, i.e. the values to be used by
the TTP-hosts for the verification of the proxy
signature (α and w), the transaction identifier It, and
the proxy key’s validity period V, i.e. M =
(

AskSig (MA), α, w, It, V).

5. A then generates (Y+1) shares shi, i ∈ {MA, 1, …, Y}
as described in [1]. A also hashes the values of these
shares, i.e. SH = {H(sh1), H(sh2), .., H(shY)}that will
be used by the TTP-hosts to verify the integrity of
the received shares.

6. A signcrypts (M, SH) as follows [3]. A first blinds the
shares shi, i ∈ {1, .., Y} by computing:

ui = (shi × xi) (6)
A then signcrypts (M, SH) by first choosing a
random number x ∈ Zq, which is kept secret by A,
and then computes the following for i ∈ {1, .., Y}:

k = gx mod p (7)
c1 = Ek(M, SH) (8)
r1 = H(c1, k) (9)
si = x / ((kr1 + skA) × ui) mod q (10)

(c1, r1, si) represents the signcryption of (M, SH)
using the private key skA and the blinded share ui. A
then send the signcrypted message (c1, r1, si) together
with the group public key G and ui to TTP-hosti, i ∈
{1, .., Y}.

7. A loads MA with the following message:

T1.A →I MA: ))MAitem(Sig,MAitem((
Ask

Where MAitem = (IDA, shMA, c1, r1, G, S, U), S = {s1,
s2, .., sY},and U = {u1, u2, .., uY}.

7. A then dispatches MA in to the network to search at
various merchant hosts for a suitable offer.

Step 2 – Offer searching and proxy key share
distribution. If MA finds a suitable offer, say MB,, at a
merchant host B, then B will provide MA with an
execution environment so that MA will run locally to
execute the rest of the protocol. Residing at B, MA
generates a random number rand and sends the
message (c1, r1, si, rand, G, ui, MB) to each of the Y
TTP-host via a secure channel, e.g. SSL [13], and
sends U to B internally for it to perform partial
signature verification.

T2.1. MA →E TTP-hosti: (c1, r1, si, rand, G, ui, IDB,
MB), i ∈ {1, .., Y}

T2.2. MA →I B: U

Step 3 – Partial proxy signature generation and
delivery. Each TTP-hosti, once received message T2.1,
performs the following verification:
Verification TTP-host-1:
Check the correctness of A’s signature on the
signcryption (c1, r1, si) received in T2.1. This is done by
recovering the key k using equations (11) and (12), and
then checking if H(c1, k) = r1.

If the verification fails, TTP-hosti sends an error
message to MA asking it to resend the message T2.1. If
the verification fails for the second time, TTP-hosti will
send an error message to both MA and B and terminate
the protocol execution. Otherwise, if the verification is
positive, TTP-hosti proceeds by performing the
following operations.
• Decrypts c1 to reveal (M, SH):

(M) = Dk(c1) (13)
• Unblinds the proxy key share shi :

shi = ui / xi (14)
TTP-hosti then performs the following verification:
Verification TTP-host-2:
(a) Check the correctness of B’s signature on MB using
the DSS signature verification algorithm].
(b) Check if the conditions specified in MB matches
with that in MA contained in M.
(c) Check if the values, It α, and w in M are fresh (i.e.
they do not already exist in TTP-hosti’s database) and
the time of the arrival of T2.1 is within the validity
period V specified in M.
(d) Verifies the integrity of the recovered proxy key
share shi, i.e. check that the hash of the recovered
share (H(shi)) exists in SH received in T2.1.

If any of the steps in Verification TTP-host-2 is
negative, TTP-hosti should send an error message to B
and terminate the protocol execution. Otherwise, if the
verifications is all positive, TTP-hosti will compute a
partial signature by performing the following
calculation:

k = H( rand
Bpk mod p) (15)

y1 = pmodg rand (16)
c2 = kE (Doc) (17)
r2 = H(y1, c2) (18)

qmod
IDID

ID
shl

Y

ij,1j ji

j
ii = �

=
, (19)

psi = rand / (r2 + Yli) mod q (20)

pmodgComm

Y

ij,1j ji

1
i IDID

IDj
x

i

�

=
×

= (21)
Here, the partial signature on Doc is (c2, r2, psi), where
Doc = (IDA, IDB, MA, MB, It). TTP-hosti also computes
a commitment Commi that B will use to verify the
partial signature using equation (21). The partial
signature (c2, r2, psi) and the commitment Commi are
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signed with TTP-hosti’s private key
ihostTTPsk and

sent to B. Similarly, MA computes the partial signature
(c2, r2, psMA) on Doc with its share shMA and sends it
internally to B. That is,

T3.1TTP-hosti →E B:

messageErroror

))Comm,ps,r,c(Sig),Comm,ps,r,c(( ii22skii22
ihostTTP

T3.1 will be executed by all TTP-hosti, i ∈ {1,.., Y}.

T3.2. MA →I B: (c2, r2, psMA)
Step 4 – Partial proxy signature verification and
complete proxy signature construction: Upon the
receipt of message T3.1, B performs Verification B-1
as follows.
Verification B-1:
(a) Check the correctness of TTP-hosti’s signature on
T3.1 using the DSS signature verification method.
(b) Check the validity of the received partial proxy
signatures as follows:

ii

Y

ij,1j ji

j1
i

i xshYIDID

ID
x

uY
i )g(CommV ××

×
×

�
=== (22)

�
=

××××

=

Y

ij,1j ji

j1
iii IDID

ID
xxshY

g

pmodg

Y

ij,1j ji

j
i IDID

ID
shY �

=
××

=
B then computes:

i
2

Y

ij,1j ji

j
i

i2 ps
r

IDID

ID
shY

psr )g()gV(T
+×× �

==×= (23)

)

IDID

ID
shYr

rand
()r

IDID

ID
shY( Y

ij,1j ji

j
i2

2

Y

ij,1j ji

j
i

g
�

=

�
= ××+

×+××

=

= pg rand mod

Finally, B compares H(T mod p, c2) with r2, i.e. to
confirm if (c2, r2, psi) is indeed generated with the right
key share shi.

If the above verification is successful for a
particular partial signature, then the generating host of
this partial signature will be confirmed as trustworthy
for this transaction and will get the credit accordingly.
Otherwise, if any of the above verifications fail, B will
send an error message to the TTP-host concerned and
request for a retransmission. If repeated negative
verification occurs, then this TTP-host will be branded
as “dishonest” and get penalty accordingly. That is, B
will fill the table TM with the corresponding value for
the trust and reliability attributes for each TTP-hosti.
For TTP-host(s) with positive verification results, the

value of Trust will be set to ‘Yes’. Otherwise, the TTP-
host(s) with negative verification results will get a ‘No’
for their/its Trust value. In addition, if no message is
received from a particular TTP-host then its Trust
value will be set to ‘Unknown’. The reliability value
will be determined according to whether or not B has
actually received (c2, r2, psi) at all. If B has received it,
then the Reliability value will be set to ‘Yes’,
otherwise, it will be set to ‘No’.

In the case that B has received at least F out of Y
valid partial signatures from Y TTP-hosts, B will
proceed to construct the complete proxy signature, (c2,
r2, AprS ), as explained in [1]. As B does not posses the

items needed for the verification of the proxy
signature, B has to forward the newly constructed
proxy signature (c2, r2, AprS ) to the TTP-hosts, each of

which will verify the signature.

T4.B →E TTP-hosti:
))S,r,c(Sig,S,r,c(

ABA pr22skpr22

Step 5 – Proxy signature verification and token
generation. In this stage, TTP-host(s) perform proxy
signature verification upon B’s request, and generate a
verification token (VT) accordingly [1], which proves
that the deal has been signed and B has received MA’s
proxy signature. Upon recipient of T4, TTP-hosti

performs the following verification.
Verification TTP-host-3:
(a) Check the correctness of B’s signature on T4 using
the DSS signature verification method.
(b) Check the correctness of the proxy signature (c2,
r2, AprS ) using the Proxy Signature Verification method

If any of the above verification fails, TTP-hosti

will send an error message to B to request for
retransmission. If repeated retransmissions still result
in a negative verification outcome, TTP-hosti will send
an error message indicating that the proxy signature is
invalid and terminates the protocol run. In this case, B
will forward this error message to MA, which will be
delivered in turn to A. If the verification is positive,
which indicates both the validity of the signature (c2,
r2, AprS ) and the authenticity of A’s delegation (by

using A’s public key pkA in the verification of the
proxy signature), TTP-hosti will generate and send to
B, in Transaction T5, a signed and time-stamped
verification token VT. This VT can be used to prevent B
from false denial of signature receipt thus supporting
non-repudiation of the receipt of A’s signature by B.

T5. TTP-hosti →E B: VT or Error message
Where, VT =

)ID,ID,T),S,r,c(Sig,S,r,c( BAhostTTPpr22skpr22 iABA
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)ID,ID,T

),S,r,c(Sig,S,r,c(Sig,

BAhostTTP

pr22skpr22sk

i

ABAihostTTP

and
ihostTTPT − is a timestamp generated by TTP-hosti

to indicate the time when the VT is generated.
Step 6 – Signing and returning the token to MA.
Merchant B, once obtained the verification token VT,
confirms TTP-hosti’s signature on VT. If the
verification is positive, B submits the VT and table TM
to MA that will return back to its owner A. If B receives
an error message in T5, it forwards this error message
to MA.

T6.B →I MA:

messageErroror

))rand(Enc,TM,VT(Sig),rand(Enc,TM,VT(
AA pkBpk

Step 7 – Protocol execution completion and final
verification. In this stage, MA returns home and passes
the signed deal to its owner A. If A receives the signed
VT in T6 rather than the error message, A performs the
following verification to confirm the signed deal:
Verification A:
a) Check the correctness of B’s signature on T6 using
the DSS signature verification method.
b) Check the correctness of TTP-hosti’s signature on
VT using the DSS signature verification method.
c) Check the correctness of the proxy signature

AprS in

VT using the Proxy Signature Verification method.
Verification A being positive means that A has

conducted a valid deal with B, and both A and B have
received a valid document Doc signed by both parties.
A, in this case, retrieves the plaintext Doc from the
signcryption (c2, r2, )S

Apr in VT by performing the

following tasks:
1.A decrypts the ciphertext )(randEnc

Apk with the

private key skA to reveal rand.
2.A then uses rand together with B’s public key pkB to

generate k using equation (15).
3.A finally uses k to decrypt the ciphertext c2 and

reveal the plaintext Doc.
If the outcome of Verification A is positive, A

stores the VT as it has both his and B’s signatures on
Doc, approved by a TTP-host. A also updates the table
TA according to the data in table TM by executing
TRU algorithm. If Verification A is negative, which
means that A has failed to obtain a correct VT, A
initiates a recovery protocol with a TTP-host to recover
VT. A detailed description of the recovery protocol
can be found in [1].

5. Analysis of the DiSigncryption protocol

5.1 Comparison with related work
To highlight the merits of our DiSigncryption protocol,
the efficiency, reliability, robustness, and
accountability of our protocol is compared with that of
related distributed (multiple) TTP-hosts based
protocols. The recently proposed protocols by Hsu et
al. in [15], referred to as Hsu’s protocol, and by Tzeng
at la. In [16], referred to as Tzeng’s protocol, are
chosen as samples of the distributed TTP-host based
approach. The reason for choosing these protocols is
that they are all designed to perform the same task as
ours. That is, an original signer delegates its signing
power to proxy signer(s). Any T or more out of the N
proxy signers can cooperatively reconstruct and verify
the proxy signature on the message, but (T-1) or fewer
proxy signers cannot.

Table 1 shows the comparison between the
DiSigncryption protocol and the three related works
mentioned above in terms of communication
overheads, measured in terms of the number of
messages exchanged among the protocol entities and
their sizes. The following assumptions have been used
in calculating a message size:

• AES algorithm is used for symmetric encryption,
therefore, the size of a ciphertext is in multiples of
128 bits.

• The key used for AES is 192 bits long.

• SHA-1 algorithm is used for one-way hashing,
therefore, the output of the hashing process |H()| is
160 bits.

• The prime |p| = 1024 bits, |q| = 160 bits

• The identifiers used in the protocol, e.g. IDA, are 32
bits in size.

• The sizes of the agent owner’s requirements MA and
the remote host’s offer MB are 512 bytes each.
Therefore the size of Doc = (IDA, IDB, MA, MB, It) is
1024 bytes.

Table 2 shows the computational overhead
measured in terms of the total number of multiplication
and exponentiation operations performed at each
protocol step. The quantitative results in both tables are
materialized by evaluating them with the total number
of participating TTP-hosts (N) = 10, the minimum
threshold of active TTP-hosts (T) = 5, and the number
of TTP-hosts in the AS list (Y) = 5.

Table 1. Communication overhead.
Number of messages Size of messages (bytes)

Hsu 280 75440

Tzeng 165 18800

DiSigncryption 28 32269
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Table 2. Computation overhead.
Mult Exp

Hsu 721 1327

Tzeng 911 981

DiSigncryption 227 200

In comparison with Hsu’s and Tzeng’s
protocols, our DiSigncryption protocol achieves 90%
and 77% reduction in the number of messages
exchanged, respectively. This is an advantageous
feature when applied in mobile network environment,
which is characterized by low and/or expensive
bandwidth and higher error rate. In addition, the total
size of our protocol messages is approximately 57%
less than that of Hsu’s scheme. However, the total size
of our protocol messages is 41% higher than that of
Tzeng’s protocol due to the fact that our protocol
provides four extra security services, non-repudiation
of signature receipt, fairness for both the agent owner
and the merchant, confidentiality of the signed
message, and the accountability of TTP-hosts service,
which neither Hsu’s nor Tzeng’s protocol provides.
These features/services are necessary for e-/m-
commerce applications. Regarding the computational
costs, the DiSigncryption protocol enjoys a saving of
approximately 84% and 79% in the number of
performed exponentiation operations, and 68% and
75% in the number of performed multiplication
operations, comparing with Hsu’s and Tzeng’s
protocols, respectively.
5.2 Security Analysis

In this section, we analyze the security properties of
the DiSigncryption protocol showing that it satisfies all
the security requirements stated in Section 3.
• Proxy key confidentiality: It is difficult to
compromise the proxy key prA due to the following
reasons: (1) the proxy key is distributed in (Y+1)
shares, and (2) each share is blinded with a secret xi

that is known only to A and the TTP-hosti. In order to
compromise the proxy key, one has to intercept and
brute force attack at least F blinded shares ui, of which
the security relies on the difficulty of factoring large
primes unless F or more TTP-hosts collude together.
• Proxy key shares confidentiality: Each share shi is
blinded by the secret xi, and both A and TTP-hosti are
the only parties that have knowledge of xi, so only A
and TTP-hosti have knowledge of this share. The
security of ui depends on the difficulty of factoring
large primes, i.e. factoring ui to get shi and xi.
• Proxy signature unforgeability: Since the proxy key
prA is derived from A’s private key skA, it would be
difficult for another party to forge the proxy key
without knowledge of A’s private key. In addition, as
multiple TTP-hosts are involved in the proxy signature

generation process, each TTP-host has only a share of
the proxy key, and this share can only be used to
generate a partial signature, it would be difficult for a
single TTP-host to forge a valid proxy signature on
Doc without colluding with others.
• Partial proxy signature verifiability: B is able to
verify the validity of each partial proxy signature (c2,
r2, psi) using the commitment Commi generated by
TTP-hosti and the corresponding ui received from A
through the mobile agent MA. It is worth noting that B
is able to verify (c2, r2, psi) without accessing plaintext
shi. This feature supports the confidentiality of the
proxy key shares and hence protects the proxy key
from being disclosed to any non-holding parties
including B.
• Non-repudiation of signature origin: The verification
Verification TTP-host-1 performed by the TTP-hosts
ensures that the proxy signature

AprS on Doc is
generated by using a proxy key that is generated from
A’s private key, and that the proxy signature
verification requires the use of A’s public key.
Therefore, A cannot deny the fact that he has generated
the proxy key.
• Non-repudiation of signature receipt: This
requirement is achieved through the use of a
verification token VT signed by the TTP-hosts and sent
to A through MA in T6. As B cannot verify the proxy
signature, B has to send a signature verification request
to the TTP-hosti, which proves that B has actually
received A’s proxy signature on Doc if the verification
is positive and the token VT, signed by the TTP-hosti is
produced. Therefore, B cannot deny later that it has
received A’s proxy signature on Doc.
• Fairness: Our protocol achieves the fairness
requirement. This is illustrated by the following
scenario. B, after receiving VT from the TTP-hosts in
T5, may attempt to cheat A by sending an incorrect VT
(for a deal between B and another party Z, for example)
or a bogus message to MA. In other words, B may
attempt to get A’s signature (verified proxy signature)
on Doc but refuse to hand out its own one. A can
discover this attempt when performing Verification A
and consequently initiate the recovery process with a
TTP-host to retrieve VT.
• Confidentiality of the document to be signed: The
confidentiality of document Doc while it is being
transferred between protocol’s parties (A, MA, B, and
TTP-hosts) is achieved by using the following
measures.

(1) The communication channels between B and
TTP-hosts are secured using SSL that protects the
confidentiality of the messages transmitted through
them.
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(2) The items sent through the channels between A
and B, i.e. T1 and T6, are secured using
signcryption.
(3) The items sent through the channels between
MA and B, i.e. T2.2, T3.2, and T6, are either contain
no useful information regarding the contents of Doc
or secured using signcryption.

• TTP-host accountability: This security requirement
is addressed through the use of Verification B-1 and
our proposed award/penalty mechanism. The outcome
of Verification B-1 performed by B in the verification
of the partial proxy signature (c2, r2, psi) received from
TTP-hosti will indicate if TTP-hosti has followed the
protocol execution correctly and credit/penalize it
accordingly.

6. Conclusion
This paper has addressed the distributed reputation

management issue by critically analyzing related works
and highlighting their shortcomings. We then
presented a novel Distributed Reputation Management
scheme, which enables a party A, i.e. a customer, to
distribute a security sensitive task among several TTP-
hosts. This is achieved by first choosing a subset of
TTP-hosts with the highest trust and reliability levels.
The scheme then credits/penalizes each TTP-host
according to a feedback received by A from party B,
e.g. a merchant. The paper then presented a novel
DiSigncryption protocol, which integrates into it the
Distributed Reputation Management scheme, a
modified version of the Distributed Signcryption
proposed in [11] and an extended version of the ATPS
protocol proposed in [1]. The new protocol has the
following features. Firstly, it enables the agent owner
to delegate signing power to its mostly trusted subset
of TTP-hosts depending on the risk level valued upon
transaction values. Secondly, it enables the signature
combiner, i.e. the merchant, to verify each partial
signature received from a TTP-host without access to
the plaintext proxy key share, and verification outcome
is used to rate the TTP-host’s honesty and
credit/penalize it accordingly. Thirdly, it has an
embedded algorithm to allow the agent owner to
update the trust and reliability values for each TTP-
host. The protocol analysis shows that, in addition to
fulfilling the security requirements specified in section
3, it is more flexible and robust in comparison with the
related work. Our protocol can be applied to many
applications, e.g. e-/m-commerce, grid computing, and
ubiquitous computing due to the properties of mobile
agents.

The future work will be the formal verification of
the security properties of the proposed protocol.
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