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Abstract 

Interest in asynchronous circuit design is increasing 
due to its promise of efficient designs. The quiescent 
nature of asynchronous circuits allows them to remain in 
a stable state until necessary wire transitions trigger an 
event to occur. This avoids synchronizing events using a 
global clock tree, which can consume a large amount of 
energy. The need for low power and high performance 
circuits leads to investigation of various asynchronous 
design styles. 

The work presented here provides an overview and 
novel implementation of synthesizing asynchronous 
circuits using an early data validity protocol. 
Conventional asynchronous tools synthesize circuits using 
a broad data validity protocol, which leads to simple 
circuits, but non-overlapped sequencing of consecutive 
operations. The early protocol requires data to be valid 
for a shorter period, allowing consecutive operations to 
overlap phases. The resulting circuits have a potential 
increase in performance by allowing greater concurrency 
and earlier execution of events.

1. Fundamentals of Asynchronous Design 

The basic concept of asynchronous circuit design is the 
absence of a global clock to synchronize the transfer of 
data. Removal of the global clock eliminates the massive 
switching network that usually consumes a large amount 
of energy and dictates the speed of synchronous circuits. 
Other benefits of asynchronous circuits include increased 
modularity and lower noise and EM emission. Examples 
of these properties are described in [4]. Without a clock to 
signal when data is available, the notion of handshakes is 
introduced. 

1.1 Handshaking 

Handshakes occur between two or more circuit 
elements that require a synchronous transfer of data and/or 
control between them. Handshakes are generally 
implemented through the use of request and acknowledge 
wires and data channels between elements [16]. Between 

two elements, one actively initiates the handshake by 
sending out a request while one passively waits for this 
request. Once the passive unit receives the request, an 
acknowledgement is sent, signifying the receipt of data or 
transfer of control. Other similar handshake protocols exist 
for asynchronous circuits depending on the application and 
direction of data transfer [16]. 

Figure 1 and Figure 2 illustrate the difference between 
synchronous and asynchronous circuit flow where R* are 
synchronous registers, CL are blocks of combinational 
logic, and CTL blocks are elements controlling the 
handshaking between asynchronous stages. The clock 
controls when circuit components can read and write data 
for synchronous circuits, whereas the request and 
acknowledge signals control when circuit components can 
read and write data for asynchronous circuits. 

Figure 1. Synchronous circuit flow diagram 

Figure 2. Asynchronous circuit flow diagram 

1.2 Data Encoding 

In synchronous design, data is often binary encoded 
where each wire represents one bit of data. For 
asynchronous circuits, different choices of data encoding 
are made based on the resulting difference in performance, 
area, and power characteristics. Two major encoding 
schemes are bundled data and delay-insensitive encodings 
[16].
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Bundled data (also known as single-rail) encoding is 
illustrated in Figure 2, where request and acknowledge 
wires are bundled with the binary encoded data to indicate 
data validity. Advantages of this encoding include the 
ability to use the same combinational logic blocks used in 
synchronous circuits, and easy separation of control from 
datapath. Bundled data schemes can result in smaller, 
simpler, low power circuits and usually results in more 
efficient circuits than delay-insensitive circuits [16]. But 
this data encoding often requires explicit delay elements to 
be added along the control path to ensure data becomes 
valid before the receiving unit is signaled. 

Delay-insensitive circuits encode each bit of data across 
multiple wires. Transitions on one or more of these wires 
indicate data validity, thus encoding the request signal 
within the data. Once all the bits of data are realized (i.e. 
transitions have completed for each bit of data), an 
acknowledgment is sent and the circuit enters a reset 
phase, known as the return-to-zero phase, where all the 
wires reset to zero. A four-phase handshake is the 
common term for the process of raising the request and 
acknowledge signals followed by resetting them. The 
advantage of delay-insensitive circuits is that no delay 
elements are needed within the circuit since the request is 
encoded within the data; thus the circuit will execute as 
fast as the logic allows. However, due to the extra wires 
needed to encode the data, circuits tend to be larger and 
extra logic is needed to realize the data bits. A common 
technique to realize the data bits is to use trees of Muller 
C-elements [16], which results in greater area and 
degraded performance. 

Due to the nature of four-phase delay-insensitive 
circuits, consecutive operations cannot be overlapped. A 
complete four-phase handshake must occur before the next 
operation since the request is encoded within the data. The 
next request cannot be sent out before the current 
operation resets the data. However, for bundled data, the 
request signal is separate from the data, which allows for 
varying periods of data validity and possible overlapping 
of operations. The work presented here revolves around 
four-phase single-rail handshake circuits [13] and the 
corresponding data validity protocols.  

2. Data Validity Protocols 

Three main data validity protocols exist for single-rail 
circuits: early, broad, and late [13]. Figure 3 and Figure 4 
illustrate the time periods when data becomes valid (clear 
region) and invalid (X region) for each of the three 
different protocols, depending on whether the circuit 
element is actively pushing (sending) data or actively 
pulling (receiving) data. The figures show the data validity 
for a four-phase handshake on the request and 
acknowledge wires, where the request wire acts as the data 

validity signal for push channels and the acknowledge 
wire acts as the data validity signal for pull channels. A 
detailed explanation of four-phase handshake protocols for 
single-rail circuits is described in [13]. 

Figure 3. Single rail push channel data validity 
diagram 

Figure 4. Single rail pull channel data validity 
diagram 

For the early protocol, the data only remains valid for 
one phase of the handshake in which the data must be 
processed. The data is assumed to be invalid for the 
remainder of the handshake. For the broad protocol, the 
data remains valid throughout the entire handshake, and 
for a pull channel, remains valid until the start of the next 
handshake. For a late protocol, the data is assumed to only 
be valid during the return-to-zero phase of the handshake. 
Because of the inverted logic needed for implementing 
late pull channels, late protocols are unfavorable and are 
not addressed in this work. 

3. Motivation 

The primary motivation behind implementing an early 
data validity protocol is the ability to achieve greater 
concurrency between operations. Figure 3 and Figure 4 
illustrate how the data is assumed to be invalid during the 
return-to-zero phase of the four-phase handshake. This 
means all data processing must be done before the circuit 
element starts the return-to-zero phase. Once the return-to-
zero phase begins, data is allowed to change and can no 
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longer be processed. Since no useful data processing 
occurs during the return-to-zero phase, the next operation 
can begin while the current operation resets. Thus the 
processing phase of the next operation is overlapped with 
the return-to-zero phase of the current operation.  

Figure 5. Normal sequencing as implemented 
using the broad data validity protocol 

Figure 6. Concurrent sequencing as implemented 
using the early data validity protocol 

Figure 5 illustrates the normal broad sequencing of 
operations and Figure 6 demonstrates the overlapping of 
sequential operations (or processes), where the P* blocks 
represent the data processing phase of a handshake and R* 
blocks represent the return-to-zero phase of a handshake. 
For the broad protocol, the data processing can be delayed 
until the return-to-zero phase since the data remains valid. 
However, this can create bottlenecks between consecutive 
handshakes because data is only allowed to change 
between handshakes. Since the circuit stalls the data 
validity signal until the data becomes valid, a potential 
bottleneck will occur if there is a large delay to set up the 
data for the next operation. In the early protocol, data for 
the next operation can be set up as soon as the processing 
completes for the current operation, thus allowing the data 
to be valid much sooner and reducing bottlenecks between 
handshakes. 

Previous investigation into the early protocol resulted 
in belief that circuits would result in degraded 

performance compared to the broad protocol [12]. 
Implementations of various early control circuits are 
described in [12], with the conclusion that broad circuit 
implementations are simpler and consume less power than 
the equivalent early implementations. Although early 
circuits tend to contain extra logic to implement the 
protocol, this investigation did not consider that early 
circuits have a performance advantage over broad circuits 
by overlapping operations as described above. The result 
of overlapping operations in this way results in greater 
concurrency and allows the circuit to execute a sequence 
of operations much faster than the equivalent broad circuit. 

4. Implementation 

The early data validity protocol has been integrated as a 
back-end to the Balsa asynchronous circuit synthesis tool 
developed at the University of Manchester [8]. The Balsa 
toolkit is similar to the Philips Tangram compiler [9][15] 
and uses the paradigm of handshake circuits [3] to compile 
design descriptions, written in the Balsa language [7], into 
networks of interconnected handshake components. Using 
the set of Balsa tools and commercial CAD tools, a gate-
level netlist and layout can be produced from the 
handshake components. 

The protocol was integrated into the back-end by 
designing circuit implementations for each of the 
handshake components. A set of the available handshake 
components and their operation can be found in [2]. A 
typical handshake component waits for an activation 
signal to start the operation of the component. For 
example, the Sequencer component waits for an activation 
request before beginning a sequence of operations. Once 
the Sequencer receives this activation signal, activation 
request signals are sequentially sent out to start the 
connected processes (see Figure 7). Once the current 
process has finished processing, it sends an 
acknowledgement back to the Sequencer component. This 
acknowledgement signals that the current operation is 
complete and the next operation can occur. For the broad 
protocol, a complete four-phase handshake must occur 
between the Sequencer component and the current process 
before starting a handshake with the next process (see 
Figure 5). For the early protocol, the Sequencer 
component sends out the next activation request signal as 
soon as the current process acknowledges. The next 
activation request occurs in parallel with the return-to-zero 
phase of the current handshake, thus creating the overlap 
illustrated in Figure 6. The design for the Sequencer 
component is based on the concurrent sequencers 
described in [14].  
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Figure 7. Handshake diagram for Sequencer 
component 

Handshake components like CL in Figure 2 often 
modify the incoming data, but simply propagate the 
request and acknowledge signals between the input and 
output. To take advantage of the early protocol, special 
circuits were designed to decouple the return-to-zero 
phases of the input and output. By the time the return-to-
zero phase of the input occurs, all data processing has 
occurred. Thus performing the return-to-zero phases of the 
input and output in parallel is safe. 

Figure 8 and Figure 9 show the logic and timing 
diagram of the circuit (named Call element) designed to 
decouple the return-to-zero phases. Once the input begins 
the return-to-zero phase, the input and output return-to-
zero phases operate independently, allowing the input to 
set up for the next operation and activate the next input 
request before the output finishes its handshake. However, 
the next input request will not propagate to the output until 
the output has completed the return-to-zero phase of the 
current operation. 

Figure 8. Logic circuit for the Call element 

Similar methods to decouple return-to-zero phases have 
been previously explored [5][10][11], but have yielded 
circuits that are more complex and do not necessarily take 
full advantage of the early protocol. They also do not 
address the issue of circuit synthesis. The protocol 
presented here is applied to the synthesis of asynchronous 
circuits using handshake components. [10] provides 

designs for decoupled latch control circuits, but these 
controllers are compatible with the broad protocol, not 
with the early protocol. For the early protocol, as soon as 
the input is acknowledged, the data is allowed to change. 
Thus the data must be latched and the latch disabled 
before the input is acknowledged. Another major 
difference is that these latch controllers fit into a push-
style micropipeline [17] style circuit, whereas the Balsa 
back-end provides a pull-style implementation using 
handshake circuits. Future work may involve investigating 
and integrating a micropipeline architecture into the Balsa 
back-end that uses decoupled latch controllers to provide a 
behavior similar to the early protocol while reducing the 
control overhead and need for added matched delays. 

InR

InA

OutR

OutA

Figure 9. Timing diagram for the Call element 

5. Evaluation 

The early Balsa back-end has been tested on a Balsa 
design [1] of the Small Scale Experimental Machine 
(SSEM) developed at the University of Manchester and a 
Balsa design of a MIPS processor. The SSEM design is a 
32-bit accumulator processor capable of performing 
arithmetic, logic, memory load, and memory store 
instructions. Extracted SPICE netlists of the designs were 
imported into Synopsys VCS/nanosim using 0.18 um 
technology from STMicroelectronics operating at 1.8V 
and 25°C. The SSEM design was tested with the Greatest 
Common Divisor testbench while the MIPS processor was 
tested with Dhrystone. Results of the simulations indicated 
an average of a 10% increase in performance and 40% 
increase in power dissipation by using the early protocol 
versus the broad.  

The increase in power is due to a number of factors. A 
decrease in simulation time while executing the same logic 
increases the power dissipation. Also, since extra latches 
and latch control logic are required to control dataflow in 
the early components, more transitions are required. This 
extra logic also decreases the performance improvement of 
the early back-end. Delays on the request-to-acknowledge 
path must be added to ensure data is properly latched and 
latches disabled. This increases the time needed before a 
component can acknowledge the receipt and processing of 
data, whereas the broad can acknowledge the receipt of 
data and process the data later. Thus if the return paths are 
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fairly short, the early protocol may not benefit as much 
over the broad protocol. 

Although the expected increase in power dissipation 
appears large, the actual energy consumed is the important 
metric for comparison since energy consumption accounts 
for the increase in both performance and power. The 
actual increase in energy consumption is less than 25%, 
which is a favorable tradeoff considering the 10% 
performance increase. Future testing will involve running 
other benchmarks on the MIPS processor and simulating 
the design of a Java aware SPA processor [6]. These 
results are expected to produce similar increases in 
performance and energy consumption. These results will 
be analyzed to determine where improvements can be 
made in the implementation of the early handshake 
components.

6. Conclusions 

A novel implementation of asynchronous circuit 
synthesis using an early data validity protocol is presented 
here. The fact that data does not need to remain valid 
throughout an entire handshake was exploited. Circuits 
were produced to achieve greater concurrency by 
overlapping the return-to-zero phase of one operation with 
the processing phase of the next operation. Test results 
show a favorable tradeoff between the increase in 
performance and increase in energy consumption that may 
be achieved using this implementation. Future tests of 
various circuit designs are expected to produce similar 
performance improvements. 
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