
Effective Continued Fractions 

David Lester 
Department of Computer Science, Manchester University, 

Oxford Road, Manchester M13 9PL, UK. 
dles ter @ cs .man.ac .uk 

Abstract 

Only the leading seven terms of a continued fraction are 
needed to perform on-line arithmetic, provided the contin- 
ued fractions are of the correct form. This forms the basis of 
a proof that there is an effective representation of the com- 
putable reals as continued fractions: we also demonstrate 
that the basic arithmetic operations are computable using 
this representation. 

1. Introduction 

In this paper we show how to represent the computable 
reals as continued fractions effectively. Informally an ef- 
fective continued fraction is one in which every finite initial 
sequence can be produced in a finite time. In practical terms 
this means that we have an on-line system of continued frac- 
tion arithmetic. An altemative approach to the one taken in 
this paper is that of Kornerup and Matula [6, 71. Their pa- 
pers present an approach that has a faster convergence to 
fm than the one in presented in this paper, which is based 
on Vuillemin’s work. The key idea in this paper is to show 
that only the leading seven terms of a continued fraction are 
needed to perform on-line arithmetic. 

In Section 2 we define notation and review previous work 
on continued fractions. In Section 3 we show what goes 
wrong with a nayve implementation. Section 4 presents a 
new way to give intervals for continued fractions, but avoids 
the awkward problem of dealing with zeros within the rep- 
resentation; this defect is remedied in Section 5.  We con- 
clude with Section 6. 

2. Preliminaries 

2.1. Computable Reals and Effectiveness 

For formal definitions of computable real numbers (de- 
noted by B in this paper) and computable functions over 

them, see Pour-El and Richards [9]. Informally, we will say 
that a continued fraction representation of the computable 
reals is effective, if for all x E P, we can generate an arbi- 
trary length initial subsequence of x and if we can perform 
basic arithmetic in an on-line manner. 

Finally, we note that the floor operation is not com- 
putable. 

Observation2.1 The function 1x1 is not a computable 
function, because it is not effectively uniformly continuous 
when x is an integer: 

2.2. Intervals 

Because the construction of continued fractions involves 
repeatedly taking reciprocals, it is convenient to extend the 
notation of rational open intervals to explicitly include -+m, 

and to permit the easy calculation of the reciprocal of an 
interval. 

Definition 2.2 An interval ( i ,  s) E I[ ifone of the following 
holds: i, s f Q with i < s; i E Q and s = -; s E Q and 
i = -m; i ,  s E Q with s < i, this is the ‘interval’ (--, s) U 
( i ,  -1. 
We need to be able to perform the following operations on 
intervals; notice that the set Il remains closed under the fol- 
lowing three operations . 

Definition 2.3 With fa + q = fw, and I/(&-) = 0 we 
have: 

q + ( i ,  s) = ( q + i , q + s )  
- ( i ,  s) = (-s, -z) 
1 / ( i ,  s) = (1/s, l / i )  

There is an ordering of intervals based on their ‘length’. 

Definition 2.4 We say that ( i l ,  SI) 5 (i2 ,  s2) ;f; andonly $ 
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2.3. Continued Fractions 

In [ 121 a continued fraction expansion for x is defined as 
a sequence of numbers [xo, xi, . . . , xn- 1, xn, . . .] with the 
following property: 

Each of the numbers xi is referred to as a term. Follow- 
ing Hurwitz [4, 51, Gosper [2, 31, and Komerup and Mat- 
ula L6, 71 we restrict attention to continued fractions with 
integer terms, and use them as representations of the real 
numbers. The simplest are the N-fractions. We can define 
N-fractions by: characterizing their properties or specify- 
ing their construction. 

Definition2.5 If [XO, XI, .. . , xn, . . .] is an 5f-fraction 
then for all i 2 1, we have xI  2 1. Furthermore, if the con- 
tinuedfraction isJinite then the last term will not be 1. 

To construct the 5f-fraction ot a real number x, we invoke 
the recursive function 5f to calculate each term of the con- 
tinued fraction. 
Definition 2.6 

5‘(\I:R+CF 
5‘(x = i f  n = x  then [n] else n : !7( (l/(x-n)) 

Definition 2.6 is H A S K E L L  pseudo-code, which will be 
used for the algorithmic specification of thc remainder of 
the paper. H A S K ~ L L  has been used because it has streams 
(infinite lists) as a built-in language feature. We do have 
the slight conceptual problem that we would need an imple- 
mentation of the computablereals (a) to obtain a continued 
fraction. In [ 10, 111 we find a proof of the equivalence of 
Definitions 2.5 and 2.6. To provide examples for subsequent 
discussion, we now provide a few examples of N-fractions 
for irrationals. 
Example 2.7 

where n = 1x1 

& = [ 1 , 2 , 2  ,... 2 ,... ] 
fi = [ 1 , 1 , 2 , 1 , 2  ,... 1 , 2  ...I 

e = [ 2 , 1 , 2 , 1 ,  ... 1 , 2 n , 1  ...I 
There are three important properties that we require of a 

I .  If the continued fraction representation of the real 
number x has leading term n, then the ‘primitive 
bound’ is the interval within which any continued frac- 
tion with leading term n must lie, i.e. x E Bp(n). As 
we will see, we use B p  to output the next term of a 
continued fraction expansion. 

continued fraction representation of real numbers: 

For the continued fraction representation xs of the real 
number n we may determine an interval for x by con- 
sidering a finite number of the leading terms. We refer 
to this as the ‘bound’ of a continued fraction, and we 
have x E B(ns). As we will see, we use B to deter- 
mine an interval for the continued fraction inputs to 
our arithmetic algorithms. We would certainly expect 
that B[xo, . . . 3 C Bp(x0).  

For the continued fraction representation xs of the real 
number x we may determine an interval for x (by con- 
sidering a finite number of the leading terms) after dis- 
counting an initial sequence of xs. We refer to this as 
thc ‘next bound’ of a continued fraction, and we have 
x E B’(xs). What we desire is that by discounting the 
initial sequence we do not inadvertently widen the in- 
terval within which we could find x. 

To expand on thc final point, we consider the various 
relations between B’(ns) and B(xs) that can arise for the 
continued fraction representation xs of the rcal numbcr x. 

B‘(xs) $! B(xs) If this can happen then as we process a 
continued fraction (i.e. consider longer and longer ini- 
tial sequences of it) we reach a stage where the interval 
for x starts to get larger. 

B’(xs) = B ( n )  If this can happen then as we process a 
continued fraction we might reach a stage where the 
interval for x stops getting smaller, and no further 
progress is madc. 

B’(xs) c B(xs) In this caye as we process the continued 

For N-fractions, the functions Bp, B, and B’ are defined 

fraction ns the interval for x reduces. 

as follows: 

Definition 2.8 For N-jiractions (and accepting that the in- 
tervals returned are semi-open, rather than the open inter- 
vals implied by the use of 1) 

B p  :: Z + II 
%J b o )  = [xo, xo+ 1) 
B :: [Z] + II 
%[XO,Xl, ...I = [xo,xo+1) 

8’ :: [Z] + II 
@[no, XI, . . . ] 

= B F ( X 0 )  

1 = (no+ h, no+ x,] 
I = no+- 

%I, 1.. 1 

Proposition 2.9 For all N-Jiractions xs of length 2 or more, 
we have B‘(xs) c B(xs). 

Whenever B’(xs) C B(xs) we will have shown that we can 
safely absorb terms from a continued fraction. Furthermore, 
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provided that the inclusion is strict (c), we will have shown 
that progress is made, i.e. the intervals are shrinking as 
more and more of the continued fraction is considered. 

Unfortunately Proposition 2.9 is not quite true, because 
when X I  = 1 we have a problem with the upper bound of the 
interval: 

Despite this, for all practical purposes successive approx- 
imations to ?(-fractions have their intervals nested in the 
sense of Proposition 2.9. (The remedy is to observe that if 
X I  = 1 then the continued fraction must haveat least another 
term: no ?(-fraction ends with a 1 .  Therefore the correct 
bound is the open interval: (XO + 0.5, xo + 1)). 

To perform arithmetic on continued fractions, we follow 
Gosper [2, 31 in defining two functions which he refers to 
as the algebraic algorithm and the quadratic algorithm. In 
outline they have the following effect: 

qa :: Z 4 X 2  -+ R -+ W -+ R 

Observe that we can perform the basic arithmetic operations 
(+, -, x ,  and +) with correctly initialised states: 

x - y  = qa 

x x y  = qa 

The reason that these two algorithms are important is that 
we can process continued fractions term-by-term by manip- 
ulating the algorithms’ states. 

We begin by presenting pseudo-HAsKELL implementa- 
tion of the algebraic algorithm. 

Definition 2.10 

aa :: ZzX2 -+ CF -+ CF 
a a = a a x  f w h e r e  f n h x s = n : a a ( a a e h n ) x s  

The definitions of the auxiliary functions for a a  are: 

aax  :: (Z -+ Zzx2 -+ CF -+ CF) -+ Z2x2 -+ CF + CF 
aax  f h x s  = 

if 3(n E Z) boundaa h ( ~ ( x s ) )  
then  f n h x s  else aaa (a;X f )  h xs 

%p(n)  

boundaa :: ZzX2 -+ I[ -+ 

a a a  :: (ZzXz -+ CF + CF) -+ ZzX2 -+ CF -+ CF 
a a a . f h x s = . f ( f o l d l  g h a s ) x s ‘  

The HASKELL library functions f o l d 1  and s p l i t A t  arede- 
fined in Appendix A, and for %-fractions A(xs) = 1. The 
main technical difficulty is determining the transformed in- 
terval generated by 

Although the endpoints must be i’ = a and s’ = ‘a, 
the order of these endpoints is important, and this means 
that we must expend some effort to determine whether the 
interval is (i’, s’) or (s‘, z’). 

The definition of the quadratic algorithm is as follows: 

Definition 2.11 

qa :: Z4x2 -+ CF -+ CF -+ CF 
qa h xs ys  
= if 3(nEZ)*  

bound h (Wxs) )  ( W Y ~ ) )  G W n )  
t h e n  n : qa (emit h n)  xs ys  
else i f  select h w ys 
t h e n  qa (absorbL h as) xs’ ys 
else  qa (absorbR h bs) xs ys’ 
where (as, xs’) = s p l i t A t  ( A m )  xs 

(bs, ys’) = s p l i t A t  (A y s )  ys 

Once more, for %-fractions g(xs) = 1. The definitions of 
the auxiliary functions for qa are: 
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select  :: Z 4 x 2  --t I[ --t I[ --t Boo1 

di 
no-dd; nl-dlx nz-dzx n3-d3x 

absorbr, :: Z 4 x 2  + [Z] + Z 4 x 2  

absorbL = foldl f 

Once again, the main technical difficulty is determining the 
transformed interval generated by 

bound [no7 n l ,  1227 n37 do, d 1 7  d27 d3] ( i x ,  sx) ( i y ,  s y ) .  

There are four possible endpoints - which are easily deter- 
mined - but selecting the correct pair, and placing them in 
the correct order is complicated. If the algorithm is unable 
to emit a term, we must absorb terms from one or other of 
the argument continued fractions. The select  function re- 
turns True if the lefthand argument (x)  is to be preferred to 
the righthand argument (y). We aim to absorb terms from 
the argument which will cause the greatest reduction in the 
size of the overall interval. 

3. What’s wrong with the usual continued frac- 
tions? 

Let’s consider the calculation of & x & using the 
quadratic algorithm on NI-fractions. We recall that this is: 

By considering the first term of the N-fraction for & we 
know that f i  E [l,  2) ,  and hence that f i  x f i  E [l, 4 ) .  
This interval is not small enough to allow us to emit a term, 
so we must absorb a term from one of the argument N- 
fractions (in fact this will be from the lefthand argument). 
The first four intervals for &and fi x & are: 

f i  f i x 4  
[17 2) [1.0007 4.000) 
(413~3/21 (1.777, 2.2501 
[7 /5 ,  10 /7)  [1.960, 2.041) 
(24/17 ,  17/12] (1.993, 2.0071 

No matter how many terms we consider, all we will be able 
to say is that the result of the calculation fi x fi will be 
in a semi-open interval containing 2; furthermore 2 will not 
be one of the endpoints. We are permitted to emit a leading 
term of 1 provided that our result lies in the interval [ 1 2)  or 
alternatively a leading term of 2 provided that our result lies 
in the interval [2, 3). Therefore no matter how many terms 
of the argument N-fractions are absorbed, we will not be 
able to emit the first term of the answer. This is because 
there is no way to determine (in a finite time) whether to 
emit a 1 or a 2 as the leading term of our answer. Notice that 
this problem does not occur with finite continued fractions 
( i . e .  rationals), because we will eventually reach the end of 
the continued fraction and then be able to determine which 
leading term to emit. 

An alternative analysis of the problem is to note that the 
floor operation on an arbitrary computablereal is not a com- 
putable function (see final part of Section 2) ,  and so it was 
unreasonable to expect it to prove satisfactory as part of an 
effective representation of the computable reals. We would 
also expect any effective representation to have redundancy. 
In order to effectively compute the continued fraction of any 
computable real number we must: 

1. 

2. 

3. 

The 

replace the flooring operation of N-fractions, 

determine intervals within which our new continued 
fractions must lie given some finite initial segment of 
the continued fraction, and 

demonstrate that as the continuedfraction is consumed 
the intervals remain nested. 

reason for the third condition is that as terms are ab- 
sorbed by either the algebraic or quadratic algorithm, it is 
no longer possible to reconstruct the original intervals. 

Vuillemin proposed a solution in [ l o ,  1 1 1  which ad- 
dressed desiderata I in the list above. Insufficient atten- 
tion was paid to the remaining two points. Firstly, in order 
to make his system work Vuillemin introduced a “normal- 
ization phase” which forces all intermediate results to be 
rationals. Secondly, from a practical point of view, the con- 
vergence is very slow (and without the the normalization 
could not be guaranteed). 
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4. Effective continued fractions: making a 
start 

We begin the presentation of our new representation with 
the replacement primitive bound function Bp. It is based on 
a similar function found in Vuillemin’s work, with some 
slight changes. We follow Vuillemin and prcscribe an in- 
terval within which a continued fraction lies depending on 
the value of its initial term. We shall call this interval the 
primitive bound (or Bp) of the continued fraction. 

Definition 4.1 The primitive bound of a continuedfraction 
[XO, . . .] is Bp(no), where Bp is dejned as: 

B p  :: z + li 
Bp(x) = ( - ~ + 0 . 5 ,  ~ + 0 . 5 )  r f xS-2  

(x-0.6, ~ + 0 . 6 )  if 1x1 = 1 

(x-0.5, - ~ - 0 . 5 )  Z’JX 2 2 
(-0.5, 0.5) i f x = o  

This contrasts with Vuillemin’s formulation in which 

1 1 
Bp(x) = i f x =  0 then (-2, 2) else (1x1 - 5, 1x1 + T ) ,  

Vuillemin’s definition gives slightly wider intervals in most 
caqes, and much wider intervals for 1x1 = 1. Notice that 
in both definitions of Bp, the intervals for adjacent integers 
overlap; this means that for an arbitrary computable real, we 
can effectively compute the leading term of the continued 
fraction. 

We can generalize the bounding operation to finding the 
interval associated with a continued fraction by considering 
its n-th primitive bound. 

Definition 4.2 

BN 1: ([z] x N) 1 
BN([xo, X I ,  ...? Xn-1, xn, ...I, n)  

We can now define our rcpresentation of continued frac- 
tions. 

Definition 4.3 An injnite sequence of integers xs is an ef- 
fective continued fraction, written xs E E; and only iJ; 
there exists a computable real x such that for all n E N, x E 
% N ( X S ,  n). r f ;  in addition, all terms (except possibly the 
leading one) are non-zero, then xs is a zero-Iree effective 
continued fraction, written xs E &. 

The key part of our representation of effective continued 
fractions is contained in the definition of the 2, function 
given in Figure 1. Instead of dealing with an arbitrary num- 
ber of leading terms in order to calculatc a bound for the 

continued fraction we instead look at (at most) the first six 
terms of a continued fraction, and determine a bound based 
on these terms. To do this we use the !D function, which 
returns two naturd numbers, with the intended use: 

1. The first component tells us how many tcrms we need 
to consider to obtain the lower bound on our interval. 

2.  The second component tells us how many tcnns we 
need to consider to obtain thc uppcr bound on our in- 
terval. 

Definition 4.4 7he 2, function is dejned in Figure 1 .  

We now define a bound function B for zero-free effective 
continued fractions. 
Definition 4.5 

B : : & + 1  
B(ns) = (in, sm) where (n, m) = B(xs) 

( i , ,  3,) = ~ N ( X S ,  j )  

Thc reason for the rather complicated specification of 2, is 
that it captures the information about the interval formed 
by intcrsccting all of the intervals derived from the initial 
sequence of the continued fraction. 

Lemma 4.6 For all xs E &, with (n ,  m) = !D(xs) 

m a x ( w 4  
qXs) = n B ~ ( ~ , ~ ,  j )  

j=O 

Lemma 4.6 is m e ,  by machine-agsisted construction. The 
function !D was constructed so that this would be true; fur- 
thermore, a$ perusal of Figure l shows, neither component 
returned by !D is zero. Finally we note that, although there 
are sequences of integers for which 8 is not defined, the 
function 2, is total for &. 

Because neither component returned by !D is zero, thc 
leading term never contributes to the size of the interval gen- 
erated by B, and we can therefore always absorb at leaqt the 
leading term. 

Lemma 4.7 For all xs k &, we have the strict subseiprop- 
erty: ~ ( x s )  c BN(XS, 0). 

Notice that all of the cages of 2, the lower and upper 
bounds are determined by considering at least the sec- 
ond term X I .  

BN(XS, 0). Demonstrating strict inclusion is anothcr labori- 
ous machine-assisted case analysis. 

Definition 4.8 For all xs E &, we are permitled to absorb 
A(xs) terms of xs, where 

This demonstrates that at least B(xs) 

A : : & + N  
A(xs)  = min(n,na) where (n,  m) = !D(xs) 
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9 : &+  (N x N) 
q x o ,  2, x2,. . .I = (2, 2 )  
q x o ,  2, 2, x3,. . .I = (3, 3) 
!D[xo, 2, 2, -2 ,". ] = ( 2 7  3) 
q x o ,  2, -2, -1, 2, x5 ,." ] = (3, 5 )  

!D[xo, 2, -2, -1, x4, -2 ,... 3 (4, 5 )  
q x o ,  2, -2, -1, x4, x5 , . . . I  = ( 5 ,  5 )  
D[XO, 2, -3, -1,...] = (3, 3) 
D[xo, 2, -3, x3, 2,. ..I = (3, 4) 
I)[xo, 2, -3, x3, x4,. . .] = (4, 4) 
q x o ,  2, 1,. f .I = (2, 2) 
B[xo, 2 ,  x2, -2, *..I = (2, 3) 
q x o ,  2, x2, x3 I . . .  I = (3, 3) 
B[xo, -2 ,"., x, ,... ] = ( j ,  2 )  

qxo, XI, .  . .I = (1, 1) 

B[Xo, 2, -2 ,  -1, 2, X5,...] = (5 ,  5 )  
= 

Figure 1. Definition of the 2, function 

We now define a function B' that gives the bound on the 
continued fraction after absorbing the A(xs) leading terms. 
Definition 4.9 

!B'::IE€l+lI 
q x o ,  . . . , x'L7 . . .] = xo + 1 

. .X0-L + 1 
!B [ l a ,  ... I 

where a = A [xo, .. . , &, . . .] 
We are finally in a position to state our main result - 

Theorem 4.10 - which states that when we absorb terms, 
we always reduce the size of our intervals, i.e. as we absorb 
terms of a continued fraction we obtain better and better 
approximations to the value it represents. 

Theorem 4.10 For all xs E I&, we have the strict subset 
property: B'(xs) c B(xs). 

When the two components returned by !D are the same, this 
result follows from Lemma 4.7. In the other cases, a more 
detailed proof is required; not surprisingly, this proof was 
made using machine-a$sistancc. 

5. Effective continued fractions: dealing with 0 

We now address the issue we have so far avoided: how 
to handle continued fractions containing non-leading zeros. 
Following Vuillemin [lo, 111, we use this to handle contin- 
ued fractions that are converging to fw, which is needed 
whenever we generate a rational continued fraction from 
irrational continued fractions. For an alternative approach 
see Komerup and Matula in [7] ,  in which this convergence 
is handled in a bit-wise manner. Let us look at an example 
of a process that generates zeros. 

Example 5.1 Let y = &, and assume the approximations 
to y are 1 . 4 f  0.1 and 1.41 fO.O1. We wish to calcu- 
late the E-jiracfion for x = y x y; the intervals for x are: 
(1.69, 2.25), and (1.96, 2.0164). Thejrst approximation 
permits us to emit the two leading terms of an E-fraction for 
X. 

x = 2 + l / r  r E (4 00) 
1' 3931 = 2 +  1/(-3+ l / r )  r E (?, +) 

The next interval for x allows further progress to be made, 
by reducing the size of the interval for r. 

164 x = 2+1 / ( -3+ l / r )  i.6 (& iq; 
= 2+ 1 / ( -3 f  1/(0+ 1 / r ) )  r E (-22, m) 
= 2+  I/(-3+ 1/(0+ 1/(-22+ l/r))) 

164 
r E  (m, -1 

To proceed further we would need a more accurate interval 
forr .  

We see that the way that the terms of continued fractions 
of rational numbers are emitted involves the use of 0 to al- 
low better and better approximations to be generated. In his 
original papers [lo, 111, Vuillemin suggests that we trans- 
form continued fractions to eliminate zeros. 

Lemma 5.2 The number represented by the continuedfrac- 
tion [. . . , x,, 0, x,,+2, . . .] is the same as that represented 

Unfortunately we have a problem with the intervals result- 
ing from the usc of thc zero-elimination technique. 

Example 5.3 We have [2 ,  0,  4, . . .] E (5.5, -2.5), whereas 

b y [ . - . ,  Xn+Xn+2, ...I. 

[2+4, ...I E (5.5, -6.5). 
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As wc can see, the transformed continued fraction does 
not have the same interval associated with it as the orig- 
inal onc. One of the bounds is much too tightly de- 
fined, meaning that the interval for the transformed con- 
tinucd fraction is smaller than the original. Importantly, 
in Example 5.3 the original continued fraction might con- 
tinue [2, 0, 4, 0, -9, 4, ...], which lies in the interval 
(y, q), whereas [6, 0, -9, 4, . . .] $! E. To prevent 
this behaviour, we restrict continued fractions so that these 
sequences are not permitted. 

Definition5.4 An infinite sequence of integers xs is a 
nested effective continued fraction, written Jf!?; $and only 
iJ xs E E, and any subsequence: 

[. . . xn, 0,  xn+21 0, xn+2m, e ]  

has the property 

Definition56 The 2, function is amended with extra 
clauses, as defined in Figure 2. The original clauses need 
to be modijed so that they return the continuedfraction un- 
modijied. 

Oncc more we would like to show that our continued frac- 
tions have a nesting properly, similar to Theorem 4.10. This 
necessitates a redefinition of 9’. 

Definition 5.7 

B ’ : : P  +lI 
B’[x0, ..., x,, ...I = i f  a=O t h e n  B (xs‘) else 

xo + 1 

. * . & - I +  - 
9 bo, -1 

where (n,  m, xs‘) = D[Xo, ..., &, ...I 
a = min(n, m) 

m 

i=O 
lxnl < Ixn + x n + 2 1 <  1 . .  < I Cxn+ziJ- 

It is this controlled usc of 0 in continued fractions that 
makes thc system on-line. The convergence is potentially 
slow in comparison to that in Kornerup and Matulas’ sys- 
tem [6, 71. In their system extra bits are generated at each 
step; in this system the performance could be as slow as that 
display by: 

We state our intended result as Theorem 5.8. 

Theorem 5.8 For all xs E E+, we have the strict subset 
property: B‘(xs) c B(x.9). 

It will come a9 no surprise to discover this proof was ma- 
chine checked. 

[2, 0, -5 ,  0, 7 ,  0, -9, ...I. 
To generate the fractions of Definition 5.4, we amcnd 

the definition of the aa algorithm. 

Definition 5.5 

aa = aax f 1  where f1 n h ns = 
if In1 5 1 t h e n  n : aa (aae  h n)  xs 
else n : aan n h xs 

aan n = aax  fz where f2 m h xs = 
i f  m=O t h e n  m : a a z  n hxs 
else m : a a  (aae  (aae  h n) m) XS 

aaz  n = aax  f3 where f 3  m h xs = 
if 3(i E z) 2 5 til 5 Iml A Inl<In+ il A 

boundaa h (B(xs)) %(n+ i )  
t h e n  i-n : aan (n+i) h xs 
else aaa  (aaz  n) hxs 

We also require a similar redefinition of the qa algorithm, 
with qa everywhere replacing aa. If the continued frac- 
tions are generated in this way, then we will always be 
able to eliminate zeros in an on-linc fashion. In Ex- 
ample 5.3 we now emit [2, 0, -5, 4, ...], instcad of 
[2, 0, 4, 0, -9, 4, ...]. Unlike Vuillemin, we do not 
have a normalization phase that applies Lemma 5.2 indis- 
criminately, instead we modify the 9 function to selectively 
eliminate zeros. 

6. Conclusion 

The work presented in this papcr is clcarly hcavily in- 
fluenced by Gosper, Vuillemin, Korncrup and Matula. It is 
also motivated by Klaus Weierauch’s challenge to demon- 
strate that thcre arc computable or effective continued frac- 
tions for the reals. Personally, I feel that any implementa- 
tion of exact arithmetic should be proved correct. Closely 
related practical work on Vuillemin’s continued fractions is 
presented in MCnissier-Morain’s thesis [8]; she also appears 
to have run into difficulties with this implementation of con- 
tinued fractions. 

There is a H A s K n L L  implementalion of exact arilhmetic 
ba%ed on the effective continued fractions presented in this 
paper, which in addition includes simple transcendental 
functions. There are a number of practical problems with 
the system: it runs slowly bccause of all the intcrval cal- 
culations; it consumes a great deal of space in the homo- 
graphies and bi-homographies of the a a  and qa algorithms. 
On current architectures, the acccss to the continued frac- 
tion terms is far slower than to an equivalent bit-vector. For 
these reasons my entry to the exact arithmetic competition 
at CCA2000 [ 11, in which the only criterion was speed, was 
not based on continued fractions. 

Thanks are due to Peter Kornerup and Warren Ferguson 
for their suggested improvements to this paper. 
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B : E + - + ( N x N x @ )  
q x o ,  0, .x7+1* * .I 
q x o ,  2, 0, x3,  ...I 
q x o ,  -2, 0, x3, - . .I  
q x o ,  2, 2, 0, -5 ,  ...I 
q x o ,  2, x2, 0, x4 ...I 
q x o ,  2, x2, -2, 0, x5, ...I 
q x o ,  2, -3, x3, 0, x5, ...I 

B[xo, 2, -2, -1, 2, 2, 0, x7 ...I 
B[xo, 2, -2, -1, x4, -2, 0, x7 ...I 
!D[xo, 2, -2, -1, 2, -3, 0, x7 ...I 

‘D[xO, X I ,  O, x3i . . .I 

~ [ X O ,  2, -2, -1, 2, 0, x6, ...I 
B[Xo, 2, -2, -1, x4, 0, X6, a . . ]  

Figure 2. Definition of new clauses for the 2, function 
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splitAt :: N -b [a] -+ ( [a] ,  [a]) 
splltAt n [Xo, XI, ..., & - I ,  &, ...I 

Analysis 2000, Berlin, 2001. Springer. = ([xo, X l ,  ’“, xn-11, [xn ,  ...I ) 
MIT, 1972. 

Draft Paper, 1977. 

foldl :: (a -+ b + a) + a + [b] -b a 

= (. . . ( (aexo )  @ X I ) .  . .) @x, 

[lo] J. Vuillemin. 
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