
Adaptive Pipeline Depth Control for Processor Power-Management

Aristides Efthymiou Jim D. Garside

Department of Computer Science, The University of Manchester,
Oxford Road, Manchester M13 9PL, UK

{ae,jdg}@cs.man.ac.uk

Abstract

A method of managing the power consumption of an em-
bedded, single-issue processor by controlling its pipeline
depth is proposed. The execution time will be increased
but, if the method is applied to applications with slack time,
the user-perceived performance may not be degraded. Two
techniques are shown using an existing asynchronous pro-
cessor as a starting point. The first method controls the
pipeline occupancy using a token mechanism, the second
enables adjacent pipeline stages to be merged, by making
the latches between them ‘permanently’ transparent. An en-
ergy reduction of up to 16% is measured, using a collection
of five benchmarks.

1. Introduction

Power consumption has become a serious concern to
both circuit designers and system architects, typically in
the embedded systems area, where low power consump-
tion may be more important than speed. Recently there is
considerable interest in techniques that cause an increase
in delay for an improvement in energy dissipation. These
techniques may not be useful if the system under consider-
ation is a busy, high-performance server which always has
computationally demanding tasks to perform, because the
extra delay imposed by those methods cannot be hidden.
However they can be applied successfully in embedded and
other systems that have idle time, either while waiting for
user input or when running applications with soft real-time
deadlines (e.g. some multimedia applications or communi-
cation protocols). In these systems the slack time may be
better exploited for energy efficiency by slowing down the
application rather than running the system at normal (high)
speed and putting it to sleep for the remaining time.

Dynamic voltage scaling (DVS) is typically used for this
purpose, but its slow transition times — usually a few µs
— and extra hardware requirements put limitations on its
use [3]. Thus a number of architecture adaptation tech-

niques have recently been published which have the advan-
tage of faster response times, albeit with lower power sav-
ings. These techniques save more energy compared to sim-
ply reducing the clock frequency, by reducing the effective
switched capacitance of the processor.

The work presented here uses asynchronous design tech-
niques [9] to build hardware that is capable of adapting
to changing energy/performance requirements at run time.
Asynchronous design makes the timing of the processor
units much more flexible, being able to stretch or shorten
“cycle” times at various places in a pipeline.

AMULET3, which is used as the base processor for the
techniques presented, implements the ARM 4T architecture
and delivers around 100 Dhrystone MIPS, for a power con-
sumption of 137mW [5]. Its pipeline latches are controlled
by latch controllers using handshake ‘request-acknowledge’
signals between neighbouring pipeline stages. In brief,
when a latch controller receives an input request, it checks
the status on its output to find if the previous output has been
acknowledged. If it has, the controller loads its latches and
acknowledges the incoming request. Otherwise, it delays
the action until the previous transaction on the output side
is complete.

2. Adaptivity in scalar processors

Although there are numerous reported architecture adap-
tation techniques for superscalar processors [7] [2] [3] [6],
there are none for single issue processors. Admittedly there
is far more field for experimentation in superscalar architec-
tures, but the majority of embedded systems still use single-
issue processors. The primary method of reducing the effec-
tive switched capacitance, even in a single-issue processor,
is to control speculation, i.e. any operation which is per-
formed before it is known to be required.

In this sense the most ‘profound’ type of speculation is
pipelining; letting instructions into the processor pipeline
before knowing for certain that the instruction flow is not
about to branch is clearly speculative. In most instances this
is justified, but discarded instructions that are fetched and

Occupancy control

Token FIFO

Processing pipeline

Figure 1. Pipeline occupancy control

partially processed waste energy. Furthermore to support or
improve pipelining, extra operations like branch prediction
are employed which operate and consume energy in every
cycle. Although a branch predictor would save some energy
by avoiding some wrongly fetched instructions, it is ques-
tionable whether the energy consumed by the predictor is
less than that saved. Based on these observations, this work
considers controlling the pipeline depth adaptively to trade
speed for energy.

3. Pipeline occupancy control

A simple way to control the pipeline occupancy of a pro-
cessor is to use a token FIFO with as many slots as pipeline
stages between prefetch and execute. Prefetch would col-
lect a token before trying to fetch an instruction and execute
would return one for each completed instruction. Figure 1
shows an abstract view of this idea. The number of tokens
available directly controls the maximum occupancy of the
processor pipeline, which can range from zero (stalled) to
fully occupied. In all but the fully occupied case some en-
ergy will be saved because fewer speculative operations will
be wasted but, at the same time, the performance will be de-
graded. Tokens can be inserted or removed from the FIFO,
using control circuits which can be under software or hard-
ware supervision.

Incorporating this technique into AMULET3 is unfor-
tunately not as straightforward as the above discussion im-
plies. Instructions can be removed from the pipeline before
the execute stage, for example when they are in the shadow
of a taken branch. The instructions that have acquired to-
kens must return them to the token pool, otherwise the pro-
cessor will eventually stall, deprived of tokens. A further
complication is that long multiplications are executed in two
cycles, so the execute stage is invoked twice for the same in-
struction. In this case only one token must be returned to the
token pool. ARM’s multiple load/store instructions cause
similar, if more extreme, problems. Because of the above
complications, some small modifications had to be carried
out in the prefetch and execute units to be able to support

token-based pipeline occupancy control. In addition a new
handshake “channel” was inserted between the decode and
execute stages to pass on the token when an instruction is
removed.

4. Dynamic configuration of pipeline stages

Another way to control the pipeline depth is to join
pipeline stages together. This must be done dynamically, so
that the processor can return to its original, fully-pipelined
configuration very quickly. The effect is similar to the to-
ken method outlined above, but more flexible because of the
ability to control specific pipeline stages independently of
the rest of the processor. Because of the asynchronous de-
sign style, the control of each stage is independent of — and
cannot use any information from — the other stages. Thus
joining pipeline stages does not require any global control
changes, as might be expected in result-forwarding paths,
for example.

Any combination of adjacent pipeline stages can be
joined, simply by making the pipeline latches between them
transparent. Thus the latch controllers must be able to be
configured appropriately. The method used here is to add
an extra input (collapse) to the latch controllers,which sets
them in either ‘collapsed’ or in normal operating mode.
The pipeline latches cannot be made transparent at any time
while the system is working, but only when the downstream
stage has finished processing its instruction and is ready for
the next. Thus, collapse is ‘bundled’ with the the rest of
the latched signals, and it takes effect when the request gets
through to the next stage.

In the current implementation, collapse is latched like
the other inputs of the pipeline latches and passed on to the
next stage. Thus each latch controller mimics the one up-
stream and the prefetch unit controls them all. If individual
controlling is required, because the collapse signal must be
timed independently for each pipeline latch controller, a set
of collapse signals can be generated at the prefetch unit and
then passed on from each stage to the next until they reach
their target latch controllers (figure 2).

ack

pi
pe

lin
e

la
tc

h

pi
pe

lin
e

la
tc

h

req

pi
pe

lin
e

la
tc

h

pi
pe

lin
e

la
tc

h

ack

req

ack

req

ack

req

collapse0

ldldld

collapse3

collapse1
collapse2

latch

ctrl

ld

Figure 2. Individually controlled collapsible
latch controllers

Dynamic configuration of pipeline stages has the poten-
tial to save some extra energy compared to the previous
method because it can reduce the transitions on the enable
lines of the pipeline latches. These lines are heavily capac-
itive, as the number of bits latched between pipeline stages
can be very high. About 10% of the processor core’s total
energy consumption is spent switching them[4].

The drawback of this method is that glitches can propa-
gate through more logic gates, now that they are not blocked
by the pipeline latches. Unfortunately the effect of glitches
cannot be quantified before the full processor is available in
layout, so their contribution cannot be evaluated accurately
at this stage.

5. Measurements

The pipeline depth control methods were evaluated by
simulating a mixed behavioural/structural Verilog model of
the processor, using NC-Verilog. A custom VCL-PLI mod-
ule was linked with the simulator to count the toggles of a
large number of nodes. The number of toggles was then
multiplied by the capacitance of each node, including both
parasitic and transistor gate/drain capacitances, which were
extracted from the original processor. As the modifications
made to the base processor for both pipeline control meth-
ods are very minor, their own effect on the energy consump-
tion is ignored in the measurements.

The benchmarks used comprise of Dhrystone, a FIR fil-
ter taken out of an implementation of GSM encoding, a DES
encryption and two SPECInt95 programs: compress and
ijpeg. All are written in C and compiled with speed opti-
misations enabled, using the compiler provided with ARM-
tools 2.51. The data input sizes for all benchmarks were
small, so that the simulations could complete in reasonable
time.

In addition to the usual speed, power, and energy met-
rics, the notion of “extra work” defined by Manne et al.
[7], is used. This shows how many more instructions are
processed in each pipeline stage than those that are finally
executed.

Figure 3 shows the normalised — relative to the fully-
occupied configuration — power, energy and execution
time for each benchmark and for each pipeline occupancy,
with branch prediction disabled. The energy results show
how much extra power is saved compared to simply slow-
ing the execution rate without any architecture adaptation.
Figure 4 shows the extra work per pipeline stage and oc-
cupancy for each benchmark. It is clear that only when
the pipeline occupancy is low there are reasonable energy
savings. DES encryption has a few branches, so negligi-
ble energy is saved. GSM filter was optimised by the com-
piler so that many branches were replaced by conditional
instructions, resulting in a lot of “extra work” at the execute

Power Exec. time Energy
Dhrystone 0.40 2.1 0.84
DES encrypt 0.30 3.1 0.96
GSM filter 0.35 2.7 0.92
compress 0.38 2.3 0.86
ijpeg 0.37 2.4 0.88

Table 1. Fully-collapsed pipeline results

stage. The other benchmarks have a significant amount of
extra work, which was successfully removed by lowering
the pipeline occupancy and this is reflected in the energy
graphs.

Table 1 shows the normalised power, energy and exe-
cution time results for each benchmark with a pipeline oc-
cupancy of 1, using the collapsible latch controllers. The
results show lower energy consumption but increased exe-
cution time, compared to the token based version with the
same occupancy. The extra work metric for this case is the
same as with the token based method, because the pipeline
behaviour is the same for both cases.

5.1. Discussion

To our knowledge, there are no other reported microar-
chitecture adaptation techniques for single issue processors.
The techniques closest to those presented here are I-cache
throttling [8] and I-cache toggling [3]. They are both de-
signed for superscalar processors and target thermal man-
agement; as they achieve this by managing power consump-
tion, they are relevant to this work. In effect they control the
transfer of instructions from the I-cache to the processor,
either by restricting the width (throttling) or the frequency
(toggling). Compared to the methods presented here, they
do not turn off parts of the pipeline (such as the branch pre-
dictor) and they cannot merge all the pipeline stages into
one to save energy on the latch enable signals.

Other related methods applied to superscalar processors
are pipeline gating [7], pipeline balancing [1] and instruc-
tion flow-based throttling [2]. All these methods strive
not to compromise performance because they target high-
performance processors. The work presented here could
be considered as an extension of those methods in low-
performance, embedded processors. It would be interest-
ing to see if the pipeline depth control techniques presented
here can be effectively combined with speculation control in
a superscalar processor, so that the processor can adapt from
very low-power, low-performance to high-performance us-
ing only architectural techniques.

Thus far, the pipeline depth has been kept constant dur-
ing the execution. We believe that some of the performance
lost, can be recovered by applying the methods dynamically,
keeping the pipeline relatively deep only for the tight loops.

1 2 3 4 5
Pipeline occupancy

0.5

0.75

1

1.25

1.5

1.75

N
o
rm

al
is

ed
 (

P
o
w

er
,
E

n
er

g
y
,
ex

ec
.
ti

m
e)

Energy
Power
Exec. time

Dhrystone

1 2 3 4 5
pipeline occupancy

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

N
o

rm
al

is
ed

 (
E

n
er

g
y

,
P

o
w

er
,

E
x

ec
.

ti
m

e)

Energy
Power
Exec. time

DES encrypt

1 2 3 4 5
Pipeline occupancy

0.5

0.75

1

1.25

1.5

1.75

2

2.25

N
o
rm

al
is

ed
 (

P
o
w

er
,
E

n
er

g
y
,
E

x
ec

.
ti

m
e)

Energy
Power
Exec. time

GSM filter

1 2 3 4 5
Pipeline occupancy

0.5

0.75

1

1.25

1.5

1.75

N
o

rm
al

is
ed

 (
P

o
w

er
,

E
n

er
g

y
,

E
x

ec
.

ti
m

e)

Energy
Power
Exec. time

Compress

1 2 3 4 5
Pipeline occupancy

0.5

0.75

1

1.25

1.5

1.75

2

2.25

N
o

rm
al

is
ed

 (
P

o
w

er
,

E
n

er
g

y
,

E
x

ec
.

ti
m

e)

Energy
Power
Exec. time

ijpeg

Figure 3. Results (power, energy, exec. time) of token based pipeline occupancy control

1 2 3 4 5
Pipeline occupancy

0

10

20

30

40

50

Ex
tra

 w
or

k
(%

 o
f e

xe
cu

ted
)

Fetch
Thumb
Decode
Exec

Dhrystone

1 2 3 4 5
Pipeline occupancy

0

0.5

1

1.5

2

Ex
tra

 w
or

k
(%

 o
f e

xe
cu

ted
)

Fetch
Thumb
Decode
Exec

DES encrypt

1 2 3 4 5
Pipeline occupancy

0

5

10

15

20

25

30

35

40

45

50

Ex
tra

 w
or

k
(%

 o
f e

xe
cu

ted
)

Fetch
Thumb
Decode
Exec

GSM filter

1 2 3 4 5
Pipeline occupancy

0

5

10

15

20

25

30

35

40

Ex
tra

 w
or

k
(%

 o
f e

xe
cu

ted
)

Fetch
Thumb
Decode
Exec

Compress

1 2 3 4 5
Pipeline occupancy

0

5

10

15

20

25

30

Ex
tra

 w
or

k
(%

 o
f e

xe
cu

ted
)

Fetch
Thumb
Decode
Exec

ijpeg

Figure 4. Results (extra work) of token based pipeline occupancy control

6. Conclusions

A novel method of managing the power consumption of
a single-issue processor, by controlling its pipeline depth,
is proposed. Decreasing the pipeline depth slows down the
processor but also saves energy because fewer ‘speculative’
instructions are fetched and decoded. In addition, hardware
that supports pipelining, such as branch prediction, can be
turned off as it is not necessary in shallow pipelines. The
power saved with this method is more than would be saved
by merely slowing down the processor to achieve an equiv-
alent performance, because of the lower switched capaci-
tance per cycle.

Two techniques were presented to control the pipeline
depth, using an asynchronous design style because of its
inherent flexibility. One technique uses token passing as
a method to control the pipeline occupancy, and thus indi-
rectly, the pipeline depth. The other enables the selective
and dynamic merging of adjacent pipeline stages by mak-
ing the pipeline latches between them ‘permanently’ trans-
parent. Simulating processor models employing these tech-
niques shows an energy reduction of up to 16% compared
to the base system, using a collection of five benchmarks.

Acknowledgements

Thanks to the reviewers for helping to improve the paper
with their useful comments. A. Efthymiou is supported by

the Department of Computer Science, University of Manch-
ester. This support is gratefully appreciated.

References

[1] R. Bahar, S. Manne. Power and energy reduction via
pipeline balancing. In Proc. ISCA’01, pages 218–229. June
2001.

[2] A. Baniasadi, A. Moshovos. Instruction flow-based front-
end throttling for power-aware high-performance proces-
sors. In Proc. ISLPED’01, pages 16–21. Aug. 2001.

[3] D. Brooks, M. Martonosi. Dynamic thermal management
for high-performance microprocessors. In Proc. HPCA-7,
pages 171–182. Jan. 2001.

[4] A. Efthymiou, J. Garside. A comparative power analysis
of an asynchronous processor. In Proc. PATMOS’01, Sept.
2001.

[5] J. Garside, S. Furber, S. Chung. AMULET3 revealed. In
Proc. ASYNC’99, pages 51–59, Apr. 1999.

[6] A. Iyer, D. Marculescu. Power aware microarchitecture re-
source scaling. In Proc. DATE’01, pages 190–196, Mar.
2001.

[7] S. Manne, A. Klauser, D. Grunwald. Pipeline gating: Specu-
lation control for energy reduction. In Proc. ISCA’98, pages
132–141. June 1998.

[8] H. Sanchez, B. Kuttanna, T. Olson, M. Alexander,
G. Gerosa, R. Philip, J. Alvarez. Thermal management sys-
tem for high performance PowerPC microprocessors. In
Proc. IEEE COMPCON’97, pages 325–330. Feb. 1997.

[9] J. Sparsø, S. Furber, editors. Principles of Asynchronous
Circuit Design: A Systems Perspective. Kluwer Academic
Publishers, 2001.

