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Abstract

Recently, there has been a resurgence of interest in
asynchronous hardware due to the potential of asyn-
chronous logic for higher performance, power effi-
ciency and immunity from clock-related timing prob-
lems. This activity has revealed the current lack of
suitable languages and notations for the description of
asynchronous hardware systems and has fueled an in-
tense research effort in this area. Communicating Se-
quential Processes (CSP) in particular, has attracted
the interest of many researchers as a potential means
for the modelling of asynchronous designs. Contribut-
ing to this effort, this paper examines whether Occam,
a CSP-based language may provide a solution to this
endeavour.

1 Introduction

Synchronous VLSI design is approaching a critical
point, with clock distribution becoming an increas-
ingly costly and complicated issue and power con-
sumption rapidly emerging as a major concern. Asyn-
chronous digital design styles promise to liberate VLSI
systems from clock skew problems, offer the potential
for low power and high performance and encourage a
modular design philosophy which makes incremental
technological migration a much easier task. The desire
to exploit the potential advantages offered by asyn-
chronous logic has recently fueled a revival of inter-
est in asynchronous systems [3] [2]. An asynchronous
system may be designed as a set of functional mod-
ules each operating at its own rate and cooperating
through communication. The synchronization of the
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Figure 1: The Bundled Data Interface Protocol

functional modules is performed by means of the com-
munication protocol which allows data to be shared
between them.

2 Micropipelines

In his influential 1989 Turing Award lecture,
Ivan Sutherland presented “Micropipelines”, an asyn-
chronous design framework whereby a system is de-
signed as a set of elastic pipelines, whose stages oper-
ate asynchronously and exchange data via a two-phase
bundled data synchronization protocol (figure 1) [15].

Sutherland also proposed a set of event con-
trol blocks for the design of control circuits in mi-
cropipelined systems as well as event controlled stor-
age elements to be used in such systems.

The event control blocks include the Muller-C, Se-
lect, Call, Toggle, Xor and the Arbiter (figure 2).

An event controlled storage element is the Capture-
Pass latch, depicted in figure 3.

The latch is controlled by two control signals,
namely Capture (C) and Pass (P). Initially the latch
is in its transparent state, where the input is con-
nected through to the output (i.e. Din = Dout).
When an event is issued on the Capture wire (C)
the input-output connection is interrupted, the data
is “latched”, and an event is issued on the Cd sig-
nal (Capture done) to indicate the change of state
in the latch (i.e from transparent to opaque); the
latched data does not change with subsequent data in-
put changes. When an event arrives on the Pass wire,



Muller-C elements XOR provides the OR
C provide the AND function for events.
functions of events.

Il
u.l. TOGGLE steers Q| SELECT steersevents
u - ~ = - -
3 events to its outputs 9 accordlng toits
8 aternately. - boolean input.
= a4 8
s
CALL alowstwo
independent clients
R1 Rland R2tosharea R1
- R
i R procedure R. When & R ARBITER
b 2 the procedure is bt = performs the
D2 S D ore D2 2 D mutual exclusion.
<
Rz amatching done RZ™™|
event isreturned on
either D1 or D2.

Figure 2: Event processing blocks

Figure 3: The Capture-Pass Storage Element

the input is connected back through to the output,
thus making the latch transparent again; this change
is indicated by an event on the Pd (Pass done) signal.
The Capture-Pass may repeat, with events arriving
alternately on the C' and P wires respectively.

The simplest micropipeline is a series of Capture-
Pass registers connected together to form a FIFO
structure as depicted in figure 4. A micropipeline
may perform processing on the data, by interposing
the necessary logic between adjacent register stages
(figure 5).

3 AMULET1

Following Sutherland’s approach, the AMULET
group at the University of Manchester have designed
and implemented AMULET1, an asynchronous ver-
sion of the ARM RISC processor [7] [8]. Figure 6
illustrates the physical layout of the 1.2 micron im-
plementation of the processor. AMULET1 comprises
five major units, namely the address interface, the
data interface, the execution unit, the register bank
and the primary decode. The execution unit consists
of two major stages, namely Decode2 (Dec2-Ctrl2)
which controls the operation of the shifter and multi-
plier units of the processor, and Decode3 (Dec3-Ctrl3)
which controls the ALU.

Figure 5: Micropipeline With Processing

4 Modelling Asynchronous Systems

Modelling, being at the heart of digital system
design, may perform a catalytic role in the quest
for the realization of the potentials offered by asyn-
chronous logic. Hence, the recurrence of interest in
asynchronous design has been accompanied by an in-
tense research activity aiming at investigating and de-
veloping languages and notations appropriate to de-
scribe and model asynchronous systems. I-Nets, Petri-
Nets, Signal Transition Graphs and State Transition
Diagrams are some of the notations employed for this
purpose.

Communicating Sequential Processes (CSP) [9] in
particular, has attracted the interest of many re-
searchers (e.g [12] [11] [21] [4]) as a potential means
for the modelling of asynchronous designs due to the
strong relationship between its semantics and the be-
haviour and structure of asynchronous systems:

e CSP supports a concurrent, process-based, asyn-
chronous, non-deterministic model of computa-
tion which exactly matches the behaviour of asyn-
chronous hardware.

e In CSP, the communication between different
modules is point-to-point, synchronous and un-
buffered. This behaviour directly reflects the
interaction between subsystems in asynchronous
hardware, where a sender and a receiver ren-



2 T
AMULET1
000 15

osonse

vy

Figure 6: The AMULET1 Processor Physical Layout

dezvous before they physically exchange data via
wires, which are memoryless media.

Contributing to the quest for modelling techniques
and description languages suitable for asynchronous
design, and motivated by the increasing advocacy of
the potential use of CSP for this purpose, the research
presented in this paper has investigated the suitability
of occam [10], a CSP-based programming language,
for the modelling and simulation of complex asyn-
chronous designs.

5 Why Occam

There are several factors that advocate the candi-
dacy of occam for the construction of models of asyn-
chronous systems:

e Occam forms a practical realization of CSP, and,
consequently, it maintains the strong relationship
with regard to communication and computation
between CSP and asynchronous systems.

e Occam allows explicit description of parallel as
well as sequential computation. This explicit con-
trol of concurrency which extends down to the
command level, along with its simple but power-
ful syntax and “send” and “receive” commands,
makes occam ideal for describing digital systems;
indeed, occam has been employed for modelling
digital systems at various levels (e.g [22]).

e QOccam is primarily a general purpose program-
ming language which may be executed on a com-
puter (transputer). Thus, a specification devel-
oped using occam is automatically an executable
simulation model of the asynchronous system.

e Occam is a parallel programming language and
thus may be used to perform distributed simu-
lation (and it has indeed been employed for this
purpose, e.g. [1]). A simulation model written in
occam may be distributed on a transputer net-
work and execute concurrently to achieve high
performance. Asynchronous hardware systems
are an excellent candidate for distributed simu-
lation. The concurrent operation of the different
subsystems of the asynchronous system, the in-
herent parallelism within each subsystem and the
lack of any global synchronization, are character-
istics which support the concurrent execution of
events in a simulation model. In his flashback
simulation approach [16], Sutherland attempts to
exploit these characteristics of asynchronous sys-
tems and allow the “out-of-order” processing of
events to increase simulation speed, however his
simulation retains its sequential nature and is in-
tended for execution on conventional von Neu-
mann computers.

6 The Modelling Philosophy

The main objective of the modelling philosophy
proposed in this paper is to exploit:

1. The strong relationship between CSP (and oc-
cam) and asynchronous hardware, in order to
achieve easy and rapid construction of models,
and

2. The inherent parallelism of the hardware, in order
to achieve high simulation performance.

The latter may be exploited at any level of abstrac-
tion that the system is modelled. The former, how-
ever, may be exploited only at the Register Transfer,
or higher, level of a Micropipelined system.

Assuming a correct implementation of the commu-
nication protocol, at the Register Transfer Level, a
Micropipelined system may be viewed as a network of
concurrent modules communicating via synchronous,
unbuffered communication. The modules are data-
driven; each module will start computation as soon
as data is available on its input wires, and will signal
when the result has been computed. At this level, the
system may be modelled as a network of concurrent,
communicating occam processes, topologically identi-
cal to the asynchronous system, with each occam pro-
cess corresponding to a different functional module of
the system. This approach is similar to the “Logical
Process Paradigm”, typically employed in distributed
simulation modelling [6].
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Figure 7: Micropipeline Without Processing: The
Register Model

Since the correct operation of the asynchronous sys-
tem does not depend on a global clock, simulated time
is not required for the synchronization of the occam
processes of the model. Processes are entirely data-
driven and self-scheduling, and are synchronised by
the protocol employed in the communication seman-
tics of occam, in the same way that the communi-
cation protocol employed in the asynchronous system
synchronizes the different functional modules. Each
process will always consume event messages as soon
as they become available, and it will always wait for
subsequent messages if the messages it has generated
have been successfully forwarded.

This methodology provides a natural way for mod-
elling an asynchronous system based on the similari-
ties between the system’s behaviour and the seman-
tics of occam. This basis, however, is not available for
modelling at lower levels of abstraction. In this case,
no assumptions should be made regarding the correct-
ness of the communication protocol in the system; in-
stead, explicit modelling of the protocol to verify that
it adheres to the bundled data delay constraint is re-
quired. Occam may still be used for the description
of low level circuit elements (event control elements
and gates), however simulated time is essential for the
synchronization and the correct operation of the sim-
ulation model.

6.1 Modelling a Pipeline Without Pro-
cessing

Following the proposed modelling philosophy, a reg-
ister in a Micropipeline without processing may be
modelled as depicted in figure 7.

The request and acknowledge signals in the circuit
are used to synchronize the register with its neigh-
bouring registers in the pipeline. In the model, the
synchronization between occam processes is performed
by the communication protocol specified by the occam
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Figure 8: Micropipeline With Processing: A High
Level View
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Figure 9: Micropipeline With Processing: The Regis-
ter Model

channel. Thus, no extra channels are required for the
request and acknowledge signals. The register model
makes use of two channels, for input and output re-
spectively. The register process repeatedly reads data
from its input channel and forwards it to the next
process in the pipeline before it reads the next input
value, thus manifesting a behaviour similar to that of a
Micropipeline stage. A multi-stage Micropipeline may
be modelled by means of a parallel replication (occam
PAR construct) of the register process.
6.2 Modelling a Pipeline With Processing

At the Register Transfer Level, a general Mi-
cropipeline with processing may be viewed as depicted
in figure 8. The sending register outputs its contents,
consisting of data and control bits, onto the data bus
and produces a request event (request wires are indi-
cated in the figure by solid lines, while acknowledge
wires are denoted by dotted lines. The control bits,
are used by the control logic to direct the request event
to its correct destination, activating if necessary the
data path elements (DPEs, e.g. ALUs, multipliers,
shifters etc.) of the circuit. Data passes through the
DPEs and propagates to the next stage.

This general Micropipeline may be modelled by



three occam processes, two for the registers and one
for the control/data processing logic; the control logic
and the DPE may be modeled as one process, with the
DPE being a procedure called by the control process.

However, the simple register model described in the
previous section, is not suitable for modelling the be-
haviour of a stage in a Micropipeline with processing.
Indeed, using this simple register model would force
the control process to act as a buffer, decoupling the
register processes; the sending process would be free
to read the next value from its input channel, without
first ensuring that the previous value has been received
by the destination register process. Thus, the control
logic process would introduce an extra pipeline stage
in the model, a stage that does not exist in the physical
system. To avoid this situation, the register processes
must be kept tightly coupled and synchronized. This
may be achieved by using two channels for a commu-
nication transaction between two register processes,
one for the request/data and one for the acknowledge
event.

Figure 9 illustrates the generic register occam
model. The model makes use of two PAR statements,
one to model the Muller-C element and one to model
the fork on the Ain/Rout wire.

6.3 Modelling Control Logic

The control logic is inherently concurrent; different
parts of the circuit operate concurrently while, within
each part, events take place in a deterministic sequen-
tial order, i.e. the control logic implements a partial
ordering of events. The simulation model should have
the same degree of concurrency as the physical circuit.
The control logic may be implemented as a network
of communicating processes, with the occam PAR and
SEQ commands being used within each process to im-
plement the partial ordering of events of the circuit.
The number of these processes depends on the degree
of modularity and fidelity required in the simulation
model.

Adopting a data driven approach to model asyn-
chronous systems, it is essential to have a mecha-
nism for modelling the functionality and the non-
deterministic behaviour of arbiters. The occam ALT
construct provides for the non-deterministic choice of
messages from different channels and therefore may
effectively model the behaviour of an arbiter.

7 Modelling AMULET1

In order to investigate the suitability and ap-
plicability of the approach described in the previ-
ous chapter for modelling large and complex asyn-
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Figure 10: Occarm Top Level Process Graph

chronous hardware systems, occarm', an occam sim-

ulation model of the AMULET1 processor has been
developed.

Occarm consists of more than fifteen thousand lines
of occam code and describes AMULET1 at the Reg-
ister Transfer Level. Tt executes ARM6 machine code
produced by a standard ARM compiler. Instructions
enter the simulator as 32-bit integer numbers in hex-
adecimal format. Instruction decoding is performed
by means of PLA models which are implemented as
two dimensional arrays of boolean values; the model
makes use of a library of occam functions which has
been developed to allow instructions to be treated
both as integer values and as one dimensional boolean
arrays.

Occarm has been implemented as a hierarchy of oc-
cam processes, with each process modelling a different
functional module of AMULET1. Its top level process
structure graph is depicted in figure 10.

AddInt and DatInt processes model AMULET1’s
address and data interface units respectively. The dat-
apath is modelled by four processes, namely Decodel,
Decode2, Decode3 and RegBank. Decodel describes
the primary decode unit while Decode2 and Decode3
model the two major components of the execution unit
of the processor. RegBank process incorporates the
functionality of the register bank. WrtCtrl models the
operation of AMULET1’s write bus control logic.

IThe name of the model is derived from the combination of
the words occam and ARM.
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All the registers of AMULET1, have been mod-
elled using the generic register model described in sec-
tion 6.2, with interprocess communication being per-
formed using pairs of request/data and acknowledge-
ment channels.

Indicatively, figure 11 depicts the internal structure
of Decode3, while figures 12 and 13 illustrate the de-
scription of one of the control modules of Decode3
in occam (register models are depicted as rectangles
while processes which model control logic are shown
as squares with rounded edges). For a detailed de-
scription of the structure and operation of occarm,
the reader is referred to [20].

7.1 Non-Bundled Signals

AMULET1 makes use of a number of control signals
which are not part of a bundled communication and do
not obey the protocol specified by the Micropipelines
framework. These signals are transmitted via simple
wires. The modelling of these signals by simple oc-
cam channels may lead to deadlocks in the simulation
model. This is due to:

1. The communication semantics of occam, and

2. The direction of the signals.

In AMULET1 the simple wires are used to send
information to previous stages of the pipeline, thus
forming closed paths (loops). The synchronous com-
munication supported by occam, forces the processes
in the loop to block waiting for each other, a situation
that is susceptible to deadlock.

To overcome this problem, in occarm, these signal
wires have been modelled as buffer processes which
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Figure 12: Ctrl2 Control Circuit

hold the value of the signal at any particular moment.
The buffer decouples the processes involved in the wire
communication, thus eliminating the deadlock suscep-
tible behaviour. The size of the buffer for each signal
is one; this is adequate since the value on the corre-
sponding wire will change only once for each interac-
tion of the processes. The buffer process is shown in
figure 14.

8 Simulation Issues

The order in which the occam channels fire in the
model does not adhere strictly to the order in which
the corresponding events occur in the asynchronous
system. This may cause causality errors in the case of
arbiters where non-deterministic processing of events
is allowed. These errors do not affect the correct func-
tionality of the model but introduce an error in the
simulated time and consequently in any evaluation of
the system based on the concept of simulated time.
Experiments undertaken with occarm have indicated
that the inaccuracy introduced is not significant and
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thus may be ignored [18] [20]. A synchronization pro-
tocol has also been developed for the elimination of
causality problems in this context [17] [19] [20].

A multi-transputer configuration of occarm has

yielded a speedup of 2.3 on a seven transputer net-
work [20].

9 Assessment of Occam

The static, process-based model of computation of
occam provides a natural and convenient means for
the description of the behaviour and structure of asyn-
chronous computer systems. Its support for explicit
control of concurrency even at the command level,
and its simple “send” and “receive” commands makes
occam particularly suitable for describing digital sys-
tems.

Occam can describe asynchronous control circuits
at a level which is very close to their implementation;
consequently it may provide guidance for the realiza-

PRCC buf fer()

SEQ
VWH LE TRUE
SEQ
in ? data
out! data

Figure 14: The Buffer Process

tion of the design (e.g. an IF statement will corre-
spond to a Select block, a PAR of input commands
will be implemented using a Muller-C block etc). This
characteristic may also be exploited for the automatic
derivation of circuits from occam specifications as sug-
gested in the next section.

Furthermore, the parallel, distributed nature of oc-
cam forces the designer to think in “asynchronous
terms” and to perceive its design as a distributed,
asynchronous structure where a global state does not
exist. The work with occarm has suggested that this
may be the most important advantage of using occam
for asynchronous architectural modelling. Indeed, the
construction of occarm exposed behaviour patterns of
AMULET1, thitherto unknown, whose operation was
time-dependent rather than asynchronous.

Occam is a parallel language which may be exe-
cuted on multiprocessor systems and thus has the po-
tential for high performance.

On the negative side, occam lacks several data
structures (and protocols for that matter) that would
be extremely useful in a hardware description and sim-
ulation endeavour (e.g. records). Furthermore, for the
manipulation of hardware circuit models, efficient and
easy means for treating numbers as booleans (and the
reverse) are extremely important, an area where oc-
cam is weak.

Another disadvantage of occam, as suggested by
the programming effort of the research presented in
this paper, is its rigid and verbose layout format and
the semantic significance of indentation which makes
both, the development and debugging of programs
time consuming and frustrating tasks.

Occam2.1 and the new development system in sup-
port of the T9000 transputer alleviate some of the
aforementioned deficiencies (e.g. records).

10 Conclusions

The concurrent, asynchronous, process-based
model of computation of CSP, with the support for
non-deterministic behaviour, and the point-to-point,
synchronous and unbuffered inter-process communi-



cation are particularly suitable for describing the con-
current, non-deterministic behaviour of asynchronous
hardware systems and provide a natural and conve-
nient means for the description of asynchronous hard-
ware and the rapid construction of asynchronous hard-
ware models. However, if the benefits of using CSP for
describing asynchronous systems are to be exploited
and taken advantage of, it is essential to use a stan-
dard description language, that would be easily and
widely available.

Occam may well serve this purpose: it is based on
CSP, it is an executable programming language with
well defined syntax and semantics, it is widely used
and commercially supported, and is expected to be
supported by a wide range of hardware platforms [13].
This paper has attempted to contribute to the real-
ization of this potential by introducing a framework
for modelling asynchronous hardware systems using
occam as a hardware description language.

The simulation of digital systems in general, and
computer architectures in particular, has long been
categorized among the highly computation intensive
applications. The same is true for the simulation of
asynchronous digital systems. For the testing and
evaluation of the AMULET1 design, for instance,
more than 4 million instruction cycles were simulated
[14], a number which corresponds to many hours of
simulation. Hence, a parallel approach to simulation,
such as the one described in this paper, could con-
tribute significantly in reducing the duration and cost
of the design cycle.
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