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Abstract— The introduction of axonal delays in networks of
spiking neurons has enhanced the representational capabilities
of neural networks, whilst also providing more biological
realism. Approaches in neural coding such as rank order
coding and polychronization have exploited the precise timing
of action potential observed in real neurons. In a rank order
code information is coded in the order of �ring of a pool of
neurons; on the other hand with polychronization it is the
time of arrival of different spikes at the postsynaptic neuron
which triggers different post-synaptic responses, with the axonal
delays compensating for different timings in the afferents. In
this paper we propose a model in which rank order coding is
used to represent an arbitrary symbol, and a polychronous layer
is used to decode, represent and recall that symbol. To prove
that the polychronous layer is able to do this a detector neuron is
trained with a supervised learning strategy and associated with
a single code. According to this premise the detector neuron
only �res on the appearance of the associated code, even in
the presence of noise. Tests prove that rank order coding and
polychronization can be coupled to code and decode information
such as intensity or signi�cance using timing information in
spiking neural networks in an effective way.

INTRODUCTION

T HE third generation of neural networks has introduced a
novel set of modelling functions and parameters which

both model biological neurons more precisely [12] and in-
crease the computational power of networks of neurons [17].
Millisecond precise �re timing has been observed in groups
of neurons recordedin vivo [21]. Precise time coded pulses
and the introduction of axonal delays have been proved to
enhance the representational power of networks of spiking
neurons [19]. Consequently models taking advantage of the
timing distribution of spikes have been produced. Some of
them, such as rank order coding [31], exploit the possibility
to code information in the timings of the spikes in order to
take account of the fast recognition responses of the visual
system [30]. At the receiving end polychronization [13] has
introduced as a framework to explore how convergent delays
and plasticity can generate time-locked group patterns, and
has proven to have a great representational power [15].
Polychronization is based on the concept that postsynaptic
neurons are sensitive to precise timings of their afferentsdue
to axonal delays, which can compensate for latencies in the
input neurons and enhance postsynaptic response.

In the view presented in this work the two models are
integrated in a complementary system, rank order coding
being used by an input population to code information and
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Fig. 1. Time coding, circles represent neurons �ring, numbersinside
represent order of �ring: (a) rank order code, neuron �ring times are ordered
by signi�cance with no repetition [A, D, C, B] (b) rank order code where
the �ring time is proportional to the intensity of the stimulation (in this case
couples A-D and B-C code for two different values of intensity) (c) N-of-M
(3-of-4) rank order code, 3 neurons out of the 4 �re in the order C-B-D

polychronization being used by a higher dimensional popula-
tion of postsynaptic polychronous neurons. This population
is able to represent the codes presented in the presynaptic
input layer, and a neuron can be trained to discriminate an
arbitrary selected code.

The rest of the paper is structured as follows: rank order
coding and polychronization are presented in sections I and
II. A way to couple them in order to code/represent/decode
information is presented in section III, while the model
architecture is presented in section IV. A description of the
experiments conducted and details about the implementation
are given in sections V and VI respectively. Considerations
of the model and how to further investigate it are presented
in the Discussion section. Finally our conclusions are made
in the last section.

I. RANK ORDER CODING

Rank order coding has been introduced to take account
of the processing speed of the feed-forward recognition
networks involved in visual perception [31]. The input is
coded in the order of �ring of the input population. Rank
order coding has proven to be a biologically plausible ex-
planation in several tasks involving image recognition [7]
and reconstruction [25] by coding information in the spike
order [35]. First spikes have also been considered to carry
more information, con�rming the possibility of fast recogni-



tion and restoration with few spikes [24]. Rank order coding
shares properties with unorderedN-of-M codes and have
been coded in a sparse distributed memory [9].

Examples of how to code information in the timings of
spikes are given in �gure 1. A rank order code can be
expressed as a sequence (with no repetition) of the input
neurons (casea, neurons �ring in the order A-D-C-B). If
two neurons can have the same position the rank order code
can be thought as coding the intensity of the stimulation:
neurons that receive a more intense stimulation �re �rst [35]
(caseb, neurons A and D receiving more stimulation than
neurons B and C). If only a subset of the input population is
considered information can be code in anN-of-M rank order
code [9] (casec, 3-of-4 code with neurons �ring in the order
C-B-D).

Shunt inhibition [3] is often used to the decode a rank
order code: by decreasing the effectiveness of a synapse
with the number of spikes received, discrimination can be
achieved [8]. In this paper we use polychronization as an
alternative neural structure which is able to represent and
decode the order of spikes from a source population.

II. POLYCHRONIZATION

Polychronization has been introduced to explain the mem-
ory capacity of spiking neural networks with delays and
plasticity [13]. Information is stored as polychronous groups,
time-locked �ring patterns involving a group of neurons [15].
While rank order coding can be used to exploit the temporal
properties in the source (presynaptic) neurons, polychroniza-
tion can be used to organize and tune postsynaptic neurons
to compensate for time differences in the inputs using axonal
delays. Converging spikes will increase the neuron response.
Polychronous neurons will then be sensitive to certain time-
locked input patterns, but not to others.

The idea of polychronization is illustrated in its simplest
form in �gure 2. The neurons are interconnected with dif-
ferent delays so that only precise �ring time patterns of the
input neurons will have their inputs converge onto the output
neurons at the same moment. For instance in cased if input
neurons �re at 2, 3 and 4 ms respectively their spikes will
converge onto neuron B at the same time and arrive in sparse
order to neuron A.

III. C OUPLING RANK ORDER CODING AND

POLYCHRONIZATION

In the previous two sections we have seen how rank
order coding can be used to encode information in the spike
timings of an input population and how polychronization
can be used by a postsynaptic neuron to decode a temporal
pattern emitted by a source population by compensating for
the latencies with the axonal delays.

Polychronization then seems a natural candidate to decode
rank order coded inputs. If we look again at �gure 2 we can
think of the �ring patterns in neurons 1, 2 and 3 as two
distinct rank order codes, and the two output neurons A and
B as responders to a particular rank order code.

Fig. 2. (a) Example network: neuron A receives input from (blue) neurons
1, 2 and 3 with delays 1, 2 and 4 msec; neuron B receives inputs with
delays 3, 2 and 1 msec respectively (b) if input neurons �re together their
contribution arrives in sparse order to the postsynaptic neurons (green)
eliciting a weak response (c) if neurons �re in a precise time pattern (at
msec 4, 3 and 1 respectively) their spikes converge to neuron Adue to
compensation through the axonal delay while having no effecton neuron B
(d) if input neurons �re at 2, 3 and 4 msec their spikes will converge onto
neuron B and arrive in sparse order to neuron A

Such a network can be devised to decode rank-order
codes with a priori assignment of �ring semantics to each
polychronous neuron by tuning the delays manually. Instead
in this work a polychronous layer is connected to the input
source with random delays so as to act as a spiking neural
implementation of a sparse distributed memory [9] which
is able to store and recall rank order codes. In this sense
the system can be considered like a spiking implementation
of liquid state machine where the polychronous layer rep-
resents the liquid and the trained output neuron the readout
function [20].

IV. PROPOSEDMODEL ARCHITECTURE

In order to test the hypothesis that rank order coding
and polychronization can be coupled to effectively represent
information in a neural network a 3-layer model is proposed.
All neurons are modelled as Leaky Integrate-and-Fire (LIF).

The �rst layer is a population composed of 10 neurons.
The coding strategies will determine the �rings in the input
layer. We have tested the system with a7-of-10 rank order
code (like the one shown in 1c with N=7 and M=10) and
then with rank order code coding for intensity. In this case
all the input neurons in the population layer �red according
to the intensity of the stimulation (example b in �gure 1).

We then divide the process in two phases: in the �rst one
(tuning) Spike-Timing Dependent Plasticity (STDP) [27] [2]
is used to tune the weights between the input and the
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Fig. 3. Model architecture: in the tuning phase 200 random codes are presented at the input layer while STDP is turned on. Neurons in the polychronous
layer respond to different time-locked properties of the input (parts of the input code with convergent delays will make a polychronous neuron �re). In
the association phase the combination of the active polychronous neurons corresponding to the selected code are learnedby the output neuron through a
supervised learning process

polychronous layer, while in the second one (association)
an output neuron is associated with an arbitrary input code
through a supervised learning strategy.

The �rst layer connects through an STDP projection
to the polychronous layer, which is formed by 1000 LIF
neurons, intrinsically connected by inhibitory connections
in a Winner-Take-All [18] pattern in order to avoid the
possibility that two neurons should learn the same pattern.
The connection is made with 30% probability, and the delays
are uniformly distributed in the range of the length of the
code, letting the postsynaptic neuron potentiate subportions
of the codes with convergent delays. In this way different
neurons in the polychronous layer will detect different parts
of the input code, according to how delays converge on them.

Each code will then be represented by a different set of
neurons in the polychronous layer responding to a precise
time sequence of the inputs. In this sense the polychronous
layer acts as a sparse distributed memory [16]: the input is
represented in a higher dimensional space where the elements
respond to parts of the input code, according to how much
their delays match part of the input pattern. These connec-
tions are trained with STDP in a preliminary tuning phase
where 200 randomly picked symbols are submitted to the
network, in order to make the neurons respond adaptively to
different convergent delays. After this phase STDP is turned
off, and the polychronous layer is capable of representing
and discriminating different input codes.

To prove our hypothesis we implemented a supervised
learning strategy the only purpose of which is to demonstrate
that the polychronous layer is capable to represent a rank
order code. To verify this an output neuron can be associated
with an arbitrary code which can discriminate it against other
codes and noise. This supervised learning phase is used to

Fig. 4. Supervised Learning Algorithm: weights are initially set to 0. The
input code to be associated with the output neuron is presented. If the output
neuron �res learning is completed. Otherwise all the incomingconnections
from the polychronous layer contributing to the input code are potentiated
and the input is presented again. The process is repeated until the output
neuron �res.

map the output neuron to a combination of the activity in
the polychronous layer so as to make the output (detector)
neuron respond only to a particular combination of afferents.
The learning is based on changing the weights according to
an external supervised signal. Therefore it does not exploit
the timing code of the system (it is independent from time)
and it doesn't affect the timing behaviour of the model (all
delays are set to 1 msec). In this way is possible to extract
the information stored in the polychronous sparse distributed
memory layer.
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Fig. 5. STDP tuning phase in the polychronous layer: the combination of neurons activated in the polychronous layer is different for every code. 200
codes are used in the tuning phase, every code lasts 250 msec

V. SIMULATIONS AND RESULTS

A. Tuning the polychronous layer with STDP

Simulations were carried as follows: at the beginning
the network is trained with 200 random symbols coded as
described in the previous section in order to let STDP shape
the connections. An example of this tuning phase is given in
�gure 5 where it can be noted that, although some input codes
share some neurons, the combination of neurons activated in
the polychronous layer is different for every code. As a net
effect STDP potentiated 30% of the connections. After this
phase STDP is turned off, and the only learning that occurs
is in the next supervised learning association phase.

B. Associating a code to a detector neuron with supervised
learning

In this phase a code is selected to be learned and is
presented at the input layer repeatedly, while a supervised
learning algorithm is used to map the desired combination
of input to the output neuron [23]. The weights are changed
upon the receipt of an external control signal to train the
output neuron to respond to the combination of neurons �ring
in the polychronous layer (the weights in the polychronous
layer don't change since STDP is turned off). All the neurons
from the polychronous layer project to the output neuron
with an initial weight set to 0 in order to let the algorithm
potentiate only the ones that contribute to the right code. The
supervised learning algorithm used is structured as follows
(cfr. �g 4):

� the code is presented at the input layer and activates a
subset of neurons in the polychronous layer

� if the output neuron �res learning is complete

Fig. 6. Contribution in terms of population mean �ring rate of noise to
the normal activity of the input population

� else the weights from the active polychronous neurons
and the output detector neuron are increased and the
process is repeated

Such a process ensures that the output neuron will �re
only when the combination of neurons in the polychronous
layer is detected, hence mapping the combination of input to
the output. It also does not alter the timing properties of the
system since all the delays are set to 1 msec. An example of
the supervised learning phase is presented in �gure 7.
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Fig. 7. The output neuron is trained to respond only when the combination of �rings in the polychronous layer appears. Thisis done by increasing the
weights from the active polychronous neurons to the detector neuron until a spike is produced (in this case at sec 10 of thesimulation)
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(a) The output neuron �res when the learned pattern is presented
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(b) A code obtained by the permutation of 2 positions in the learned code is
not able to cause the output neuron to cross the threshold potential (-40 mV)

Fig. 8. Membrane potential of the output neuron during the presentation of two codes

C. Testing N-of-M rank order codes

In this test we trained the output neuron to respond to
a rank order code of 7 out of 10 neurons �ring each with
a different position encoded in the �ring time (see �g 1(c)
and �g 9). As predicted, after the output neuron is trained
it only responds to the combination of �ring neurons in the
polychronous layer associated with the input code, otherwise
it exhibits sub-threshold oscillations but stays silent. An
example of the output neuron membrane potential in the
contrasting case of the presentation of the matching code
and of a code with two positions interchanged is presented
in �gure 8(a) and 8(b) respectively.

Since the process can be repeated with as many output
neurons and input codes as desired, is possible to train an
arbitrary number of output neurons to respond to different

input codes. To test the robustness of the learning we tested
the network with 1000 different inputs, inserting the learned
input code amongst them. Results of the test are reported in
�gure 9. It can be seen that only when the learned code (on
the right) is presented the output neurons �re; all the other
codes are not capable of causing the output neuron to cross
its �ring threshold, set at -40 mV.

D. Testing intensity rank order codes in a noisy regime

We repeated the procedure for a network coding the
intensity of the stimulus at the input layer by using rank order
coding [35] as shown in �g1(b) and �g 6. The learned pattern
can be observed in �gure 10. After the learning phase we
observed that the output neuron was responding only to the
selected code, as in the previous experiments, so we added a



Fig. 9. The membrane potential of the output neuron crosses thethreshold only when the learned code is presented (red box).All the other codes don't
elicit any spike in the output neuron (only the �rst 10 sec of the simulation are shown 60/1000 tested patterns). On the right the representation of the
learned pattern 8-4-6-0-9-2-7 (order of �rings)

Poisson noise source at the input layer with mean �ring rate
of 2Hz (equal to 25% of the input mean �re rate, as shown
in �g 6). Despite of the noise the output neuron is still able
to respond only to the learned code, as shown in �gure 10.
Increasing the noise above 30% of the original signal led to
false detection (results not shown - 2 false detections on 100
symbols tested).

VI. M ATERIALS AND METHODS

A. Common features

All simulations have were carried on the NEURON sim-
ulator [1] [11], using pyNN [5] as a front end so as to be
able to migrate easily the model onto other simulators or to
translate and run it on neuromorphic hardware [4] [10].

All simulations share this set of features: we use the Leaky
Integrate-and-Fire (LIF) neuron equipped with current-
based �rst-order kinetic synapses [6], corresponding to the
IF curr exp standard neuron model in pyNN. The input
population is composed of ten neurons which �re according
to the coding scheme selected. The polychronous layer is
composed of 1000 neurons. Connections between the in-
put layer and the polychronous layer are made with 30%
probability; the polychronous population neurons have also
been interconnected with inhibitory connections (weight =
� 2). The output neuron is also a LIF neuron, sharing all
parameters with the rest of the neurons except for the
reset voltage and the refractory period. The STDP uses
theSpikePairRule model with the following parameters
A+ = A � = 0 :01; � + = � � = 100 msec. Stimuli are
sent every 100 msec, and the STDP time window is set
accordingly. During the STDP tuning phase weights cannot
be potentiated more than 25% of their initial weight. The

change in weight during the association phase is set to
� w = 0 :001and the initial weight is set to 0. The simulation
time step is calculated with millisecond precision.

B. N-of-M rank order codes

All the cells in the model share the following parameters
(written in pyNN format):tau m : 8; v init : � 75; v rest :
� 75; v thresh : � 45; tau syn E : 1; tau syn I : 1; cm :
1:5. Input is organized as follows: 7 out of 10 neurons
are picked in a random order and they �re every 2 msec
accordingly to their position in the rank order code (see �g
9). Delays between the input and the polychronous layer are
set in the range 1-14 msec while the weight is set to 14.

C. Rank order coding intensity in a noisy regime

Neuron parameters are the same as the previous section
except for the membrane threshold which is set at -40 mV.
Input is organized as follows: intensity can be coded in
4 different values, which will be inversely proportional to
the �ring time so that the neurons coding for the highest
intensity will �re �rst. Four different levels of intensityare
encoded with a time step of 2 msec (see �g 10). To cover
the whole pattern delays are uniformly set in the range 1-
8 msec while the initial weights are set to 9. Noise has
been modelled as a Poisson process withrate = 2Hz by a
SpikeSourcePoisson population injecting into the input
population.

VII. D ISCUSSION

The results of the tests show that rank order coding and
polychronization can be used together as an ef�cient code
representation strategy. The supervised learning algorithm
proposed in the model shows that the information is encoded



Fig. 10. The output neuron �res only when the learned code is presented (red box). All the other codes don't elicit any spike in the output neuron, even
in the presence of the noise (red triangles in the input raster plot). The pattern tested is presented in the right part of the �gure as coding intensity of the
stimulation (1/intensity so that neurons that receive more intense input �re �rst, in this case is neuron 2)

only in the polychronous layer. It is different from previous
proposed models [32] [7] because it uses a polychronous
layer as a spiking neural implementation of a sparse dis-
tributed memory [9] to represent the code and a supervised
learning strategy to learn it, rather than using shunt inhibi-
tion [3]. Even in this basic form the learning has con�rmed
that the polychronous layer is capable of representing rank
order codes in a way that can be disambiguated by a detector
neuron.

More realistic methods of association can be implemented,
for instance by using a STDP regulated by a signal such as
dopamine [14]. Such a control signal can be externally gener-
ated in supervised learning algorithm or can be generated by
another portion of the network such as a value system [28]
in an unsupervised adaptive learning paradigm.

The probability connection proved to be a very important
parameter. Lowering the connection number between the
input and the polychronous layer proved to lead to less
discrimination power in the system. Variation in all the time
parameters of the system (time constants, delays) led to
different behaviours. A more formal de�nition of the system
could be researched, in order to optimize the parameters of
the model.

The polychronous layer exploits the capabilities of poly-
chronization to a minimum extent, in the sense that there is
no plastic internal connection that can lead to the formation
of polychronous groups inside the layer itself [15]. Further
tests in this direction are needed to verify the possibility
of associating different code sequences represented by poly-
chronous groups within the polychronous layer.

If the spikes are considered to be produced by the same
source the polychronous layer can code for different patterns
where �ne recognition is given by integrating a source with

different timings such that time codes signi�cance. But the
same input can be considered to be generated by different
source areas each coding a different feature in parallel in
functionally specialized maps [34]. The polychronous layer
could be a converging neural association area such as the
pre-frontal cortex [22]. Integration from different areascan
then be done by coding the origin of the contribution into
the delay to the associative area. The time order code could
be embedded in oscillatory brain rhythms in order to have a
common time reference (e.g.. gamma rhythms, which have
been proposed to underlie the binding of different features
into a single perceptual entity [33] [26]). Such oscillatory
behaviour could be obtained with re-entrant connections [29]
and the rank order code could synchronized with it and be
coded on the crest of each oscillation.

VIII. C ONCLUSIONS

In this paper we have presented a study on how rank
order coding and polychronization can be used to store and
decode information. The system proposed is able to store and
recall codes in a polychronous sparse distributed memory
layer. We have successfully tested the discrimination power
of this model with rank order codes representing signi�cance
or intensity of a stimulus in the spike timings, even in
the presence of noise. The empirical evidence collected
encourage us to research a more formal de�nition of this
model, enrich it and scale it up. Finally the model could be
tested in interactive tasks, embodying the system in a virtual
or real environment to explore its further capabilities.
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