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Abstract— The introduction of axonal delays in networks of
spiking neurons has enhanced the representational capabilities D
of neural networks, whilst also providing more biological \
realism. Approaches in neural coding such as rank order
coding and polychronization have exploited the precise timing \
of action potential observed in real neurons. In a rank order C C
code information is coded in the order of ring of a pool of
neurons; on the other hand with polychronization it is the
time of arrival of different spikes at the postsynaptic neuron
which triggers different post-synaptic responses, with the axoal B
delays compensating for different timings in the afferents. In /
this paper we propose a model in which rank order coding is /
used to represent an arbitrary symbol, and a polychronous layer /
is used to decode, represent and recall that symbol. To prove A ‘ éa A
that the polychronous layer is able to do this a detector neuron is o P 2 3 4 o 1 2 3 0 1 2 3
trained with a supervised learning strategy and associated with time = order time = 1/Intensity time = order
a single code. According to this premise the detector neuron @ (b) ©
only res on the appearance of the associated code, even in _ ] ] ) ] o
the presence of noise. Tests prove that rank order coding and Fig- 1.  Time coding, circles represent neurons ring, numbieside
polychronization can be coupled to code and decode information represent order of ring: (a) rank order code, neuron ririgés are ordered

. . e . L . . . by signi cance with no repetition [A, D, C, B] (b) rank ordende where
Supkh as Inter;SIty or lflg.nl canc?f using timing information in the ring time is proportional to the intensity of the stimditat (in this case
spiking neural networks in an effective way. couples A-D and B-C code for two different values of inteyjs(t) N-of-M
(3-of-4) rank order code, 3 neurons out of the 4 re in the or@eB-D

NeuronID

INTRODUCTION

olychronization being used by a higher dimensional ula
novel set of modelling functions and parameters whic y g y g Pop

on of postsynaptic polychronous neurons. This popubatio
both model biological neurons more precisely [12] and in- postsynapic poly hop

h ional ¢ \s of 17| able to represent the codes presented in the presynaptic
crease the computational power of networks of neurons [ ifiput layer, and a neuron can be trained to discriminate an

Millisecond precise re timing has been observed in grOUpErbitrary selected code
of neurons recorQem vivo [21]. Precise time coded pulses The rest of the paper is structured as follows: rank order
and the introduction of axonal delays have been proved ding and polychronization are presented in sections | and

enhance the representational power of networks of spiki g A way to couple them in order to code/represent/decode

neurons [19]. Consequently models taking advantage of t(IT)E‘\rormation is presented in section Ill, while the model

tlr:nlng d|str:|but|on I?f Sg'kes Q_ave :k;leen prloqtut(;]ed. Sor_ngl_t rchitecture is presented in section IV. A description & th
i em,dsu_cf as r?n or t?]r Ct? Ing [ f],thexp O'Ik € pos(jym ; experiments conducted and details about the implementatio
0 code information in the timings of IN€ SpIkes In order 1o, ¢ given in sections V and VI respectively. Considerations

take account of the fast.rgcognition respon'ses.of the visu&l the model and how to further investigate it are presented
§ystem [30]. At the receiving end polychronization [13] ha?n the Discussion section. Finally our conclusions are made
introduced as a framework to explore how convergent delayﬁ the last section

and plasticity can generate time-locked group patternd, an

has proven to have a great representational power [15]. . RANK ORDER CODING
Polychronization is based on the concept that postsynaptic
neurons are sensitive to precise timings of their afferdnts

to axonal delays, which can compensate for latencies in tnetworks: involved in visual perception [31]. The input is

Input neurons and enhanc_e po_stsynaptlc response. coded in the order of ring of the input population. Rank
In the view presented in this work the two models are

integrated in a complementary system, rank order Codinorder coding has proven to be a biologically plausible ex-

) . . . . anation in several tasks involving image recognition [7]
being used by an input population to code information angnd reconstruction [25] by coding information in the spike

The authors are with the School of Computer Science, The Ihifyeof order _[35]' Fir_St spikes h_ave also be_er_‘ _ConSidered t‘? carry
Manchester, Manchester, UK (emdifrancesco.gallupgi@cs.man.ac.uk) more information, con rming the possibility of fast recdgn

HE third generation of neural networks has introducedg

Rank order coding has been introduced to take account

ﬁ’é the processing speed of the feed-forward recognition



tion and restoration with few spikes [24]. Rank order coding 0
Fmg

shares properties with unorder@ttof-M codes and have A >

been coded in a sparse distributed memory [9]. *"% ‘ 1 L/'/ / ,
Examples of how to code information in the timings of > W

spikes are given in gure 1. A rank order code can be : 2 X

expressed as a sequence (with no repetition) of the inpue 3ms ’

neurons (case&, neurons ring in the order A-D-C-B). If & ‘ 3 K\

two neurons can have the same position the rank order cod o § WS B \ \ \ »

can be thought as coding the intensity of the stimulation:e 0 1 2 3 4  tie

neurons that receive a more intense stimulation re rst][35

(caseb, neurons A and D receiving more stimulation than 4 @ , b R

neurons B and C). If only a subset of the input population i , Y l\/ / /

considered information can be code inMfof-M rank order e >

code [9] (case, 3-of-4 code with neurons ring in the order , /( \

C-B-D). — —
Shunt inhibition [3] is often used to the decode a rant , L/ \ \ \(
order code: by decreasing the effectiveness of a synap B N \ \ » \ >

with the number of spikes received, discrimination can b
achieved [8]. In this paper we use polychronization as a
alternative neural structure which is able to represent ar... (© (@
decode the order of spikes from a source population.

[y

2 3 4 5 time 0 1 2 3 4 5 time

Fig. 2. (a) Example network: neuron A receives input from ébloeurons
1, 2 and 3 with delays 1, 2 and 4 msec; neuron B receives inputs wi
Il. POLYCHRONIZATION delays 3, 2 and 1 msec respectively (b) if input neurons reetbgr their

L. . . contribution arrives in sparse order to the postsynaptieroves (green)
Polychronization has been introduced to explain the mengficiting a weak response (c) if neurons re in a precise tinztern (at

ory capacity of spiking neural networks with delays andnsec 4, 3 and 1 respectively) their spikes converge to neuraiuéito

i ; ; compensation through the axonal delay while having no efiaateuron B
plast|0|ty [13]'. Informatlon_ls sto_red as pOIyChronOUS@S’ (d) if input neurons re at 2, 3 and 4 msec their spikes will cerge onto
t|m?'|0Cked rng pattgrns involving a group of neurons [15 heuron B and arrive in sparse order to neuron A
While rank order coding can be used to exploit the temporal
properties in the source (presynaptic) neurons, polyéhaen
tion can be used to organize and tune postsynaptic heuron .

9 P ynap sSuch a network can be devised to decode rank-order

to compensate for time differences in the inputs using ab(ongodes with a oriori assianment of ring semantics to each
delays. Converging spikes will increase the neuron respons P 9 9

Polychronous neurons will then be sensitive to certain {imé)oly(_:hronous heuron by tuning the_ delays manually. In_stead
. in this work a polychronous layer is connected to the input
locked input patterns, but not to others.

The idea of polychronization is illustrated in its simplestSource with random delays so as to act as a spiking neural

form in gure 2. The neurons are interconnected with dif_!mplementatlon of a sparse distributed memory [9] which

. . : is able to store and recall rank order codes. In this sense
ferent delays so that only precise ring time patterns of th

input neurons will have their inputs converge onto the OUtpL?he system can be considered like a spiking implementation

neurons at the same moment. For instance in da@nput of liquid state machine where the polychronous layer rep-

neurons re at 2, 3 and 4 ms respectively their spikes W”Fesents the liquid and the trained output neuron the readout

. o unction [20].
converge onto neuron B at the same time and arrive in sparse

order to neuron A. IV. PROPOSEDMODEL ARCHITECTURE

In order to test the hypothesis that rank order coding
and polychronization can be coupled to effectively repnese
information in a neural network a 3-layer model is proposed.

In the previous two sections we have seen how rankll neurons are modelled as Leaky Integrate-and-Fire (LIF)
order coding can be used to encode information in the spike The rst layer is a population composed of 10 neurons.
timings of an input population and how polychronizationThe coding strategies will determine the rings in the input
can be used by a postsynaptic neuron to decode a tempdealer. We have tested the system witlY-®f-10 rank order
pattern emitted by a source population by compensating fapde (like the one shown inciwith N=7 and M=10) and
the latencies with the axonal delays. then with rank order code coding for intensity. In this case

Polychronization then seems a natural candidate to decodalk the input neurons in the population layer red according
rank order coded inputs. If we look again at gure 2 we cano the intensity of the stimulation (example b in gure 1).
think of the ring patterns in neurons 1, 2 and 3 as two We then divide the process in two phases: in the rst one
distinct rank order codes, and the two output neurons A ar{tuining Spike-Timing Dependent Plasticity (STDP) [27] [2]
B as responders to a particular rank order code. is used to tune the weights between the input and the

[1l. COUPLING RANK ORDER CODING AND
POLYCHRONIZATION
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Fig. 3. Model architecture: in the tuning phase 200 randodesare presented at the input layer while STDP is turned eardws in the polychronous
layer respond to different time-locked properties of theuinparts of the input code with convergent delays will makeolyghronous neuron re). In
the association phase the combination of the active polycu® neurons corresponding to the selected code are lebyntéed output neuron through a
supervised learning process

polychronous layer, while in the second oresgociation Submit Input Code |€
an output neuron is associated with an arbitrary input cod
through a supervised learning strategy.

The rst layer connects through an STDP projection
to the polychronous layer, which is formed by 1000 LIF
neurons, intrinsically connected by inhibitory conneeto
in a Winner-Take-All [18] pattern in order to avoid the
possibility that two neurons should learn the same pattern.
The connection is made with 30% probability, and the delays
are uniformly distributed in the range of the length of the
code, letting the postsynaptic neuron potentiate sulbpusti | Learning Completed
of the codes with convergent delays. In this way different
neurons in the polychronous layer will detect differenttpar Fig. 4. Supervised Learning Algorithm: weights are inigiadiet to 0. The

of the input code according to how delays converge on theriﬁput code to be associated with the output neuron is predetitthe output
’ neuron res learning is completed. Otherwise all the incomiognections

Each code will then be represented by a different set @&bm the polychronous layer contributing to the input code potentiated
neurons in the p0|ychronous |ayer responding to a preci§éd the input is presented again. The process is repeatédhenbutput
time sequence of the inputs. In this sense the polychronolg"™" "%
layer acts as a sparse distributed memory [16]: the input is
represented in a higher dimensional space where the element
respond to parts of the input code, according to how much
their delays match part of the input pattern. These connec-
tions are trained with STDP in a preliminary tuning phase
where 200 randomly picked symbols are submitted to the
network, in order to make the neurons respond adaptively fiap the output neuron to a combination of the activity in
different convergent delays. After this phase STDP is tiirnehe polychronous layer so as to make the output (detector)
off, and the polychronous layer is capable of representingeuron respond only to a particular combination of affesent
and discriminating different input codes. The learning is based on changing the weights according to

To prove our hypothesis we implemented a superviseah external supervised signal. Therefore it does not exploi
learning strategy the only purpose of which is to demonstrathe timing code of the system (it is independent from time)
that the polychronous layer is capable to represent a raakd it doesn't affect the timing behaviour of the model (all
order code. To verify this an output neuron can be associatddlays are set to 1 msec). In this way is possible to extract
with an arbitrary code which can discriminate it againseoth the information stored in the polychronous sparse disteitbu
codes and noise. This supervised learning phase is usedmemory layer.

Output
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Increase Incoming
Connection Weights
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Fig. 5. STDP tuning phase in the polychronous layer: the coatlin of neurons activated in the polychronous layer iferéht for every code. 200
codes are used in the tuning phase, every code lasts 250 msec

V. SIMULATIONS AND RESULTS 12

A. Tuning the polychronous layer with STDP ——Total Input - - Noise
10

Simulations were carried as follows: at the beginning

the network is trained with 200 random symbols coded a /\/\//\ /\/‘\
described in the previous section in order to let STDP shay 8 v

the connections. An example of this tuning phase is given i
gure 5 where it can be noted that, although some input code
share some neurons, the combination of neurons activated
the polychronous layer is different for every code. As a ne
effect STDP potentiated 30% of the connections. After thi:
phase STDP is turned off, and the only learning that occul -

is in the next supervised learning association phase. 2 7 o~ o ~=—=—~c=

Mean Firing Rate (Hz)
()]
—~—
L
«

B. Associating a code to a detector neuron with supervise o L
learning 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In this phase a code is selected to be learned and Time (sec)
presented at the input layer repeatedly, while a supervised
learning algorithm is used to map the desired combinatioFgg- 6. Contribution in terms of population mean ring rate ddise to
. . the normal activity of the input population
of input to the output neuron [23]. The weights are change
upon the receipt of an external control signal to train the
output neuron to respond to the combination of neurons ring
in the polychronous layer (the weights in the polychronous
layer don't change since STDP is turned off). All the neurons
from the polychronous layer project to the output neuron

with an initial weight set to 0 in order to let the algorithm
potentigte only th'e ones that contribu'te totherightcot® T guch a process ensures that the output neuron will re
supervised learning algorithm used is structured as ftsllombmy when the combination of neurons in the polychronous

else the weights from the active polychronous neurons
and the output detector neuron are increased and the
process is repeated

(cfr. g 4): layer is detected, hence mapping the combination of input to
the code is presented at the input layer and activatesttze output. It also does not alter the timing properties ef th
subset of neurons in the polychronous layer system since all the delays are set to 1 msec. An example of

if the output neuron res learning is complete the supervised learning phase is presented in gure 7.



Membrane potential of the output neuron during the supervised learning phase
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Fig. 7. The output neuron is trained to respond only when threlenation of rings in the polychronous layer appears. Tisiglone by increasing the
weights from the active polychronous neurons to the detewaron until a spike is produced (in this case at sec 10 ofitielation)
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(a) The output neuron res when the learned pattern is ptesen (b) A code obtained by the permutation of 2 positions in therled code is
not able to cause the output neuron to cross the threshoéohfpalt (-40 mV)

Fig. 8. Membrane potential of the output neuron during thesgméation of two codes

C. Testing N-of-M rank order codes input codes. To test the robustness of the learning we tested
In this test we trained the output neuron to respond tg1e network with 1000 different inputs, inserting the lesdn
a rank order code of 7 out of 10 neurons ring each witHnput code amongst them. Results of the test are reported in
a different position encoded in the ring time (see g 1(c) gure 9. It_can be seen that only when the learned code (on
&he right) is presented the output neurons re; all the other

and g 9). As predicted, after the output neuron is traine q i ble of g th out ¢
it only responds to the combination of ring neurons in theS0UES are not capable of causing the output heuron to cross

polychronous layer associated with the input code, othsrwi its ring threshold, set at -40 mV.

it exhibits sub-threshold oscillations but stays silenn A L . . . .

example of the output neuron membrane potential in th@' Testing intensity rank order codes in a noisy regime

contrasting case of the presentation of the matching codeWe repeated the procedure for a network coding the

and of a code with two positions interchanged is presentéatensity of the stimulus at the input layer by using rankesrd

in gure 8(a) and 8(b) respectively. coding [35] as shown in gl(b) and g 6. The learned pattern
Since the process can be repeated with as many outmatn be observed in gure 10. After the learning phase we

neurons and input codes as desired, is possible to train abserved that the output neuron was responding only to the

arbitrary number of output neurons to respond to differerdelected code, as in the previous experiments, so we added a



Robustness test
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Fig. 9. The membrane potential of the output neuron crosseththshold only when the learned code is presented (red Bdbxdhe other codes don't
elicit any spike in the output neuron (only the rst 10 sec bétsimulation are shown 60/1000 tested patterns). On the ttighrepresentation of the
learned pattern 8-4-6-0-9-2-7 (order of rings)

Poisson noise source at the input layer with mean ring ratehange in weight during the association phase is set to
of 2Hz (equal to 25% of the input mean re rate, as shown w = 0:001and the initial weight is set to 0. The simulation
in g 6). Despite of the noise the output neuron is still abletime step is calculated with millisecond precision.

to resp(_)nd only t(_) the learned code, as s_h_own in gure 1%. N-0f-M rank order codes

Increasing the noise above 30% of the original signal led to

false detection (results not shown - 2 false detections @n 10 All the cells in the model share the following parameters

symbols tested). (written in pyNN format):tau_m : 8;v_init : 75;v_rest :
75,v_thresh : 45tau_syn_E : 1;tau_syn. : 1;cm :

VI. MATERIALS AND METHODS 1:5. Input is organized as follows: 7 out of 10 neurons

A. Common features are picked in a random order and they re every 2 msec

All simulations have were carried on the NEURON Slm_accordlngly to their p05|_t|on in the rank order code (see g
. 9). Delays between the input and the polychronous layer are
ulator [1] [11], using pyNN [5] as a front end so as to be_ ”’, . . S
. ; . set in the range 1-14 msec while the weight is set to 14.
able to migrate easily the model onto other simulators or to

translate and run it on neuromorphic hardware [4] [10]. C. Rank order coding intensity in a noisy regime

All simulations share this set of features: we use the Leaky Neuron parameters are the same as the previous section
Integrate-and-Fire (LIF) neuron equipped with currentaycept for the membrane threshold which is set at -40 mV.
based rst-order kinetic synapses [6], corresponding ® thinpyt is organized as follows: intensity can be coded in
IF curr _exp standard neuron model in pyNN. The inputy gifferent values, which will be inversely proportional to
population is composed of ten neurons which re accordingne ring time so that the neurons coding for the highest
to the coding scheme selected. The polychronous layer jigensity will re rst. Four different levels of intensityare
composed of 1000 neurons. Connections between the iBncoded with a time step of 2 msec (see g 10). To cover
put layer and the polychronous layer are made with 30%e whole pattern delays are uniformly set in the range 1-
probability; the polychronous population neurons have alsg msec while the initial weights are set to 9. Noise has
been interconnected with inhibitory connectionge{ght =  peen modelled as a Poisson process witle = 2Hz by a

2). The output neuron is also a LIF neuron, sharing alpikeSourcePoisson  population injecting into the input
parameters with the rest of the neurons except for thespylation.

reset voltage and the refractory period. The STDP uses

the SpikePairRule  model with the following parameters VII. DiscussioN

A. = A =001 + = = 100 msec. Stimuli are  The results of the tests show that rank order coding and
sent every 100 msec, and the STDP time window is s@blychronization can be used together as an ef cient code
accordingly. During the STDP tuning phase weights cannoépresentation strategy. The supervised learning algorit
be potentiated more than 25% of their initial weight. Theproposed in the model shows that the information is encoded
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Fig. 10. The output neuron res only when the learned coderés@nted (red box). All the other codes don't elicit any epik the output neuron, even
in the presence of the noise (red triangles in the input radt). The pattern tested is presented in the right parhef gure as coding intensity of the
stimulation (1/intensity so that neurons that receive motenise input re rst, in this case is neuron 2)

only in the polychronous layer. It is different from previou different timings such that time codes signi cance. But the
proposed models [32] [7] because it uses a polychronogame input can be considered to be generated by different
layer as a spiking neural implementation of a sparse disource areas each coding a different feature in parallel in
tributed memory [9] to represent the code and a superviséanctionally specialized maps [34]. The polychronous taye
learning strategy to learn it, rather than using shunt inhibcould be a converging neural association area such as the
tion [3]. Even in this basic form the learning has con rmedpre-frontal cortex [22]. Integration from different areean

that the polychronous layer is capable of representing ratken be done by coding the origin of the contribution into
order codes in a way that can be disambiguated by a detectbe delay to the associative area. The time order code could
neuron. be embedded in oscillatory brain rhythms in order to have a

More realistic methods of association can be implemente@B®mmon time reference (e.g.. gamma rhythms, which have
for instance by using a STDP regulated by a signal such &§€en proposed to underlie the binding of different features
dopamine [14]. Such a control signal can be externally gendfto a single perceptual entity [33] [26]). Such oscillgtor
ated in supervised learning algorithm or can be generated Bghaviour could be obtained with re-entrant connectio8$ [2
another portion of the network such as a value system [28d the rank order code could synchronized with it and be
in an unsupervised adaptive learning paradigm. coded on the crest of each oscillation.

The probability connection proved to be a very important VIIl. CONCLUSIONS
parameter. Lowering the connection number between the

; In this paper we have presented a study on how rank
input and the polychronous layer proved to lead to less . o

RS . P . ~“order coding and polychronization can be used to store and
discrimination power in the system. Variation in all the ém

parameters of the system (ime constants, delays) led (ggcode information. The system proposed is able to store and

different behaviours. A more formal de nition of the systemrecall codes in a polychronous sparse .d'St.”b.Ute(.j memory
. L layer. We have successfully tested the discrimination powe
could be researched, in order to optimize the parameters

the model. of this model with rank order codes representing signi canc

) or intensity of a stimulus in the spike timings, even in
The polychronous layer exploits the capabilities of polythe presence of noise. The empirical evidence collected
chronization to a minimum extent, in the sense that there &courage us to research a more formal de nition of this
no plastic internal connection that can lead to the formmatioy,sqel enrich it and scale it up. Finally the model could be

of polychronous groups inside the layer itself [15]. Furtheagiaq in interactive tasks, embodying the system in aalirtu
tests in this direction are needed to verify the possibility; req| environment to explore its further capabilities.
of associating different code sequences represented gy pol

chronous groups within the polychronous layer. ACKNOWLEDGEMENT
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