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Abstract
   With  the  explosive  growth  in  portable  applications,
power efficient computing in a Digital Signal Processor
(DSP) is becoming a significant and challenging area of
research. Clock-less or asynchronous timing is applied to
eliminate clock generation,  buffering  and distribution at
the system level. This paper presents the energy efficient
functional unit for an asynchronous DSP implemented on
four-way parallelism architecture. In particular, as is well
known,  arithmetic  operations  such  as  multiply  or
multiply-accumulate  are  frequently  performed  and  are
power  hungry.  Reducing  the  power  dissipation  in
multiplier and adder without sacrificing the performance
will extend the limited source of energy used in portable
applications.   This  has  led  to  the  incorporation  of  an
unusual  parallel  datapath  architecture,  a  balanced  delay
tree  in  the  multiplier,  a  carry-look-ahead  tree  adder,  a
novel  design  of  Hamming  distance  and  normalization
circuit,  data  dependent  computing  and  pass  transistor
circuits  to  achieve  better  energy  efficiency.  The
developing  flexible  FU  for  the  user  and  system
programmer is another highlight of our works. This has
led to additional cost, particularly in the implementation
of the associative configuration memory. The cost can be
justified  by  the  flexibility  and  performance  gained  by
user.  The  full-custom  datapath  of  the  FU  has  been
implemented  on  0.18m  operating  at  1.8  V.  The
preliminary results of the extracted full-custom FU layout
netlist  are  represented  which  confirm  that  all  energy
efficient design techniques at the logic and circuit level
demonstrate  significantly  improvement  of  the  power,
performance and area in functional unit.

1. Introduction
   As is well-known,  the capabilities of computation in
portable  applications  has  been  increasing  exponentially.
However,  the  intensive  and  continuous  computing  of
hand-held  computers  and  other  portable  devices  are
restricted by the source of power. From [1], it is clear that
the energy density of existing battery technologies are far
from what is  needed.  Hence, an energy efficient design
becomes vital.
   Digital Signal Processors (DSPs) have been developed
for wireless applications such as mobile handsets. Mostly,
mobile phones are driven by cellular standards. In the first
generation, many types of filters were expected to run on
the  DSPs.  However,  a  modern  mobile  phone  handles
many  more  applications  such  as  video  decoding,  data
processing and speech recognition. Multiple standards are

also needed in one device. Therefore, the trend for DSP
architectures  is  parallelism;  exploiting  more  than  one
processing unit gains high throughout. Whilst the area is
increased  by  employing  multiple  computing  units,  the
energy  consumption  is  decreased  by  scaling  down  the
supply voltage.  For  moderate  voltage  scaling,  the logic
depth, amount of switching and the workload factor of the
circuit  determine  the  energy  efficiency.  If  the  energy-
delay product metric is used as the basis of comparison
between designs, then the overall energy efficiency can be
exponentially improved in a DSP with parallel FUs since
each  FU can  be  operated  at  lower  throughput.  This  is
because  when  the  energy-delay  product  is  taken  into
account,  it  means  each  component  uses  the  smallest
energy  source  per  operation.  When the  speed  has  been
slowed down, each component will dissipate less power.
Meanwhile, the overall throughout of the system is still
maintained because of the parallel architecture. Therefore,
the  system can  gain  an  energy  efficiency  improvement
merely by introducing parallelism. 
   An alternative approach to make an energy efficient
system  is  to  structure  algorithms  to  fit  the  available
hardware resource in a DSP. This usually has restrictions
with the existing hardware architecture. Therefore, at this
level,  the  system  may  not  gain  a  big  improvement.
Therefore,  several  energy  efficient  design  techniques
should  be  combined  to  achieve  larger  energy
improvement when running on a powerful architecture. 
   Another requirement of a DSP is flexibility. In recent
years, many research works [2-5] propose reconfigurable
digital  signal  processors  with  designs  implemented  on
Field  Programmable  Gate  Array  (FPGA)  technology.
However, the power dissipation is still relative high. New
generation  FPGA  includes  specific  arithmetic  units,
accelerators,  IP cores that provide  speed and flexibility,
but still tend to be high power. The research challenge is
to develop both an energy efficient and flexible design.
Portable systems need a processing unit that gives them
the lowest energy consumption, but at the same time must
provide  enough flexibility  to  the  user  and  programmer.
The functional unit presented here is an energy efficient
and flexible component for an asynchronous parallel DSP
performing  computationally  intense  algorithms.  A
configuration memory has been attached to each energy
efficient FU in our  design for  the flexibility.  Internally,
the design combines several energy efficient circuit/logic
design techniques. The background of our previous DSP
architecture will be described in the next section. Then,
our  energy  efficient  FU  architecture  including  the



arithmetic logical unit and the configuration memory are
described in section 3. The low power circuits used in the
datapath  are  described  in  section  4.  Simulation  results
from  the  full-custom  layout  are  presented  in  section  5
demonstrating  the  improvements  in  energy  achieved,
followed by some concluding remarks.

2. Background
   Our  FU has  been  designed  and  implemented  for  a
parallel asynchronous DSP named CADRE [6]. CADRE
was proposed to be a minimum power consumption DSP
whilst  meeting  the  performance  requirements  of  next
generation  cellular  phones.  However,  the  simulation
results show that the power dissipation is still on the high
side.  In  [6],  the  power  dissipation  of  CADRE  was
analyzed  and  approximately  50% of  the  overall  power
consumption was found to be dissipated in the FU. Thus,
reducing  the  power  consumption  of  the  FU  was  the
primary  motivation  behind  this  research.  The  original
philosophy  of  the  architecture  is  described  to  help  the
reader understand our FU easily. 
   A CADRE was implemented by exploiting four-way
parallelism,  as  this  appears  to  be  optimal  for  power
reduction [7]. This is based on the premise that area can
be  traded  for  increased  speed  because  silicon  area  is
rapidly  becoming  less  expensive.  Most  of  the  DSP
activity  can  be  characterized  by  frequent  repetition  of
fixed instruction sequences. So, the instruction encoding
which  determines the selection and passage  of  data for
each  operation  can  be  predetermined  and  stored  in
advance  in  a  configurable  memory  which  is  located
locally to each FU. These encodings can then be recalled
with a compressed instruction. Because the configuration
memories are RAMs,  this allows reconfiguration at  any
point in execution. In addition, these encodings could be
expanded within the FUs. This dramatically reduces the
size and amount of information that needs to be fetched
from  main  memory.  CADRE  used  a  dual  Harvard
architecture  that  has  one  program  memory  and  two
separate data memories.  A large on-chip register file of
256 16-bit words was included to avoid traffic and power
dissipation  in  the  main  memories.  In  this  way,  the
operands required by the FUs were provided directly from
a register file. As with other DSPs, a 32-entry instruction
buffer was also included to handle loop instructions and
reduce traffic to or from the program memory. Finally, all
standard hardware components in CADRE were operated
using self-timed techniques. 
   The top-level architecture of the present work has been
adapted for the current research work because time is too
limited to fully implement the CADRE design. However,
we still keep the major advanced feature such as four-way
parallelism to  give  high  throughput.  Meanwhile,  a  new
FU has been designed with its configuration memory. The
new system consists of four FUs connected together with
a global bus and a pair of FUs are connected locally. The
input data of each FU will be directly provided from on-

chip  RAM  blocks  with  the  output  data  being  kept  in
another RAM block. The encoded top-level instruction is
stored in a  program memory.  It contains control bits  to
enable the  FU and  accumulator  write-back  plus  a  5-bit
address  which  accesses  the  configuration  memory
associated with each FU; the functional unit instructions
are stored in advance into each configuration memory of
the FUs.
   The instruction set of the proposed FUs has two sets of
instructions:  computation and data movement and  these
can  occur  concurrently.  1)  Computational  instructions:
These  instructions  contain  arithmetic  and  logical
operations;  the  arithmetic  instructions  include  distance,
normalization,  shift,  ADD,  SUB,  MPY  and  MAC
(multiply and accumulate). The output destination of the
operation can be 1 of 4 accumulator registers (AccA to
AccD)  inside  the  FU.  2)  Data  Movement  Instructions:
These instructions process the data movement in or out of
the FU. These instructions include an accumulator register
to accumulator  register transfer  within the FU itself,  an
accumulator register to an accumulator register in another
FU, or a movement of data to the output RAM.
   The FUs form part of an asynchronous pipelined design.
To eliminate clock generation, buffering and distribution
for  power  improvement,  asynchronous  timing  has  been
used.  This  also  gives  a  reduction  of  electromagnetic
interference(EMI) as the switching of the logic is spread
instead  of  being  concentrated  around  the  clock  edge.
These FUs are therefore based on the principle of micro-
pipelines[8] as shown in Figure1, where the data transfer
between blocks uses local  handshake  signals.  The done
signal allowing an output to propagate to the next micro-
pipeline stage is generated either from the combinational
logic for a data dependent operation or from a matched
delay. 

Figure1 Asynchronous pipeline

   A novel approach has been adopted for delay matching
by connecting a separate supply for the timing circuits,
different from the supply for the datapath.  This enables
timing margins to be controlled from a single external pin
without any hardware overheads. Then the delay can be
increased  (control  voltage  reduced)  if  timing  is  on  the
edge  or  the  delay  can  be  reduced(control  voltage
increased) to remove unwanted timing margins.
   This simple technique offers a flexibility not apparent in
other asynchronous timing approaches[9-12]. It therefore
improves  the  likelihood  of  obtaining  working
asynchronous circuits at the first attempt and should lead
to greater acceptability of asynchronous design techniques
by easing the problem of designing timing and control.



Figure 2 Functional unit datapath

3. Energy Efficient Functional Unit
   The challenge here is to meet the requirements of future
portable  applications,  such  as  mobile  phones.  These
devices have  a very  small  power  budget  but need high
performance  with  a  complexity  approaching  that  of  a
desktop computer. The throughput has been achieved by
adopting  a  parallel  architecture  allowing  up  to  4
instructions  to  be  processed  in  parallel.  In  addition,
parallel arithmetic logic is also used within a FU. Thus the
next challenge is how to manage the hardware resources
within each FU efficiently.
3.1 Configuration Memory

  In  our  design,  the VLIW instructions for  a particular
algorithm are  cached  by software and looked up using a
short-form instruction. Up to 64 instructions are produced
in a configuration memory, which is more than sufficient
for  an  anticipated  algorithm;  for  example,  the  DCT
algorithm [17] requires only 6 encoded instructions in a
configuration  memory.  Furthermore,  the  configuration
memory instructions are completely user  definable.  The
simple look-up avoids any tag overhead associated with a
cache.  The  configuration  memory  makes  the
configuration of the FU flexible, enabling optimization by
users. This flexibility has led to additional hardware costs,
particularly  in  the  implementation  of  the  configuration
memory. These costs can be justified by the flexibility and
performance  gained  by  users.  In  particular,  the  use  of
configurable memory embedded into the design is unique
compared  with  the  other  DSPs  mentioned  above.  This
feature also allows each FU to operate on an independent
instruction stream if required.
3.2 Energy Efficient Arithmetic Unit

   The FU datapath is shown in Figure2. The number of
available paths and input sources at different points mean
that within the FU, many concurrent operations can occur
within a  single time-slot. For example, multiplication and
addition with shifting can be performed in parallel with
moving  the  contents  of  an  accumulator  result  back  to
memory. Operations within the FU are termed major and
minor.  A major  operation is  usually  performed in  each
time-slot  and  encompasses  the  arithmetic  and  logic

operations. Data supplied to or from the FU is usually 16-
bits. However, the FU datapath is 40-bits wide, as usual in
a DSP. Multiplication is 16x16 bits and produces a 40-bit
partial  sum (PS)  and  partial  carry  (PC)  which  are  then
forwarded to the adder in the ALU block for completion.
Here, up to four operands may need to be added i.e. PS
(or  Lin)  and PC (or  Rin) together  with an  accumulator
value  (SHACC)  which  comes  via  the  Shifter  and  a
rounding constant (not shown). The ALU output is written
to one of four accumulators AccA to AccD in the ACC.
Minor  operations  operate  concurrently  with  a  major
operation.  Here,  in  parallel  with  a  major  operation  of
addition  and/or  the  multiplication,  another  Accumulator
register can be written to either from another (shifted or
unshifted)  Accumulator  register,  or  from  the  memory
(OpB) or from the global bus GIFU. An Accumulator can
also  be  written  back  to  memory  via  the  WB bus.  The
addition of the multiplier outputs PS and PC is performed
by the adder in the ALU. This adder is therefore shared
between  the  add/subtract  and  multiply/multiply-
accumulate operations. This architecture is unusual in that
most  designs  have  a  dedicated  adder  for  the  MAC
operation and a separate adder provided for the addition.
Having just one adder in the FU significantly reduces the
amount  of  logic required in  the  datapath which in  turn
reduces power. 
   Finally, transparent latches are inserted in front of the
multiplier,  the ALU, the second write  port  (2W) of  the
ACC and the write back (WB) bus to prevent unnecessary
switching in the datapath. This approach directly reduces
the dynamic power dissipation. In addition, because pass
gate  transparent latches  are used rather  than normal  D-
latches or flip-flops, a further saving of power dissipation
and  better  performance  are  achieved  because  less
capacitance is switched and the latch delay is smaller.
Multiplier Implementation
   The arithmetic unit has been implemented using two's
complement rather than the sign and magnitude arithmetic
in  the  initial  design;  this  reduces  design  complexity,
lowers  dissipation  and  gives  a  better  performance.  The
algorithms  for  Global  System  for  Mobiles  (GSM)



operations  indicate  a  high  proportion  of  multiplication
operations. Generally, the multiplier consists of two main
components: a partial product generation (PPG) and the
addition  of  those  partial  products  (PPs).  The  current
16x16  low-power  multiplier  is  shown  in  Figure3,  has
employed  a  modified  Booth's  algorithm[13]  to  produce
the 8 PPs required in parallel. The addition of the eight
PPs requires a carry propagate adder (CPA) which has a
long latency. To avoid this, a Wallace Tree[14] structure
of  4-2  compressors  is  used  which  not  only  improves
performance  by  reducing  the  latency  but  also  reduces
power  by  significantly  reducing  the  amount  of  overall
logic  required.  As  a  result  of  using  tree  structure
topologies, the number of stages traversed by each input
is approximately the same for all inputs. This leads to a
balanced delay tree and results in less switching activity
due to input skew. In addition, the eight PPs have been
divided  into  two  groups,  PP1-4  and  PP5-8  to  produce
partial  carry and partial sum in parallel.  Therefore,  this
multiply  structure  can  achieve  both  performance  and
balance the delay in the tree structure. As the multiplier
generates 40-bit outputs, all PPs have to be sign-extended.
In order to minimize the logic within the tree structure, a
pre-calculated  sign-extension  is  applied.  Furthermore,
eight  signed  bits  from  the  modified  Booth  s  logic  are
forwarded  to  the  adder;  this  reduces  the  depth  of  the
Wallace tree logic required by one stage.

Figure3 Parallel multiplier structure

   The post full-custom layout simulation on a 0.18m
process operating from 1.8V shows that our multiplier can
produce a PS and PC every 1.5 nS in the worst case of
random inputs and consumes an average power only 21.6
mW at this speed. 
Adder Implementation
   Operation  analysis  reveals  that  addition  is  the  most
frequent function performed in speech code. Thus, whilst
the power dissipation of addition is approximately 1/5 that
of  multiplication,  the  very  high  proportion  of  additions
means that it is essential to minimise the power required
for this operation. In the FU, addition involves adding up

to four variables as shown in Figure4. The four inputs are
first  compressed to  two by using 4-2 compressors.  The
two compressor outputs are then added in a carry-look-
ahead tree. The carry-look-ahead equation, given in [15],
has been modified when used in our design to enable an
easy efficient mapping onto pass-transistor  circuits. The
carry is generated across blocks of four bits because this
offers  the  best  speed-power product.  The adder  in  [15]
was  implemented  using  VHDL,  whilst  a  synthesis  tool
was then used to generate the circuit and layout; therefore,
its energy efficiency was relatively poor.  In our  design,
the  logic  has  been  optimised  and  organised  to  map
efficiently onto low energy pass transistor circuits and the
circuits have then been laid out by hand to give an area
efficient implementation. Thus the design achieved here is
power efficient.
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Figure4 Structure of 4 input 40 bit adder and carry-look-
ahead tree.

   All circuits in our adder are implemented by using only
pass  transmission  gates.  This  leads  to  both  high
performance and low power. The preliminary results from
post  full-custom layout  on  a  0.18m process  operating
from 1.8V show that our 4 input 40 bit adder consumes an
average power of only 7.56mW with a delay of  4ns  to
complete the addition.
Hamming distance and Normalization
   The Hamming distance and normalized instruction are
instructions normally included in the instruction set since
they are useful for most DSP algorithms. In our design,
we combine these functions into only one logic circuit.
This not only reduces the number of logic gates but makes
its power dissipation low.

4. Energy Efficient Circuits
   It  is  important  to  understand  how  the  energy  is
consumed  in  a  circuit.  An  energy  efficient  design  can
berealised by either minimizing the energy consumption
subject to a throughput constrain, or by maximizing the
amount of computation for a given amount of energy. The
optimal design can be made if the trade-off between the
energy  and  delay  can  be  met  since  it  is  possible  to
determine  the  lowest  energy  for  a  given  level  of
performance. One approach in the system is to incorporate
parallelism or pipelining.



*0.18m
geometry
operating at
1.8V.

CASE

Load Capacitance = 10 ff
(equal to 4 Inverters)

Load Capacitance = 20 ff
(equal to 8 Inverters)

Load Capacitance = 30 ff
(equal to 12 Inverters)

Et (pJ)
(worse case)

Et (pJ)
(average
case)

Et (pJ)
(worse case)

Et (pJ)
(average
case)

Et (pJ)
(worse
case)

Et (pJ)
(average
case)

1 6.049 5.691 18.298 14.220 33.778 23.542
2 6.909 6.831 19.989 16.112 37.726 26.848
3 8.302 8.118 22.879 18.265 41.784 29.696
4 8.422 6.258 14.409 11.119 21.769 17.390
5 8.802 6.563 14.895 11.530 22.160 17.795
6 7.791 5.669 14.029 10.585 21.698 16.924
7 6.054 6.054 17.680 11.676 29.061 19.178
8 9.719 6.638 18.110 12.256 29.280 19.703
9 8.460 6.421 16.467 12.282 27.310 20.079

10 7.319 5.159 16.624 11.267 28.157 18.946
Table1 Energy Delay product simulation results of pass transmission gate multiplexer using transistor sizing with

various load capacitances.
CASE Pass Gates (-e06 m) Inv_S (-e06 m) Inv_nQ (-e06 m)

NMOS PMOS NMOS PMOS NMOS PMOS
1 0.28 0.28 0.28 0.28 0.28 0.28
2 0.28 0.28 0.70 1.24 0.28 0.28
3 0.80 0.80 0.70 1.24 0.28 0.28
4 0.80 0.80 0.70 1.24 0.70 1.24
5 1.00 1.00 0.70 1.24 0.70 1.24
6 0.28 0.28 0.70 1.24 0.70 1.24
7 0.28 0.28 0.70 1.24 0.36 1.46
8 0.80 0.80 0.70 1.24 0.36 1.46
9 0.80 0.80 0.28 0.28 0.36 1.46

10 0.28 0.28 0.28 0.28 0.36 1.46
Table 2: The size of transistors.

In  addition,  if  energy  efficient  circuits  are  used  to
implement the sub-component in the system, good energy
efficiency  can be  achieved.  Therefore,  this  section  will
discuss and show the energy-delay related to the output
loads and transistor sizing. The multiplexer cell as shown
in Figure5 implemented by pass transmission gate is the
main cell applied everywhere within the FU datapath. If S
is low, the top CMOS pass gate is on passing B to the
output, whilst if S is high, the bottom CMOS pass gate is
on and A passes to the output.

Figure5 A pass-transmission gate multiplexer

  Gate  sizing[16]  can  be  used  to  trade-off  energy  and
delay. The minimal energy delay point of a circuit is not
only  affected by  its  basic design but  also by  its  output
load  capacitance.  The  logic  gate  capacitance  and  load
capacitance including wiring both increase linearly with
transistor size. Gate delay can be calculated as td =  d,

where   is  a  process-dependent  constant,  and  d  is  a
unitless delay of the gate. The unitless delay is determined
as  d = heff +  , where heff  is the product of logical effort
of the driving gate and electrical fan-out; a logical effort
of  1  results  from  a  minimum  size  inverter  driving  a
similar  inverter.  The electrical  fan out is  the equivalent
number of minimum size inputs being driven. The self-
loading delay  is the product of logical effort (g) and the
ratio  of  the equivalent  driving  gate  width  (Wpar)  to  the
equivalent driven gate width (Win), = gWpar/Win. Because
there are no publications relating to the logic effort of a
pass-transistor logic as yet, we regard the multiplexer as a
logic  gate.  In  our  work  to  find  the  minimal  point  of
energy  delay  of  multiplexer,  the  transistor  size  and
loading capacitance for the gate in figure5 are varied as
shown in Table1 and 2.  The circuits were simulated on
SPICE assuming a geometry of 0.18m and an operating
voltage of 1.8V.
   Table1 shows the energy delay product resulting from
the use of different transistor sizes in the multiplexer and
different load capacitances. We have analyzed the energy
delay product of the circuit with both average rise and fall
times and worse case edge times. Clearly, transistor sizing
can help the circuits to have a low energy delay product
when  load  capacitance  is  increased.  In  practical,  load
capacitance  is  very  important  and has  a  large effect on



both the performance and power of the system, especially
in a large design. In addition, using the minimal transistor
size cannot achieve optimum energy efficiency. It can be
concluded  from these results  that  for  minimum energy-
delay,  the  CMOS  pass  gate  transistors   should  be
minimum  size,  the  inv_S  should  be  a  drive  1  gate
(PMOS/NMOS  width  =  1.24e-06m/0.70e-06m)  and  be
capable of driving the select signals on 2 or 3 multipliexer
gates,  and  that  the  inv_nQ  should  be  matched  to  the
driven  load  (PMOS/NMOS  width  =  1.24e-06m/0.70e-
06m). These figures do not include leakage power which
is  small  for  this  process,  provided  the  transistor  sizing
above is adopted.

5. Discussion and Conclusions
   The  results  from  remaining  simulations  on  the  full
custom layout for the datapath shown in Figure2 indicate
that  our  FU  dissipates  about  13.68mW@200MHz.
Projecting  this  to  four-way  parallelism  yields  800MHz
with  a  power  consumption  of  only  54.72mW.  This
indicates a factor of 10 improvement in the dissipation on
the original FU design assuming a similar geometry and
operating voltage. 
   Energy efficiency is a significant design constraint for
battery powered  DSPs requiring  a coherent  low energy
technique applied at all levels and particularly at logic and
circuit  levels.  The  proposed  FU  architecture  has  been
designed  to  be  flexible,  have  low  power  and  high
throughput  particularly  in  performing  arithmetic
operations involving the multiplier and adder. In addition,
asynchronous  data  dependent  operation  and  a  tunable
delay  mechanism  are  incorporated  to  gain  even  better
energy efficiency. At the circuit level, pass transistor logic
is  used  which  is  low  power  without  sacrificing
performance.  Transistor  sizing  has  been  applied  to  this
pass  transistor  logic  to  identify  the  optimum  trade-off
between energy and delay. 
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