
Energy Efficient Functional Unit For A Parallel Asynchronous DSP

W. Suntiamorntut, Nitin Gupta, L.E.M. Brackenbury, J. Garside
Department of Computer Science, The University of Manchester,
Oxford Road, Manchester, M13 9PL, UK Tel.+44-161-2753531

{wannarat, guptan, lbrackenbury, jdg}@cs.man.ac.uk

Abstract
 With the explosive growth in portable applications,
power efficient computing in a Digital Signal Processor
(DSP) is becoming a significant and challenging area of
research. Clock-less or asynchronous timing is applied to
eliminate clock generation, buffering and distribution at
the system level. This paper presents the energy efficient
functional unit for an asynchronous DSP implemented on
four-way parallelism architecture. In particular, as is well
known, arithmetic operations such as multiply or
multiply-accumulate are frequently performed and are
power hungry. Reducing the power dissipation in
multiplier and adder without sacrificing the performance
will extend the limited source of energy used in portable
applications. This has led to the incorporation of an
unusual parallel datapath architecture, a balanced delay
tree in the multiplier, a carry-look-ahead tree adder, a
novel design of Hamming distance and normalization
circuit, data dependent computing and pass transistor
circuits to achieve better energy efficiency. The
developing flexible FU for the user and system
programmer is another highlight of our works. This has
led to additional cost, particularly in the implementation
of the associative configuration memory. The cost can be
justified by the flexibility and performance gained by
user. The full-custom datapath of the FU has been
implemented on 0.18m operating at 1.8 V. The
preliminary results of the extracted full-custom FU layout
netlist are represented which confirm that all energy
efficient design techniques at the logic and circuit level
demonstrate significantly improvement of the power,
performance and area in functional unit.

1. Introduction
 As is well-known, the capabilities of computation in
portable applications has been increasing exponentially.
However, the intensive and continuous computing of
hand-held computers and other portable devices are
restricted by the source of power. From [1], it is clear that
the energy density of existing battery technologies are far
from what is needed. Hence, an energy efficient design
becomes vital.
 Digital Signal Processors (DSPs) have been developed
for wireless applications such as mobile handsets. Mostly,
mobile phones are driven by cellular standards. In the first
generation, many types of filters were expected to run on
the DSPs. However, a modern mobile phone handles
many more applications such as video decoding, data
processing and speech recognition. Multiple standards are

also needed in one device. Therefore, the trend for DSP
architectures is parallelism; exploiting more than one
processing unit gains high throughout. Whilst the area is
increased by employing multiple computing units, the
energy consumption is decreased by scaling down the
supply voltage. For moderate voltage scaling, the logic
depth, amount of switching and the workload factor of the
circuit determine the energy efficiency. If the energy-
delay product metric is used as the basis of comparison
between designs, then the overall energy efficiency can be
exponentially improved in a DSP with parallel FUs since
each FU can be operated at lower throughput. This is
because when the energy-delay product is taken into
account, it means each component uses the smallest
energy source per operation. When the speed has been
slowed down, each component will dissipate less power.
Meanwhile, the overall throughout of the system is still
maintained because of the parallel architecture. Therefore,
the system can gain an energy efficiency improvement
merely by introducing parallelism.
 An alternative approach to make an energy efficient
system is to structure algorithms to fit the available
hardware resource in a DSP. This usually has restrictions
with the existing hardware architecture. Therefore, at this
level, the system may not gain a big improvement.
Therefore, several energy efficient design techniques
should be combined to achieve larger energy
improvement when running on a powerful architecture.
 Another requirement of a DSP is flexibility. In recent
years, many research works [2-5] propose reconfigurable
digital signal processors with designs implemented on
Field Programmable Gate Array (FPGA) technology.
However, the power dissipation is still relative high. New
generation FPGA includes specific arithmetic units,
accelerators, IP cores that provide speed and flexibility,
but still tend to be high power. The research challenge is
to develop both an energy efficient and flexible design.
Portable systems need a processing unit that gives them
the lowest energy consumption, but at the same time must
provide enough flexibility to the user and programmer.
The functional unit presented here is an energy efficient
and flexible component for an asynchronous parallel DSP
performing computationally intense algorithms. A
configuration memory has been attached to each energy
efficient FU in our design for the flexibility. Internally,
the design combines several energy efficient circuit/logic
design techniques. The background of our previous DSP
architecture will be described in the next section. Then,
our energy efficient FU architecture including the

arithmetic logical unit and the configuration memory are
described in section 3. The low power circuits used in the
datapath are described in section 4. Simulation results
from the full-custom layout are presented in section 5
demonstrating the improvements in energy achieved,
followed by some concluding remarks.

2. Background
 Our FU has been designed and implemented for a
parallel asynchronous DSP named CADRE [6]. CADRE
was proposed to be a minimum power consumption DSP
whilst meeting the performance requirements of next
generation cellular phones. However, the simulation
results show that the power dissipation is still on the high
side. In [6], the power dissipation of CADRE was
analyzed and approximately 50% of the overall power
consumption was found to be dissipated in the FU. Thus,
reducing the power consumption of the FU was the
primary motivation behind this research. The original
philosophy of the architecture is described to help the
reader understand our FU easily.
 A CADRE was implemented by exploiting four-way
parallelism, as this appears to be optimal for power
reduction [7]. This is based on the premise that area can
be traded for increased speed because silicon area is
rapidly becoming less expensive. Most of the DSP
activity can be characterized by frequent repetition of
fixed instruction sequences. So, the instruction encoding
which determines the selection and passage of data for
each operation can be predetermined and stored in
advance in a configurable memory which is located
locally to each FU. These encodings can then be recalled
with a compressed instruction. Because the configuration
memories are RAMs, this allows reconfiguration at any
point in execution. In addition, these encodings could be
expanded within the FUs. This dramatically reduces the
size and amount of information that needs to be fetched
from main memory. CADRE used a dual Harvard
architecture that has one program memory and two
separate data memories. A large on-chip register file of
256 16-bit words was included to avoid traffic and power
dissipation in the main memories. In this way, the
operands required by the FUs were provided directly from
a register file. As with other DSPs, a 32-entry instruction
buffer was also included to handle loop instructions and
reduce traffic to or from the program memory. Finally, all
standard hardware components in CADRE were operated
using self-timed techniques.
 The top-level architecture of the present work has been
adapted for the current research work because time is too
limited to fully implement the CADRE design. However,
we still keep the major advanced feature such as four-way
parallelism to give high throughput. Meanwhile, a new
FU has been designed with its configuration memory. The
new system consists of four FUs connected together with
a global bus and a pair of FUs are connected locally. The
input data of each FU will be directly provided from on-

chip RAM blocks with the output data being kept in
another RAM block. The encoded top-level instruction is
stored in a program memory. It contains control bits to
enable the FU and accumulator write-back plus a 5-bit
address which accesses the configuration memory
associated with each FU; the functional unit instructions
are stored in advance into each configuration memory of
the FUs.
 The instruction set of the proposed FUs has two sets of
instructions: computation and data movement and these
can occur concurrently. 1) Computational instructions:
These instructions contain arithmetic and logical
operations; the arithmetic instructions include distance,
normalization, shift, ADD, SUB, MPY and MAC
(multiply and accumulate). The output destination of the
operation can be 1 of 4 accumulator registers (AccA to
AccD) inside the FU. 2) Data Movement Instructions:
These instructions process the data movement in or out of
the FU. These instructions include an accumulator register
to accumulator register transfer within the FU itself, an
accumulator register to an accumulator register in another
FU, or a movement of data to the output RAM.
 The FUs form part of an asynchronous pipelined design.
To eliminate clock generation, buffering and distribution
for power improvement, asynchronous timing has been
used. This also gives a reduction of electromagnetic
interference(EMI) as the switching of the logic is spread
instead of being concentrated around the clock edge.
These FUs are therefore based on the principle of micro-
pipelines[8] as shown in Figure1, where the data transfer
between blocks uses local handshake signals. The done
signal allowing an output to propagate to the next micro-
pipeline stage is generated either from the combinational
logic for a data dependent operation or from a matched
delay.

Figure1 Asynchronous pipeline

 A novel approach has been adopted for delay matching
by connecting a separate supply for the timing circuits,
different from the supply for the datapath. This enables
timing margins to be controlled from a single external pin
without any hardware overheads. Then the delay can be
increased (control voltage reduced) if timing is on the
edge or the delay can be reduced(control voltage
increased) to remove unwanted timing margins.
 This simple technique offers a flexibility not apparent in
other asynchronous timing approaches[9-12]. It therefore
improves the likelihood of obtaining working
asynchronous circuits at the first attempt and should lead
to greater acceptability of asynchronous design techniques
by easing the problem of designing timing and control.

Figure 2 Functional unit datapath

3. Energy Efficient Functional Unit
 The challenge here is to meet the requirements of future
portable applications, such as mobile phones. These
devices have a very small power budget but need high
performance with a complexity approaching that of a
desktop computer. The throughput has been achieved by
adopting a parallel architecture allowing up to 4
instructions to be processed in parallel. In addition,
parallel arithmetic logic is also used within a FU. Thus the
next challenge is how to manage the hardware resources
within each FU efficiently.
3.1 Configuration Memory

 In our design, the VLIW instructions for a particular
algorithm are cached by software and looked up using a
short-form instruction. Up to 64 instructions are produced
in a configuration memory, which is more than sufficient
for an anticipated algorithm; for example, the DCT
algorithm [17] requires only 6 encoded instructions in a
configuration memory. Furthermore, the configuration
memory instructions are completely user definable. The
simple look-up avoids any tag overhead associated with a
cache. The configuration memory makes the
configuration of the FU flexible, enabling optimization by
users. This flexibility has led to additional hardware costs,
particularly in the implementation of the configuration
memory. These costs can be justified by the flexibility and
performance gained by users. In particular, the use of
configurable memory embedded into the design is unique
compared with the other DSPs mentioned above. This
feature also allows each FU to operate on an independent
instruction stream if required.
3.2 Energy Efficient Arithmetic Unit

 The FU datapath is shown in Figure2. The number of
available paths and input sources at different points mean
that within the FU, many concurrent operations can occur
within a single time-slot. For example, multiplication and
addition with shifting can be performed in parallel with
moving the contents of an accumulator result back to
memory. Operations within the FU are termed major and
minor. A major operation is usually performed in each
time-slot and encompasses the arithmetic and logic

operations. Data supplied to or from the FU is usually 16-
bits. However, the FU datapath is 40-bits wide, as usual in
a DSP. Multiplication is 16x16 bits and produces a 40-bit
partial sum (PS) and partial carry (PC) which are then
forwarded to the adder in the ALU block for completion.
Here, up to four operands may need to be added i.e. PS
(or Lin) and PC (or Rin) together with an accumulator
value (SHACC) which comes via the Shifter and a
rounding constant (not shown). The ALU output is written
to one of four accumulators AccA to AccD in the ACC.
Minor operations operate concurrently with a major
operation. Here, in parallel with a major operation of
addition and/or the multiplication, another Accumulator
register can be written to either from another (shifted or
unshifted) Accumulator register, or from the memory
(OpB) or from the global bus GIFU. An Accumulator can
also be written back to memory via the WB bus. The
addition of the multiplier outputs PS and PC is performed
by the adder in the ALU. This adder is therefore shared
between the add/subtract and multiply/multiply-
accumulate operations. This architecture is unusual in that
most designs have a dedicated adder for the MAC
operation and a separate adder provided for the addition.
Having just one adder in the FU significantly reduces the
amount of logic required in the datapath which in turn
reduces power.
 Finally, transparent latches are inserted in front of the
multiplier, the ALU, the second write port (2W) of the
ACC and the write back (WB) bus to prevent unnecessary
switching in the datapath. This approach directly reduces
the dynamic power dissipation. In addition, because pass
gate transparent latches are used rather than normal D-
latches or flip-flops, a further saving of power dissipation
and better performance are achieved because less
capacitance is switched and the latch delay is smaller.
Multiplier Implementation
 The arithmetic unit has been implemented using two's
complement rather than the sign and magnitude arithmetic
in the initial design; this reduces design complexity,
lowers dissipation and gives a better performance. The
algorithms for Global System for Mobiles (GSM)

operations indicate a high proportion of multiplication
operations. Generally, the multiplier consists of two main
components: a partial product generation (PPG) and the
addition of those partial products (PPs). The current
16x16 low-power multiplier is shown in Figure3, has
employed a modified Booth's algorithm[13] to produce
the 8 PPs required in parallel. The addition of the eight
PPs requires a carry propagate adder (CPA) which has a
long latency. To avoid this, a Wallace Tree[14] structure
of 4-2 compressors is used which not only improves
performance by reducing the latency but also reduces
power by significantly reducing the amount of overall
logic required. As a result of using tree structure
topologies, the number of stages traversed by each input
is approximately the same for all inputs. This leads to a
balanced delay tree and results in less switching activity
due to input skew. In addition, the eight PPs have been
divided into two groups, PP1-4 and PP5-8 to produce
partial carry and partial sum in parallel. Therefore, this
multiply structure can achieve both performance and
balance the delay in the tree structure. As the multiplier
generates 40-bit outputs, all PPs have to be sign-extended.
In order to minimize the logic within the tree structure, a
pre-calculated sign-extension is applied. Furthermore,
eight signed bits from the modified Booth s logic are
forwarded to the adder; this reduces the depth of the
Wallace tree logic required by one stage.

Figure3 Parallel multiplier structure

 The post full-custom layout simulation on a 0.18m
process operating from 1.8V shows that our multiplier can
produce a PS and PC every 1.5 nS in the worst case of
random inputs and consumes an average power only 21.6
mW at this speed.
Adder Implementation
 Operation analysis reveals that addition is the most
frequent function performed in speech code. Thus, whilst
the power dissipation of addition is approximately 1/5 that
of multiplication, the very high proportion of additions
means that it is essential to minimise the power required
for this operation. In the FU, addition involves adding up

to four variables as shown in Figure4. The four inputs are
first compressed to two by using 4-2 compressors. The
two compressor outputs are then added in a carry-look-
ahead tree. The carry-look-ahead equation, given in [15],
has been modified when used in our design to enable an
easy efficient mapping onto pass-transistor circuits. The
carry is generated across blocks of four bits because this
offers the best speed-power product. The adder in [15]
was implemented using VHDL, whilst a synthesis tool
was then used to generate the circuit and layout; therefore,
its energy efficiency was relatively poor. In our design,
the logic has been optimised and organised to map
efficiently onto low energy pass transistor circuits and the
circuits have then been laid out by hand to give an area
efficient implementation. Thus the design achieved here is
power efficient.

C o m p r e s s o r s

A
B

A C C
C o n s t r a n t

4 0

C a r r y
L o o k - a h e a d
T r e e A d d e r

s u m
c a r r y

C i n # 4 0

R o u t

X +
i- 1

X +
i

X +
i+ 1

X +
i+ 2

B y p a s s
E x c h a n g e

B y p a s s
E x c h a n g e

B y p a s s
E x c h a n g e

B y p a s s
E x c h a n g e

C i

C i + 1

C i + 3

C i + 2

C i + 4

S i + 1

X -
i- 1

X -
i

X -
i+ 1

X -
i+ 2

X +
ia n a n d b =

X -
ia n o r b =

X +
i X -

i

X +
i X -

i
a x o r b =

X +
i X -

i

X +
i X -

ia x n o r b =

Figure4 Structure of 4 input 40 bit adder and carry-look-
ahead tree.

 All circuits in our adder are implemented by using only
pass transmission gates. This leads to both high
performance and low power. The preliminary results from
post full-custom layout on a 0.18m process operating
from 1.8V show that our 4 input 40 bit adder consumes an
average power of only 7.56mW with a delay of 4ns to
complete the addition.
Hamming distance and Normalization
 The Hamming distance and normalized instruction are
instructions normally included in the instruction set since
they are useful for most DSP algorithms. In our design,
we combine these functions into only one logic circuit.
This not only reduces the number of logic gates but makes
its power dissipation low.

4. Energy Efficient Circuits
 It is important to understand how the energy is
consumed in a circuit. An energy efficient design can
berealised by either minimizing the energy consumption
subject to a throughput constrain, or by maximizing the
amount of computation for a given amount of energy. The
optimal design can be made if the trade-off between the
energy and delay can be met since it is possible to
determine the lowest energy for a given level of
performance. One approach in the system is to incorporate
parallelism or pipelining.

*0.18m
geometry
operating at
1.8V.

CASE

Load Capacitance = 10 ff
(equal to 4 Inverters)

Load Capacitance = 20 ff
(equal to 8 Inverters)

Load Capacitance = 30 ff
(equal to 12 Inverters)

Et (pJ)
(worse case)

Et (pJ)
(average
case)

Et (pJ)
(worse case)

Et (pJ)
(average
case)

Et (pJ)
(worse
case)

Et (pJ)
(average
case)

1 6.049 5.691 18.298 14.220 33.778 23.542
2 6.909 6.831 19.989 16.112 37.726 26.848
3 8.302 8.118 22.879 18.265 41.784 29.696
4 8.422 6.258 14.409 11.119 21.769 17.390
5 8.802 6.563 14.895 11.530 22.160 17.795
6 7.791 5.669 14.029 10.585 21.698 16.924
7 6.054 6.054 17.680 11.676 29.061 19.178
8 9.719 6.638 18.110 12.256 29.280 19.703
9 8.460 6.421 16.467 12.282 27.310 20.079

10 7.319 5.159 16.624 11.267 28.157 18.946
Table1 Energy Delay product simulation results of pass transmission gate multiplexer using transistor sizing with

various load capacitances.
CASE Pass Gates (-e06 m) Inv_S (-e06 m) Inv_nQ (-e06 m)

NMOS PMOS NMOS PMOS NMOS PMOS
1 0.28 0.28 0.28 0.28 0.28 0.28
2 0.28 0.28 0.70 1.24 0.28 0.28
3 0.80 0.80 0.70 1.24 0.28 0.28
4 0.80 0.80 0.70 1.24 0.70 1.24
5 1.00 1.00 0.70 1.24 0.70 1.24
6 0.28 0.28 0.70 1.24 0.70 1.24
7 0.28 0.28 0.70 1.24 0.36 1.46
8 0.80 0.80 0.70 1.24 0.36 1.46
9 0.80 0.80 0.28 0.28 0.36 1.46

10 0.28 0.28 0.28 0.28 0.36 1.46
Table 2: The size of transistors.

In addition, if energy efficient circuits are used to
implement the sub-component in the system, good energy
efficiency can be achieved. Therefore, this section will
discuss and show the energy-delay related to the output
loads and transistor sizing. The multiplexer cell as shown
in Figure5 implemented by pass transmission gate is the
main cell applied everywhere within the FU datapath. If S
is low, the top CMOS pass gate is on passing B to the
output, whilst if S is high, the bottom CMOS pass gate is
on and A passes to the output.

Figure5 A pass-transmission gate multiplexer

 Gate sizing[16] can be used to trade-off energy and
delay. The minimal energy delay point of a circuit is not
only affected by its basic design but also by its output
load capacitance. The logic gate capacitance and load
capacitance including wiring both increase linearly with
transistor size. Gate delay can be calculated as td = d,

where is a process-dependent constant, and d is a
unitless delay of the gate. The unitless delay is determined
as d = heff + , where heff is the product of logical effort
of the driving gate and electrical fan-out; a logical effort
of 1 results from a minimum size inverter driving a
similar inverter. The electrical fan out is the equivalent
number of minimum size inputs being driven. The self-
loading delay is the product of logical effort (g) and the
ratio of the equivalent driving gate width (Wpar) to the
equivalent driven gate width (Win), = gWpar/Win. Because
there are no publications relating to the logic effort of a
pass-transistor logic as yet, we regard the multiplexer as a
logic gate. In our work to find the minimal point of
energy delay of multiplexer, the transistor size and
loading capacitance for the gate in figure5 are varied as
shown in Table1 and 2. The circuits were simulated on
SPICE assuming a geometry of 0.18m and an operating
voltage of 1.8V.
 Table1 shows the energy delay product resulting from
the use of different transistor sizes in the multiplexer and
different load capacitances. We have analyzed the energy
delay product of the circuit with both average rise and fall
times and worse case edge times. Clearly, transistor sizing
can help the circuits to have a low energy delay product
when load capacitance is increased. In practical, load
capacitance is very important and has a large effect on

both the performance and power of the system, especially
in a large design. In addition, using the minimal transistor
size cannot achieve optimum energy efficiency. It can be
concluded from these results that for minimum energy-
delay, the CMOS pass gate transistors should be
minimum size, the inv_S should be a drive 1 gate
(PMOS/NMOS width = 1.24e-06m/0.70e-06m) and be
capable of driving the select signals on 2 or 3 multipliexer
gates, and that the inv_nQ should be matched to the
driven load (PMOS/NMOS width = 1.24e-06m/0.70e-
06m). These figures do not include leakage power which
is small for this process, provided the transistor sizing
above is adopted.

5. Discussion and Conclusions
 The results from remaining simulations on the full
custom layout for the datapath shown in Figure2 indicate
that our FU dissipates about 13.68mW@200MHz.
Projecting this to four-way parallelism yields 800MHz
with a power consumption of only 54.72mW. This
indicates a factor of 10 improvement in the dissipation on
the original FU design assuming a similar geometry and
operating voltage.
 Energy efficiency is a significant design constraint for
battery powered DSPs requiring a coherent low energy
technique applied at all levels and particularly at logic and
circuit levels. The proposed FU architecture has been
designed to be flexible, have low power and high
throughput particularly in performing arithmetic
operations involving the multiplier and adder. In addition,
asynchronous data dependent operation and a tunable
delay mechanism are incorporated to gain even better
energy efficiency. At the circuit level, pass transistor logic
is used which is low power without sacrificing
performance. Transistor sizing has been applied to this
pass transistor logic to identify the optimum trade-off
between energy and delay.

Acknowledgement
 This work was funded by EPSRC grant GR/S61270/01
and the authors are grateful for this support. The authors
are also grateful to Dave Clark and Jeff Pepper for
encouragement in this work.

References
[1] Reiner H., “ Reconfigurable Computing: A New
Business Model and its Impact on SoC Design.” , Keynote
speeches in EUROMICRO Symposium on Digital System
Design, Architectures, Methods and Tools, September,
2001.
[2] Li-Hsun C., Chen O.T.-C. and Ruey-Ling M., “A
high-efficiency reconfigurable digital signal processor for
multimedia computing.”, Proceedings of the 2003
International Symposium on Circuits and Systems, vol.2,
pp. 768-771, May, 2003.

[3] Sangjin H., Shu-Shin C. and Connaway C., “Variable-
rate pipelined multiplier design for reconfigurable DSP
applications.”, 45th Midwest Symposium on Circuits and
Systems, vol.1, pp. 587-590, August, 2002.
[4] Martina M., Masera G., Piccinini G., Vacca F. and
Zamboni M., “Reconfigurable DSP IP for multimedia
applications.”, IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol.4, pp.
4179, May, 2002.
[5] I. Verbauwhede, P. Schaumont, C. Piguest and B.
Kienhuis, “Architectures and design techniques for
energy efficient embedded DSP and multimedia
processing.”, DATE'04, France, February, 2004.
[6] M.Lewis and L. Brackenbury, “CADRE: An
Asynchronous Embedded DSP for Mobile Phone
Applications. Design Automation for Embedded
Systems.”, Vol.6, No.4, pp.451-475, 2002.
[7]A. P. Chandrakasan and R. W. Brodersen, “Low
Power Digital CMOS Design.”, Kluwer Academic
Publishers, 1995.
[8] I.E. Sutherland, “Micropipelines.”, Communications
of the ACM, vol.32, no.6, pp.720-738, June, 1980.
[9] M.E. Dean, T.E. Williams and D.L. Dill, “Efficient
self-timing with level-encoded 2-phase dual-rail (LEDR).
”, MIT Conference on Advanced Research in VLSI, March
1991.
[10] V. Varshavsky, V. Marakhovsy and M. Tsukisaka,
“Data-controlled delays in the asynchronous design.”,
Proceeding Of the 1996 IEEE International. Symposium
Circuits and Systems (ISCAS 96), Atlanta (USA), vol. 4,
pp. 153-155, May 1996.
[11] E. Grass, Viv Bartlett and Izzet Kale, “Completion-
Detection Techniques for Asynchronous Circuits.”, IEICE
Transaction Information and System, vol.E80-D, no. 3,
March 1997.
[12] S.M.Nowick, K.Y.Yun, P.A.Beerel and A.E.Dooply,
“Speculative Completion for the Design of High-
Performance Asynchronous Dynamic Adders.”,
Proceedings of Async97, pp. 210-223, April, 1997.
[13] A. D. Booth, “A Signed Binary Multiplication
Technique.”, Quarter Journal Mech. Applicantion Math.,
vol. 4, pp. 236-240, 1951.
[14] C. S. Wallace, “A Suggestion for Fast Multipliers.”,
IEEE Transactions Electronic Computer, vol. EC-13. pp.
14-17, February, 1964.
[15] Keshab K. Parhi, “Low-Energy CSMT Carry
Generators and Binary Adder.”, IEEE Transactions on
Very Large Scale Integration(VLSI) Systems, vol.7, no.4,
pp.450-462, December, 1999.
[16] Ivan Sutherland, Robert Sproull and David Harris.
Logical Effort: Designing Fast CMOS Circuits, Morgan
Kaufmann, 1999.
[17] Keshab K. Parhi, “VLSI Digital Signal Processing
Systems: Design and Implementation.”, John Wiley &
Sons Inc., 1999.

