Virtualization and
legacy support,
parallelization and
speculation

Dr. Ian Rogers*, Prof. lan Watson*

* School of Computer Science, The University of Manchester, UK.

ABSTRACT

In this extended abstract we describe the main themes of our research, namely, where computer architec-
ture is leading us in terms of highly parallel general purpose processors. We discuss what the model for
programs is becoming and the challenges faced. The main challenge is how these architectures bring
about their potential performance whilst being programmable, transparent and a seamless migration
for the user.

1 Introduction
This abstract is laid out into the following sections:

e Future architectures - in this section we gather what are important future hardware archi-
tecture trends.

e A new model for programs - in this section we give a picture on how future software will
exploit this hardware.

e Supporting the present - in this section we describe how the world shifts from the status
quo to the new architectures.

The abstract ends with some conclusions on what has been presented.

2 Future architectures
2.1 Chip multiprocessor

The last generation of processors had multiple functional units capable of executing many instruc-
tions in parallel. This led to performance improvements beyond what was possible by technology
improvements. To keep scaling performance the current generation of processors have introduced
having multiple CPU cores.

Currently the amount of parallelism exposed in a general purpose multi-core processors is
much less than that provided by an array of more task specific cores, such as ClearSpeed’s CSX
600 [cle06]. These cores are simpler than a general purpose core and have local memory. They
will often lack the instruction level parallelism, floating-point units and the memory hierarchy of
a general purpose processor. On paper their performance, however, is superior to general purpose
designs.

An interesting compromise in between these two designs is the Cell processor, where some of
the design is general purpose, but part of the design encompasses more task specific components
each having local memories [Pham05]].
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2.2 Core multithreaded

As the performance hit in going to memory increases, performance of a core can be improved by
allowing it to speculatively execute the next instructions with the memory access still pending. An
alternate approach is to execute more work on the same core but from a different runnable context.
The Niagara processor allows for 4 contexts to be executed on a single core to hide memory
latencies [Kong05].

2.3 Non-uniform memory accesses

For performance reasons, some commodity processors are integrating memory controllers on
chip. Such processors, in a multiprocessor set up, inherently have non-uniform memory access
times. That is, to get to memory from a chip you either have to go directly to your memory con-
troller or via the memory controller of another chip. Local memories are inherently faster.

2.4 Reducing synchronisation

Thread synchronisation prevents a waiting context from being runnable. With databases the need
for globally synchronising locks is avoided by the introduction of transactions. The same can be
true in programming languages. To support transactions in hardware it becomes important to
have commit and rollback mechanisms local to a core [Carl05]. This can be done using buffers
or by modifying the cache to act as a buffer. Although transactions remove the need for syn-
chronisation, a check must be performed to check transactions don’t interfere. Any checks are
likely to steal time, threads and/or cache lines from the parallel work. Synchronisation free par-
allelism, exposed by the programmer and compiler, will have higher performance than transac-
tional schemes. Where many synchronisations are necessary, transactions provide a useful exten-
sion, just as load-lock/store-conditional did for multiprocessor RISC systems, wishing to split
previously atomic bus operations.

2.5 Object-oriented memory design

Scaling the amount of multi-context parallelism leads to problems in the memory system design.
Bus snooping scales badly with current technologies and so directories with point-to-point links
are preferred for performance reasons. The directories maintain information on what addresses
are in use, and by which cores with granularities down to that of a cache line. A problem of false
sharing can occur when two cores are accessing different addresses that share the same cache line.

An object-oriented memory views memory in terms of object identifiers and offsets [Wrig05]].
As memory accesses are primarily to caches, the translation of object identifier to memory loca-
tion need only be performed when filling cache lines, and a TLB can cache the translation in the
same way it caches mappings of virtual to real memory addresses. Modifying the view of mem-
ory to objects may simplify the job of any directories. As objects can have well defined locking
primitives, the efficency of the memory system design can be improved.

A side-effect of object-oriented memories is that handles to objects are reintroduced. This can
lead to improved garbage collection designs.

2.6 Summary

From these research areas we see that future general purpose architectures are going to have two
distinguishing features:

e many threads/contexts: multiple cores and contexts per core.

e radically different memory: placing the main working memory of a context near the core,
distributing the memory design, giving it a transaction supporting object-oriented view.



3 A new model for programs

Languages such as C weren’t designed to be multithreaded. Unless homogeneity of cores is to
be a principal of future architectures, the instruction set architecture needs to be abstracted too.
We believe that virtual machines, such as the Java Virtual Machine, are the only way to design
software for future architectures. Conventional virtual machines aren’t self—hostingﬂ in contrast
we focus our research on the Jikes RVM [jik06].

3.1 Locally distributed virtual machines

Distributed virtual machines, such as dJVM (built upon the Jikes RVM), allow separate memories
to be presented as a single object space [Zigm02]. Their utility is primarily in clusters, but by
considering their use on chip with a distributed on chip memory, the cost of scheduling work and
maintaining the memory model is greatly reduced.

3.2 The virtual machine becomes the OS

Having threads with 100s of bytes of contexts makes distribution expensive and prevents work
distribution from being agile. Having scheduling controlled by a separate context is another per-
formance bottle neck. Combining the OS and virtual machine leads to simplified memory system
design and exposes performance improvements. For example, the device driver code to perform
IO can be inlined across the previously present library and operating system barriers. In our re-
search we have looked to extend the J]Node operating system to be integrated with the Jikes RVM
[Roge05].

3.3 Parallelization

Exposing parallelism is fundamentally the job of the programmer and the programming lan-
guage. Writing threaded applications and removing synchronisation aid this. Having high-level
mathematical languages do this is also important. To expose more, possibly fine grain, parallelism
the virtual machine’s compiler is required.

3.3.1 Supercompiler parallelization

Supercompiler parallelization parallelises loops in situations where dependency analysis is prov-
able. We have written optimisations that dynamically parallelise Java loops at runtime, with pre-
dicted performance improvements when used in conjunction with lightweight threads [Zhao05].

3.3.2 Speculative parallelization

When dependencies can’t be proven the transaction mechanism can be used to speculatively ex-
ecute work in parallel. A check needs to be performed, possibly in parallel, to determine if the
speculation was correct before committing it to memory. When there are idle contexts, specu-
lation provides an answer as to what can make use of this parallel resource and possibly gain
performance.

4 Supporting the present

Having a great new system is unlikely to make software developers and users migrate to it. Whilst
targeting the hardware and software architecture for performance, a means for legacy support is
required.

4.1 Binary translation

PearColator, a binary translator integrated with the Jikes RVM, extends the Jikes RVM’s function-
ality so that it becomes a virtual machine capable of running IA32 and PowerPC binaries [Roge05].
Such a binary translators lacks the rich information available to a virtual machine compiled to a
virtual instruction set, such as Java bytecode, so it must work harder to expose new performance
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(in terms of dependence analysis). The ability to inline and remove performance barriers isn’t lost
though.

4.1.1 Virtual memory

To support the memory system of the program’s efficiently the binary translator needs an efficient
mapping from the program’s virtual addresses to those of the object memory. One approach is to
break the virtual address into indexes of a page table and page, where the page-table is an array
of array pages. The cost of the memory indirection can be removed in the same way as the handle
indirection is removed in the object-oriented memory.

5 Conclusions

The software architecture is experiencing a time of change brought about by the new design com-
plexities of new hardware. There are barriers to achieving performance on new hardware as well
as barriers to its adoption. With the JAMAICA project we are tackling these problems on a number
of fronts [jam06].
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