
Legacy Support

The Jikes RVMThe Jikes RVM
(PearColator)(PearColator)

BinaryTranslator.orgBinaryTranslator.orgThe Advanced Processor Technolgoies GroupThe Advanced Processor Technolgoies Group
JAMAICA ProjectJAMAICA Project

Operating Systems

Hardware Virtual Machine

Virtualization and legacy support, parallelization and speculationVirtualization and legacy support, parallelization and speculation
Dr. Ian Rogers, Prof. Ian WatsonDr. Ian Rogers, Prof. Ian Watson

Parallelization
Supercompiler

Speculation

Locally Distributed VMs

Chip Multiprocessor

Chip Multithreaded

Non-Uniform Memory Access

Transactional Memory

Object-Oriented Memory

Having a new architecture requires support if
users are to migrate to it. FX!32 and Rosetta
demonstrate the ability to migrate using dynamic
binary translation. PearColator advances
the approaches of FX!32 and Rosetta by
utilizing the compiler performance of a VM
optimizing compiler.

 Hardware support for emulated virtual memory
allows pages to be emulated as objects at
consecutive addresses.

Applications
Instruction Set Virtualisation

Optimizing Compiler

Adaptive Optimization System
Memory Management Toolkit

Classloader

JikesNode
Hardware Interrupts Hardware Device Access

Legacy Applications

Filesystems Networking GUI

Core Libraries

GNU Classpath JikesRVM

JNode

Device Drivers

Instruction Set Architecture

Green/Native Thread Control

1 2

5

6

3 4

Login Shell

7 8 9

10 11

12

Integrating the VM and OS exposes optimisations
across library and OS barriers. Having a “safe”
language allows memory management to be
simpler and faster. Scheduling improvements are
exposed in both the VM and OS.

Local memories are inherently faster and lower power.
Non-uniformity exposes the need for optimizing
memory accesses.

Long memory latencies can be hidden by
scheduling other hardware contexts.

Parallel processors and systems-on-a-chip are
becoming the norm.

Hardware support for nested transactions and rollback
to support lock-free parallel execution.

Addressing to support objects, legacy support,
non-local memories and transactions. TLB
caches data keeping memory accesses cheap.

Object IDObject ID OffsetTransaction EpochShared or LocalShared or Local

Instruction
Cache

Data
Cache

Register
File

ctx1

ctx2

ctx3

ctxn

Register

F1 F2 D E M1 M2 W

Level 2 Cache

Level 3 Cache

Level 1 Bus

Level 2 Bus

Core 1 Core 2 Core 3 Core n

Memory Controller

T1

T2 T3

T4 T5

Rollback
(squash)

Non-uniformity exposes the need for optimizing
Core 1

Core 4

Core 2

Core 3

Loop Predecessor

Loop Exit

Loop Successor

Loop Header
class Jamaica_LoopWorker_X
 extends Jamaica_LoopWorker {

 int[] loopInvariantA;
 int[] loopInvariantB;

 loopWorker(int iterator) {
 [...]
 X = loopInvariantA[iterator];
 Y = loopInvariantB[iterator];
 [...]
 }
}

Jamaica_loopWorker_X lw =
 new Jamaica_loopWorker_X();

lw.loopInvariantA = A;
lw.loopInvariantB = B;

JamaicaThreads.runLoopWorkers
 (lw, initial_value, terminal_value);

Copy loop invariants to worker

{loopWorker is
a modified
version of the
loop body

Creates, forks and joins parallel
threads. Each thread runs the
loopWorker multiple times

Supercompilers typically
target mathematical
languages extracting
parallelism. We use
the same approaches
to dynamically create threads that can take advantage
of lightweight threads and idle contexts.

for (i=0; i < A.length; i++) {
 if (A[i] == -1) break;
 A[i]++;
}

a = computeValue1();
b = computeValue2();

Use transactions to create work
that can be discarded if a
loop breaks-out early, or if two
pieces of code interfere through
side-effects.

Present the programmer with a single virtual machine,
internally objects are distributed around memories,
threads migrate to be close to their data and supplies
of idle contexts.

Core 1

Core 4

Core 2

Core 3

Core 1

Core 4

Core 2

Core 3

threads migrate to be close to their data and supplies
Core 1

Core 4

threads migrate to be close to their data and supplies
Core 2

Core 3

threads migrate to be close to their data and supplies
Core 1

Core 4

threads migrate to be close to their data and supplies
Core 2

Core 3

Core 1

Core 4

Core 2

Core 3

Core 1

Core 4

Core 2

Core 3

threads migrate to be close to their data and supplies
Core 1

Core 4

threads migrate to be close to their data and supplies
Core 2

Core 3

threads migrate to be close to their data and supplies
Core 1

Core 4

threads migrate to be close to their data and supplies
Core 2

Core 3

The University
of Manchester

