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Having a new architecture requires support if
users are to migrate to it. FX!32 and Rosetta
demonstrate the ability to migrate using dynamic
binary translation. PearColator advances
the approaches of FX!32 and Rosetta by
utilizing the compiler performance of a VM
optimizing compiler.

  Hardware support for emulated virtual memory
allows pages to be emulated as objects at
consecutive addresses.
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Integrating the VM and OS exposes optimisations
across library and OS barriers. Having a “safe”
language allows memory management to be
simpler and faster. Scheduling improvements are
exposed in both the VM and OS.

Local memories are inherently faster and lower power.
Non-uniformity exposes the need for optimizing
memory accesses.

Long memory latencies can be hidden by
scheduling other hardware contexts.

Parallel processors and systems-on-a-chip are
becoming the norm.

Hardware support for nested transactions and rollback
to support lock-free parallel execution.

Addressing to support objects, legacy support,
non-local memories and transactions. TLB
caches  data keeping memory accesses cheap.
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Loop Header
class Jamaica_LoopWorker_X
   extends Jamaica_LoopWorker {

   int[] loopInvariantA;
   int[] loopInvariantB;

   loopWorker(int iterator) {
       [...]
       X = loopInvariantA[iterator];
       Y = loopInvariantB[iterator];
       [...]
   }
}

Jamaica_loopWorker_X lw =
   new Jamaica_loopWorker_X();

lw.loopInvariantA = A;
lw.loopInvariantB = B;

JamaicaThreads.runLoopWorkers
   (lw, initial_value, terminal_value);

Copy loop invariants to worker

{loopWorker is
a modified
version of the
loop body

Creates, forks and joins parallel
threads. Each thread runs the
loopWorker multiple times

Supercompilers typically
target mathematical
languages extracting
parallelism. We use
the same approaches
to dynamically create threads that can take advantage
of lightweight threads and idle contexts.

for (i=0; i < A.length; i++) {
    if (A[i] == -1) break;
    A[i]++;
}

a = computeValue1();
b = computeValue2();

Use transactions to create work
that can be discarded if a
loop breaks-out early, or if two
pieces of code interfere through
side-effects.

Present the programmer with a single virtual machine,
internally objects are distributed around memories,
threads migrate to be close to their data and supplies
of idle contexts.
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