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Abstract

JikesNODE is an effort to create a Java operating system integrating the open source projects of the Jikes
Research Virtual Machine (RVM) and the Java New Operating System Design Effort (JNODE), respectively a
Java Virtual Machine (JVM) and Java operating system. PearColator is a novel use of the Jikes RVM to execute
not its intended Java bytecodes, but instead PowerPC binaries. Our endeavours are lead by the desire for an
architecture neutral system that exposes new opportunities for dynamic optimisations. This paper presents the
structure of our system, JikesNODE and its bootstrapping process, and the PearColator legacy code execution
environment.

1 Introduction

The Jamaica project is an effort to investigate chip multithreaded and chip multiprocessor computer architectures
[1]. We concentrate on dynamic compiler optimisations to increase our architectures performance. In creating a new
architecture it is possible to port an existing operating system to it. For us this was undesirable as such an operating
system wouldn’t expose the compiler optimisations we’re concentrating on. As our optimisations were written for Java
and the specific JVM of the Jikes RVM, we decided to migrate an existing Java operating system called JNODE to
the Jikes RVM [13, 16].

To migrate users to a new computer architecture and operating system, the ability to execute legacy applications
is desirable. Previous work has statically translated C or binary code to Java, thereby making it executable by the
JVM [17, 7]. We consider this approach undesirable for the user, where a lack of intervention and the ability to get
at underlying performance are key. Systems translating C to Java have to work around presenting a C programming
language style memory (i.e. with pointers) in the strongly typed JVM. We have solved this problem by making our
JVM also capable of executing native binary code, and working upon specific optimisation within the JVM for this
purpose.
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Figure 1: The JikesNODE and PearColator structure

The view of our software system is presented in figure 1. At the top of our system are applications, and at the
bottom the underlying hardware and instruction set. The points at which different layers interface are labelled. GNU
Classpath provides the core library and is used by the entire system, as shown at points 4, 6 and 7 [8]. To avoid
possible issues with sharing the core library, JNODE presents a private copy to each application. This is achieved, in
common with other multitasking JVMs [4], by binary rewriting techniques. The rewrite of the loaded class modifies
the library name to also include a process identifier. Core libraries that are known to be safe are not re-written.

The JikesNODE kernel is responsible for providing the hardware interface and interrupts to the device drivers and
the thread control mechanism (points 1, 3 and 5). The Jikes RVM, adaptive compilation system, is responsible for
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all the dynamically executing code generated by the system (point 2). The JNODE system presents the user and
application interfaces on-top of the Jikes RVM system, and legacy binaries are passed to the legacy code execution
environment of PearColator that directly interfaces with the Jikes RVM optimising compiler (points 8 to 12).

Legacy graphics libraries can be emulated in the system by running Java implementations of X servers [14]. Other
primitive operations for sound and 3D graphics aren’t yet planned to be supported.

The rest of this paper looks at how JikesNODE bootstraps the Jikes RVM as an operating system, Section 2, and
how the PearColator dynamic binary translator is able to execute legacy binaries, Section 3. Finally we conclude our
description of the work that is being undertaken for these two joint research efforts.

2 JikesNODE

The Jikes RVM is written in the Java programming language. To build itself it runs as a mock-up on another JVM.
During this boot-image creation phase a dummy Java class is compiled. This class has sufficient dependencies for
the compiler to entirely build itself. Once this compilation is complete the compiled code is written to disk into the
boot-image file. A C stub program loads the boot-image file directly into the memory location it was compiled for.
The C stub also provides a set of call-backs that allow access to the underlying operating system.
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Figure 2: JikesNode memory layout

For JikesNODE we have created a replacement
for the C stub that acts as the loader for the oper-
ating system. This stub also provides call backs
that are used to diagnose the system until the
Java implemented device drivers are loaded. To
implement libc functions at boot time, the klibc
library is used [2]. System class libraries are com-
piled into the boot image, but those that aren’t
compiled are provided in 3 jar files loaded into
a RAM disk. One jar file contains the standard
java class libraries, the second contains the classes
of the Jikes RVM and PearColator, the final jar
file contains the memory management toolkit that
provides the garbage collection framework for the
Jikes RVM.

Once the system is running device drivers are loaded using the JNODE pluggable module architecture. The special
compiler hooks known as virtual machine magic (VM Magic) allow controlled access to be given by the combination
of the Jikes RVM’s compilers and classloader to the underlying hardware and memory system.

Our system is presently a work in progress, and currently only gets partially through its boot procedure. The
efficacy of this design can be seen in existing Java operating system research such as Alta, K0, J-Kernel, Janos VM,
Kaffe OS and JX [3, 9]. The multitasking virtual machine (MVM) is a multi-program and multi-user JVM using a
modified HotSpot JVM [4]. By running applications as multiple users within the same virtual machine, even with
extra security methods, the performance of two collaborating processes is improved by 11% for throughput and 36%
for response time; the initial load time of running a second instance of an application is reduced by up to 90% [11].

We believe JikesNODE is an interesting alternative to other Java multitasking and operating system designs,
thanks to the Jikes RVM. Another unique feature of the JikesNODE operating system is the integration with a legacy
application execution environment. We describe PearColator in the next section.

3 PearColator
3.1 Structure

PearColator emulates the PowerPC user instruction set architecture and Linux 2.4 system call interface. PowerPC was
chosen as it has a large number of registers that can be mapped to Jikes RVM HIR temporaries. This allows us to avoid
creating memory operations that are expensive with our current memory system. We are working on other instruction
set architectures (ISAs) which have fewer registers. We believe for these ISAs, optimisations in the Jikes RVM will
be able to help to turn memory accesses to the same location into temporarily held values[6], therefore performance
is hoped to be comparable across instruction sets. Linux was chosen as it was easy to discover the implementation of
system calls, and the ELF executable format is relatively simple.

PearColator uses the Jikes RVM optimising compiler and adaptive framework with minimal change (roughly 30
source code lines). An initial part of the design allowed for the generated code to be turned into Java bytecodes
capable of execution in any JVM. But to avoid extra translation overhead, we use the Jikes RVM directly. Figure 3
shows the interaction of the main components in the PearColator system.
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Figure 3: Overview of PearColator
3.2 Implementation

After being called upon to execute a PowerPC binary, PearColator performs an instruction to high-level IR translation.
The translated instructions form a trace, as with the FX!32 and DAISY binary translators [12, 5], and maintain a set
of translation assumptions for each translated instruction. These assumptions allow flag setting operations to avoid
setting and then testing several bits; instead compare and branch instructions are planted. To guide trace formation,
branch statistics are gathered and, if code is retranslated, used to improve the accuracy of the trace.

The memory model of the prototype PearColator uses the same address space as the Jikes RVM, and uses an
emulated page table to provide the application space. The emulated page table requires the page table entry to
first be calculated and loaded from memory, then the contents of that page accessed. This process adds a memory
indirection to every memory access, which is undesirable. To reduce this overhead we have created an object-oriented
memory implementation architecture. This architecture allows for memory to be emulated as single arrays (possibly
highly optimized, for example through use of hardware segmentation) or, if the space requirements demand it, for
these to be converted back into the less optimal emulated page table scheme.

The operating system interface in PearColator maps PowerPC Linux system calls into Java method calls. These
method calls are planted into the translated code, and present points for method inlining. As with an application
running in JikesNode, this raises the possibility of optimising a device driver into an application. However, with legacy
code the memory emulation requires more analysis in the compiler than with Java’s strongly typed classes.

3.3 Performance

0

1000000

2000000

3000000

4000000

5000000

6000000

N
at

iv
e 

Po
w

er
PC

 C
 D

h
ry

st
o

n
es

/s
ec

o
n

d

Q
EM

U
 F

as
t 

Po
w

er
PC

 C
 D

h
ry

st
o

n
es

/s
ec

o
n

d

Pe
ar

PC
 P

o
w

er
PC

 C
 D

h
ry

st
o

n
es

/s
ec

o
n

d

Pe
ar

C
o

la
to

r P
o

w
er

PC
 C

 D
h

ry
st

o
n

es
/s

ec
o

n
d

AMD Athlon XP2700+G3 600Mhz

Ji
ke

sR
V

M
 J

av
a 

D
h

ry
st

o
n

es
/s

ec
o

n
d

H
o

tS
p

o
t 

1.
4.

2 
Se

rv
er

 J
av

a 
D

h
ry

st
o

n
es

/s
ec

o
n

d

N
at

iv
e 

IA
32

 C
 D

h
ry

st
o

n
es

/s
ec

o
n

d

Figure 4: Overview of PearColator

PearColator successfully emulates a wide range
of PowerPC Linux applications, with new in-
structions and system calls being implemented as
needed. Figure 4 shows the relative performance
for the Dhrystone benchmark in C and Java of
PearColator, native PowerPC, PowerPC dynamic
binary translators (QEMU and PearPC), JVMs
and native IA32.

Profile guided optimisations allow the Java
Dhrystone figures to be higher than the native
C. However, the Jikes RVM’s performance is not
faster than C and this reflects its research nature.
The performance of QEMU fast (no MMU emu-
lation) shows that on a AMD Athlon XP2700+
(2163MHz) processor the performance is 30%
slower than a PowerPC G3 at 600MHz. PearCola-
tor and PearPC are both slower than QEMU fast,
however, they are both emulating the MMU1.

Thanks to the branch predictor within the trace formation code, an entire Dhrystone loop can be moved into a
trace. With an entire loop in a trace the sophistication of the Jikes RVM optimizing compiler is able to outperform
the simpler compiler of PearPC by 73%. However, this result relies on careful tuning of the trace length and the fact
that Dhrystone uses a lot of 32-bit values2.

We are working on complementing the optimizing compiler approach of PearColator with an interpreter. The
performance of the optimizing compiler, compared to the simpler compilers of PearPC and QEMU, we believe is

1PearPC’s MMU emulation is accurate to that of a G3 whereas PearColator only emulates memory for a single process space.
2PearColator emulates byte loads and stores using 32-bit loads and stores and logical operations.

3



encouraging. We expect the performance of QEMU fast or better, by improving the optimisation of memory.

4 Summary and Conclusions

This paper has presented a new operating system and binary translation system based around the Jikes RVM adaptive
and optimising compiler. The two systems complement each other by trying to migrate users to a higher performance,
dynamically optimising, operating system architecture. Both systems are prototypes, but already performance is
comparable with similar projects. Virtualisation is already an important operating system concept, we expect to see
this complemented in the future by virtualisation of the instruction set, beyond what is seen in existing architectures.
We expect this as the variety of things to virtualise will increase (for example, as new instruction sets are created)
and the desire to further optimise hardware (possibly by simplifying).
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