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Presentation outline:

• Motivation

– simultaneous multithreading, chip 
multiprocessor architectures

– the JAMAICA architecture

– work distribution

– virtualization

• Annotated Loop Structure Trees

• Null and bound check elimination

• Parallelisation optimisation

• Performance analysis

– SpecJVM 98

– simple kernel

• Future work

• Summary
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SMT and CMP Architectures

• Simultaneous MultiThreading (SMT):

– performance gap between processor and memory is growing

– threads can be scheduled on cache misses to hide memory access time

• Chip MultiProcessors (CMP):

– instruction level parallelism reaching limits

– reduce design complexity

– local clocks aid clock distribution

• Threaded code necessary to expose parallelism

• New mechanisms to help expose threaded parallelism

– thread scheduling and work distribution

– speculative threading (transactional commit mechanism)

• This work is a first step into a runtime support system
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Overview of the JAMAICA architecture
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Some more detail

4
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• Idle threads distribute tokens on a 
token ring bus

• Executing context on a core 
requests to ship work to an idle 
context or core and context

• Taking a token from ring grants the 
use of a particular context

• Shipping of work between cores 
occurs over data bus

• Gives lightweight thread creation

• When token is redistributed, work 
has been completed

• Thread unit monitors for 
completion of forked work

Work distribution
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Virtualization

• Platform independence

– Operating system virtualization

• Run multiple operating systems simultaneously on virtualized hardware

– Application virtualization

• Standard application formats such as ELF can run on a multitude of operating 
systems as binary format and system call interface are standardized.

• Wine allows windows applications to run on FreeBSD, Linux and Solaris

– Instruction set virtualization

• Dynamic binary translators (see presentation in tomorrows PLOS workshop)

• Hardware flexibility

– Transmeta - 4-way VLIW TM3000 and TM5000 processors, 8-way VLIW TM8000 
processor all run IA32 code

• New compiler optimizations …
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Software support for the JAMAICA architecture

• Tools

– C compiler – based on Princeton’s LCC

– jtrans – Java class file to assembler

– javar – modified to generate jtrans parallel constructs

– sim-idbg – interactive debugger and simulator in C

– SIMPA – threaded, interactive, cycle accurate and fast simulator in Java

– Jikes RVM – JAMAICA back-end and runtime
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The Jikes RVM

• JVM written in 
Java

• Support for IA32, 
PowerPC and 
JAMAICA

• Baseline (quick) 
and optimizing 
compilers

• Adaptive 
optimization and 
feedback system

• Extended array 
SSA form sub-
stages in HIR and 
LIR optimization
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Annotated Loop Structure Trees
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Null and bound check elimination

• ABCD analysis eliminates 
checks when the values of the 
arraylength and non-nullness
are known

• Length and non-nullness are 
known following a test or after 
an array is created

• Analysis of spec benchmarks 
showed ABCD wasn’t enabling 
loops to be parallelisable

• Annotated LST used to 
duplicate loop body and create 
one without tests and one with, 
with explicit tests beforehand



Combining the strengths of UMIST and
The Victoria University of Manchester 12

Duplicated loops, 
one without 
exceptions
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Performance of Annotated LST Optimizations
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Loop Parallelisation Optimisation
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Parallelised SpecJVM Performance

Average speed-up of 1.9%
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Parallelised SpecJVM Performance
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Simple kernel performance

• Simple test to see 
if optimisation can 
parallelise and 
get performance 
from simple case

• Performs no 
useful work �

• Achieved 79% 
speed-up on dual 
CPU Intel
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Future work

• Speculative execution

– Range of speculative and non-speculative execution states

• tree rooted at non-speculative state with branches for every spawned 
speculative context

• speculative contexts may spawn more speculative contexts

– If speculation goes wrong squash speculative state

• throw away values in cache or a buffer

– Detect speculation problems:

• in software: when a value isn’t that expected explicitly squash

• in hardware: when an address is loaded by a speculative context, ensure 
that stores to the same address from a less speculative context cause a 
squash

– Problems with creating speculative threads and avoiding excessive squashing

– Mechanism may aid virtual machines, e.g. handling of unaligned memory 
accesses
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Future work

• Loop parallelisation can recognize more loops if loops with break out paths are 
including in analysis

• Parallelisation can work for these loops with more speculative threads being 
squashed if a break-out path is taken
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Summary

• We have presented a series of runtime optimisations designed to increase 
the number of parallel threads for next generation CPUs

• Threads are light-weight and may comprise just 1000s of instructions

• Our optimisation doesn’t work on current CPUs with the current threading 
model (upto 2.48 times slow-down)

• Performance improvements on a standard benchmark suite are modest 
(1.9% on SpecJVM ignoring threading costs)

• Future hardware support for light-weight and speculative threading should 
improve the situation

– cheaper to create threads (e.g. JAMAICA)

– possible to create more threads

• We have a portable infrastructure for virtualization of the CPU, this work 
includes work on a Java oriented operating system and legacy code 
execution environment
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Thanks!

• … and any questions?


