
Combining the strengths of UMIST and
The Victoria University of Manchester 1

An Automatic Runtime
DOALL Loop
Parallelisation Optimization
for Java

Dr. Ian Rogers, Jisheng Zhao,

Dr. Chris Kirkham, Prof. Ian Watson

The Advanced Processor Technologies group

http://www.cs.manchester.ac.uk/apt

Combining the strengths of UMIST and
The Victoria University of Manchester 2

Presentation outline:

• Motivation

– simultaneous multithreading, chip
multiprocessor architectures

– the JAMAICA architecture

– work distribution

– virtualization

• Annotated Loop Structure Trees

• Null and bound check elimination

• Parallelisation optimisation

• Performance analysis

– SpecJVM 98

– simple kernel

• Future work

• Summary

Combining the strengths of UMIST and
The Victoria University of Manchester 3

SMT and CMP Architectures

• Simultaneous MultiThreading (SMT):

– performance gap between processor and memory is growing

– threads can be scheduled on cache misses to hide memory access time

• Chip MultiProcessors (CMP):

– instruction level parallelism reaching limits

– reduce design complexity

– local clocks aid clock distribution

• Threaded code necessary to expose parallelism

• New mechanisms to help expose threaded parallelism

– thread scheduling and work distribution

– speculative threading (transactional commit mechanism)

• This work is a first step into a runtime support system

Combining the strengths of UMIST and
The Victoria University of Manchester 4

Overview of the JAMAICA architecture

Combining the strengths of UMIST and
The Victoria University of Manchester 5

Some more detail

4

/32 /32/1

IRPC

M
U
X

A
D
D NPC

/32

/32

Instruction Cache

BR_Offset_EX
BR_Offset_ID
BR_EX
BR_ID

/32
/32
/1
/1

ICACHE_MISS

M
U
X

M
U
X

/1/32
Stall
Inst.

CTX_ACCEPT
CTX_SEND
TIU_BUSY

DCACHE_MISS

LAZY_ALLOC
LOAD_DELAY
FILLSPILLTH

M
U
X

sx

sx

/32

/32
/32 Sx

/1
/1
/3
/1
/1
/1
/1

disp16 [0..15] /16

disp21 [0..20] /21

IR

bit12 [12] /1

rc* [0..4]

ra* [21..25]

rb* [16..20]

/5

/5

/5

/8imm [13..2]

opcode2 [5.. 11] /7

opcode [26..31] /6

Context
Table

rc

ra

rb

M
U
X

Load/FS
/2

dest/8

/8

/8

/8

Control
Logic

Register
File

/32Va

/32
Vb

M
U
X Vb

A
D
D

NPC

/32

Branch
/1

<<2
-ve

/1
Comparitor

Stall
PC

/1

Insert
Inst.

Stall Stall
LOAD_DELAY/1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

JAMAICA DATAPATH DIAGRAM

IF/ID ID/EX

M
U
X

M
U
X

Va

zero

ra'rb'

ra'

rb'

EX/MEM

ALUout /32

/13 Op

dest
NPC/32

Vb /32

Va /32 M
U
X

/32

Sx

A
L
U

Register/Other

/1 func.

ALUout

Cond?

Branch
Type

dest/8

Va/32

/1

/2

/4

BR_EX /1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

MEM/WB
Control
Logic

Control
Logic

/13 Op

Op$TIU/2

/32 ALUout

Va/32

M/32

DCACHE_MISS /1

M
U
X

EXCEPTION_ANNUL/13

/13
/13 Op

dest/8

Data Cache

Control
Logic

/13 Op

M
U
X

/32 ALUout

/1
Load/{LoadImm,Reg}

ra
rb

wb_res
dest
wen

/1
wen

LAZY_ALLOC/1

FILLSPILL/3

/3FST

/128
/128

/8FSTwin

M
U
X

Va

M
U
X

Spill Area

Vb

base
count

FillSpill
/1

<<5

/1

spill_en
sp_reg

/1

spill_en

sf2/1

fill_en

SPILL_OVERFLOW/1 SPILL_OVERFLOW/1

wb_res

A
D
D

quTm

1

CTX_SWITCH /1 CTX_SWITCH/1

ICACHE_MISS/1

ICACHE_MISS_EX/1ICACHE_MISS_EX /1

ICACHE_MISS/1

fill_en

sf2

M
U
X

M
U
X

Token

Rec'd Sent

Token

Trq/1

Trq/1

trq tok

Tok_Gaine d/1

Token Poo l

/1 /1

/1 Insert
Token

Context[/1,/4]

dctx

Fill/Spill/
THB/
Handler

TIU_BUSY/1

CTX_ACCEPT/1
CTX_SEND/1

CTX_ACCEPT /1

Token

CTX_SEND /1

CTX_SEND

/1

Heap allocated registers
and context management

Alpha based
instruction set

5 stage
MIPS based

pipeline
(without TLB

stages)

Token ring
interface

Combining the strengths of UMIST and
The Victoria University of Manchester 6

• Idle threads distribute tokens on a
token ring bus

• Executing context on a core
requests to ship work to an idle
context or core and context

• Taking a token from ring grants the
use of a particular context

• Shipping of work between cores
occurs over data bus

• Gives lightweight thread creation

• When token is redistributed, work
has been completed

• Thread unit monitors for
completion of forked work

Work distribution

Th
rea

d Re
qu

est

Thread dies

token

TIU

Core

L1 $

token

token

Token Pool

TIUTIU

Token Distribution Ring

Core

L1 $

Core

L1 $

Combining the strengths of UMIST and
The Victoria University of Manchester 7

Virtualization

• Platform independence

– Operating system virtualization

• Run multiple operating systems simultaneously on virtualized hardware

– Application virtualization

• Standard application formats such as ELF can run on a multitude of operating
systems as binary format and system call interface are standardized.

• Wine allows windows applications to run on FreeBSD, Linux and Solaris

– Instruction set virtualization

• Dynamic binary translators (see presentation in tomorrows PLOS workshop)

• Hardware flexibility

– Transmeta - 4-way VLIW TM3000 and TM5000 processors, 8-way VLIW TM8000
processor all run IA32 code

• New compiler optimizations …

Combining the strengths of UMIST and
The Victoria University of Manchester 8

Software support for the JAMAICA architecture

• Tools

– C compiler – based on Princeton’s LCC

– jtrans – Java class file to assembler

– javar – modified to generate jtrans parallel constructs

– sim-idbg – interactive debugger and simulator in C

– SIMPA – threaded, interactive, cycle accurate and fast simulator in Java

– Jikes RVM – JAMAICA back-end and runtime

Combining the strengths of UMIST and
The Victoria University of Manchester 9

The Jikes RVM

• JVM written in
Java

• Support for IA32,
PowerPC and
JAMAICA

• Baseline (quick)
and optimizing
compilers

• Adaptive
optimization and
feedback system

• Extended array
SSA form sub-
stages in HIR and
LIR optimization

Machine description
and parameters

Profile information

BURS
grammar

Hardware
parameters

HIR = High-level Intermediate Representation
LIR =Low-level Intermediate Representation
MIR =Machine-specific Intermediate Representation

BURS =Bottom-Up Rewrite System

Binary Code

FinalAssembly

Optimization of MIR

Optimized MIR

MIR

Optimized LIR

LIRto MIR

Optimization of LIR

LIR

Back End

HIRto LIR

Front End

Optimization of HIR

Bytecode to HIR

HIR

Optimized HIR

Jikes RVM
optimizing compiler

Combining the strengths of UMIST and
The Victoria University of Manchester 10

Annotated Loop Structure Trees

Combining the strengths of UMIST and
The Victoria University of Manchester 11

Null and bound check elimination

• ABCD analysis eliminates
checks when the values of the
arraylength and non-nullness
are known

• Length and non-nullness are
known following a test or after
an array is created

• Analysis of spec benchmarks
showed ABCD wasn’t enabling
loops to be parallelisable

• Annotated LST used to
duplicate loop body and create
one without tests and one with,
with explicit tests beforehand

Combining the strengths of UMIST and
The Victoria University of Manchester 12

Duplicated loops,
one without
exceptions

Combining the strengths of UMIST and
The Victoria University of Manchester 13

Performance of Annotated LST Optimizations

Combining the strengths of UMIST and
The Victoria University of Manchester 14

Loop Parallelisation Optimisation

Combining the strengths of UMIST and
The Victoria University of Manchester 15

Parallelised SpecJVM Performance

Average speed-up of 1.9%

Combining the strengths of UMIST and
The Victoria University of Manchester 16

Parallelised SpecJVM Performance

Combining the strengths of UMIST and
The Victoria University of Manchester 17

Simple kernel performance

• Simple test to see
if optimisation can
parallelise and
get performance
from simple case

• Performs no
useful work �

• Achieved 79%
speed-up on dual
CPU Intel

Combining the strengths of UMIST and
The Victoria University of Manchester 18

Future work

• Speculative execution

– Range of speculative and non-speculative execution states

• tree rooted at non-speculative state with branches for every spawned
speculative context

• speculative contexts may spawn more speculative contexts

– If speculation goes wrong squash speculative state

• throw away values in cache or a buffer

– Detect speculation problems:

• in software: when a value isn’t that expected explicitly squash

• in hardware: when an address is loaded by a speculative context, ensure
that stores to the same address from a less speculative context cause a
squash

– Problems with creating speculative threads and avoiding excessive squashing

– Mechanism may aid virtual machines, e.g. handling of unaligned memory
accesses

Combining the strengths of UMIST and
The Victoria University of Manchester 19

Future work

• Loop parallelisation can recognize more loops if loops with break out paths are
including in analysis

• Parallelisation can work for these loops with more speculative threads being
squashed if a break-out path is taken

Combining the strengths of UMIST and
The Victoria University of Manchester 20

Summary

• We have presented a series of runtime optimisations designed to increase
the number of parallel threads for next generation CPUs

• Threads are light-weight and may comprise just 1000s of instructions

• Our optimisation doesn’t work on current CPUs with the current threading
model (upto 2.48 times slow-down)

• Performance improvements on a standard benchmark suite are modest
(1.9% on SpecJVM ignoring threading costs)

• Future hardware support for light-weight and speculative threading should
improve the situation

– cheaper to create threads (e.g. JAMAICA)

– possible to create more threads

• We have a portable infrastructure for virtualization of the CPU, this work
includes work on a Java oriented operating system and legacy code
execution environment

Combining the strengths of UMIST and
The Victoria University of Manchester 21

Thanks!

• … and any questions?

