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Abstract 
Dynamic binary translation looks to map one 
computer architecture to another. Java is unusual in 
that it compiles to a platform independent bytecode 
that runs on a virtual machine. This paper shows a 
dynamic translation and compilation environment 
that can provide a Java virtual machine (JVM). 
Furthermore, dynamic compilation has the ability to 
perform run-time optimisations that are unavailable 
to a conventional static compiler. A technique is 
shown that translates Java bytecodes in sympathy 
with dynamic compiler optimisations. This is done 
with the aim of rivalling and surpassing static 
optimisation techniques using dynamic ones. This 
will enable Java to stay true to its goal of being 
platform independent and yet running at 
comparable speeds to statically compiled code. 
Results from the Dynamite JVM, developed as part 
of this research, are presented. 
1 Introduction 
The Java environment was developed in 1995 
[Gosling, McGilton, 1995]. Features from many 
programming languages and program language 
libraries were combined into a system that set out to 
be platform independent. The growth in Java’s 
libraries and some alterations to the original 
language specification have led to Java’s continual 
growth as a commercial programming language and 
tool. For instance, in a recent survey Java was cited 
as the most in demand IT job skill [Computer, 
2000]. 
By being so ambitious with its features, Java has 
suffered from lower performance than rival 
programming languages such as C++, which it was 
hoped it to would replace. A key reason for the low 
performance was the execution of the platform 
independent bytecodes, with in a Java virtual 
machine, rather than static compilation. To speed 
up the execution of these bytecodes Java virtual 
machines optimised the bytecodes they were 
interpreting [Lindholm, Yellin, 1999]. Hardware 
was also developed that could execute Java 
bytecodes [O’Connor, Tremblay, 1997]. The 
hardware technique has found a niche in embedded 
devices where a Java environment needs to be 
compact as well as fast [Cormie, 2000]. Legacy 
computers and CPUs unwilling to compromise their 
native instruction speed were left with 
interpretation as their Java virtual machine 

environment. This has led to the invention of Just-
in-Time (JIT) and dynamic Java compilers1. 
Just-in-Time compilation compiles a Java class or 
method the first time it is accessed. Example Just-
in-Time compilers are Symantec’s JIT compiler 
that came with Microsoft Windows versions of the 
Sun Java Development Kit [Symantec, 1998] up 
until Java 2 version 1.3, and Microsoft’s own JVM 
[Microsoft, 2001]. Just-in-Time compilation slows 
the execution of the Java program, but it is hoped 
by executing the compiled methods rather than 
interpreting the Java bytecodes the time will be 
made up. Often this approach is naïve as not all 
code in a class or a method is executed within a run 
of a program. Some bytecodes are only executed 
once and don’t warrant compilation as 
interpretation would be faster. 
Dynamic compilers compile Java bytecodes when it 
is appropriate. The compiled bytecodes may be a 
small part of a method or they could span several 
methods. The dynamic compiler may also have an 
interpreter to interpret bytecodes which won’t be 
executed frequently. It is appropriate to compile 
bytecodes when the cost of the time spent 
compiling will be more than regained by executing 
the faster compiled code. This can only be known 
in retrospect, so dynamic compilers rely on 
profiling information to gather statistics about the 
run of a program and to predict where a speed up 
can be achieved. This also allows expensive 
compiler optimisations, such as method inlining, to 
be targeted. These optimisations may break the 
Java virtual machine specification, but by placing 
checks around the optimised code a safe fall back 
can be used when the optimisation is unsafe. Run-
time optimisation can’t be performed by a static 
compilers as they must ensure the code produce 
will work in all circumstances. 
Dynamic compilers are a new form of Java virtual 
machine that have only appeared recently. This 
paper looks at the development and optimisation of 
the Dynamite JVM which falls into the dynamic 
compiler category of Java virtual machine. The 
Dynamite JVM is novel as it builds on work for the 
Dynamite dynamic binary translator [Souloglou, 
                                                      
1 Static compilers for Java have also been 
developed [Free, 2001]. As these are unable to load 
and execute Java class files dynamically they do 
not meet the Java virtual machine specification 
[Lindholm, Yellin, 1999]. The author therefore 
omits their discussion. 



 

1996]. Section 2 talks about dynamic binary 
translators and there recent emergence as a 
commercial tool. Section 3 discusses the features of 
a Java virtual machine that make it difficult to 
compile and optimise for. Section 4 presents the 
Dynamite JVM and how it addresses the problems 
of section 3. Section 5 shows preliminary results of 
using the Dynamite JVM with certain kernel 
benchmarks. Finally, section 6 looks at the 
continued development of the Dynamite JVM and 
the Dynamite dynamic binary translator. 
2 Dynamic Binary Translators 
Dynamic binary translation is a technique for 
recompiling code from one instruction set (the 
subject instruction set) to another instruction set 
(the target instruction set) whilst the program is 
running. This allows legacy computer programs to 
be run on new faster or lower power computer 
architectures. Hardware and software techniques 
are in commercial use today. The AMD K6 3D 
processor performs hardware translation of an IA32 
instruction to several RISC86 Ops in the instruction 
decode phase of its pipeline [Shriver, Smith,1998]. 
Transmeta in their Crusoe product [Transmeta, 
2000] perform software translation. Software 
translation runs a translation program on the native 
processor and caches the results in a translation 
cache (typically an area of DRAM). Code from the 
translation cache is then executed on the native 
processor. 
Optimisations in hardware translation are limited 
by how long the processor can spend decoding an 
instruction (long or slow pipelines reduce the 
number of instructions per clock) or by the size of 
the window of code the decoder is translating. 
Software translation must appear transparent to a 
user, meaning quick translations are often needed. 
Software translation has the ability to perform 
expensive code optimisation (unavailable to a 
hardware translator) in idle computer time or when 
profile information says it would be beneficial. A 
software translator will significantly simplify an 
instruction decoder in a processor pipeline. An 
example of this is in the Crusoe processor pipeline 
where precise exceptions aren’t available. Instead 
precise exceptions can be emulated by rolling the 
processor state back to before the exception and 
then using differently translated code to find the 
exact subject instruction that causes an exception. 
The potential of dynamic optimisation has been 
seen in the Dynamo dynamic binary translator. On 
HP PA-RISC code Dynamo was able to translate –
O2 optimised code and execute it at –O4 speed 
[Bala, Duesterwald, Banerjia, 2000]. 
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Figure 1 The Dynamite dynamic binary 
translator 

Dynamite is a dynamic binary translator created at 
the University of Manchester [Souloglou, 1996]. It 
is now being developed by a start-up company 
called Transitive Technologies [Transitive, 2001]. 
Dynamite provides a backend that is tailored for a 
specific computer architecture. Existing backends 
are for the IA32 (a CISC architecture) [Sandham, 
1998], Sparc and ARM (both RISC architectures) 
[Souloglou, 1996] [Linfoot, 1999], and PlayDoh (a 
VLIW architecture in many ways similar to IA64) 
[Howson, 1999]. The Dynamite kernel provides the 
translation cache, an optimised intermediate 
representation and a hot-region2 optimiser. The 
Dynamite frontend drives the translator and 
provides mechanisms for handling operating system 
calls and/or peripheral hardware. Dynamite 
frontends exist for IA32 [Sandham, 1998], 68000, 
ICL 2900, PostScript, STUMP (a simple 16bit 
RISC architecture based on ARM), LARD (a 
hardware description language) [Rogers, 1998] and 
Java. 
3 Java Virtual Machine 
The Java virtual machine is ambitious in the 
features it makes routinely available to the 
programmer. The execution model is entirely 
dynamically linked making all references symbolic. 
It supports virtual methods and interfaces, that 
provide single inheritance and approximate 
multiple inheritance. The class loader, which is 
responsible for the loading of the program and 
libraries, can be replaced by a user defined one that 
could, for example, load parts of the program from 
over the internet. The class loader also has to 
support a reflective API which allows a user to load 
and modify a classes behaviour. To enable the large 
number of Java libraries to work, the Java virtual 
machine needs to be able to call out to software 
routines written for the native processor. The Java 
virtual machine provides a garbage collected 
                                                      
2 Hot-regions are areas of code that profiling has 
shown to be executed frequently. Optimising these 
regions has the biggest pay off due to the 90/10 rule 
[Hennessy, Patterson, 1996] that states 90% of 
execution time is spent in 10% of code. 



 

memory manager. Java also has in built support for 
threading with locking and synchronisation 
primitives. 
Java methods contain additional information for its 
exception model. The Java exception model allows 
programs to be written for the default case with 
exceptional cases thought of separately. The 
exception model requires extra checking to be 
performed by the virtual machine, as well as adding 
multiple possible pathways through a program. So 
as not to preference any particular underlying 
register architecture, the Java virtual machine uses 
a 0-address, stack based instruction set (Java 
bytecodes). The stack increases the number of 
instructions that a simple routine like add would 
require to be performed. For example, on a RISC 
architecture add would  simply be add 2 registers 
and store the result in a 3rd (1 instruction), with the 
Java virtual machine stack this becomes push 2 
values, add the top 2 values then pop the result (4 
instructions). 
4 Dynamite JVM 
The Dynamite JVM can potentially provide all the 
features of a Java virtual machine. Currently a key 
set of features have been focussed on. Full support 
for the native API, threading and exceptions is 
being worked on. The description below describes 
the eventual complete mechanisms. 
The Dynamite JVM builds up intermediate 
representation a basic block3 at a time. Bytecodes 
are translated using a symbolic stack and with local 
variables mapped in to registers. The way Java 
programs are compiled means that the stack is 
empty over 93% of the time on basic block 
boundaries [Krall, 1998]. This means that the stack 
overhead is removed in the majority of basic 
blocks. The dynamite kernel performs dead code 
removal and common sub-expression elimination. 
Dead code is detected by watching which registers 
are written to by the intermediate representation. If 
a register is written to twice without the first value 
being used then the intermediate representation that 
generates the first value can be safely be removed. 
                                                      
3 A basic block is a sequence of consecutive 
instructions in which flow of control enters at the 
beginning and leaves at the end without halt or 
possibility of branching except at the end [Aho, 
Sethi, Ullman, 1986]. Basic blocks in dynamic 
translators are different as they are discovered on 
the fly which means not all entry points are known. 
Because of this dynamic translators have to allow 
basic blocks to overlap to avoid re-translation. This 
isn’t true for basic blocks with in static compilers 
where all entry and exit points are known in 
advance. 

After the intermediate representation has been 
created then the backend code generates over it. 
As basic blocks are executed with the Dynamite 
JVM profiling statistics are created. Hot basic 
blocks are detected and joined with other hot basic 
blocks covering a hot-region and generating a 
group block. When a group block is generated dead 
code elimination is performed. Register allocation 
is tuned with in a group block to prefer hot basic 
blocks and thus reduce the number of register spills 
(based on the assumption that basic blocks spill an 
equal amount). 
To maximise the amount of code that can be 
optimised with in a group block we need to keep 
local and stack variables visible over method 
boundaries. In conventional compilers this is done 
using techniques such as register colouring over 
method boundaries or method inlining. Register 
colouring has proven to be an NP complete 
problem [Chow, Hennessy, 1990] and therefore not 
suitable for use in a dynamic compiler. Method 
inlining has appeared in the Sun HotSpot Java 
virtual machine and is run as a separate 
optimisation phase which requires de-optimisation 
if assumptions later prove incorrect [Sun, 1999]. 
A novel approach to increasing the visibility of 
variables is used in the Dynamite JVM with an 
infinite abstract register pool as shown in figure 2. 
Every translated method is given a portion of the 
register bank to use. Parameter passing is 
performed by writing the parameters straight from 
the symbolic stack into the called method. When 
the called method is unknown, for instance in 
virtual method calls, the values are written into 
registers which are then read into the symbolic 
stack of the called method. Unnecessary register 
copying that isn’t eliminated by the use of the 
symbolic stack will be removed in the dead code 
removal phase of group block creation. A memory 
backup scheme is used when a method’s frame is 
required to be used more than once (i.e. recursive 
method calls). For typical applications studies have 
shown the register pool need be little larger than 
8000 registers. If a larger register pool is required 
then parts can be reclaimed (by deleting the 
dynamic code that uses it) or we can share sections 
by noting that leaf methods can never call each 
other (by definition). 



 

 
Figure 2 Mapping methods to abstract register 
pool 

As abstract register pool registers are swapped in 
and out of target machine registers an area of 
memory is used for storing the backed up values. 
Threading is supported by swapping the pointer to 
the backed up values to those of another thread. 
Currently no locking and synchronisation on 
objects is available. 
Exceptions are supported by mapping target 
machine instructions back to Java bytecodes. The 
exception handler is then found by searching 
through the Java virtual machine stack. A slight 
optimisation is used so that signal trapping isn’t 
used to catch null pointer exceptions. Instead a null 
object is created which catches reads and writes by 
protecting the memory it is created in. Branches are 
permitted but they go straight to the Dynamite JVM 
exception handling mechanism. 
Garbage collection is only performed when a 
program terminates. An interface is available so 
that a new garbage collector can be written. 
5 Results 
To determine the efficiency of the abstract register 
pool the Kaffe [Wilkinson, 2001] JVM interpreter 
was instrumented. When running the javac 
benchmark (part of the OSG SPEC JVM98 
benchmark suite [SPEC, 1998]) we recorded 
information on hot-regions and local variable 
usage. The model of the register allocation 
algorithm allocated registers to local variables 
based on their run-time contribution per local 
variable. Registers required for maintaining call 
stack frames and the JVM stack’s temporary 
variables were ignored. The results are shown in 
figure 3. 
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Figure 3 The approximate percentage of javac 
execution that will fit with in a group block with 
out spill code 

The graph shows that pay off of having more 
registers available to the register allocation 
algorithm. The algorithm is able to perform well 
with few registers, it gets 30% of the total 
instruction count in 8 registers. This is good for 
instruction sets with a small number of visible 
registers such as the IA32. With an instruction set 
with a more reasonable 25 registers, 54% of the 
total number of instructions are covered. 
The performance of the code translation with in the 
Dynamite JVM was tested. A bubble-sort kernel 
was written and run on the Sun JDK version 1.17 
[Blackdown, 1999] as well as the Dynamite JVM 
and the Dynamite JVM with hot-region 
optimisation (-O). The Sun JDK was with out a JIT 
compiler and the Dynamite JVM was running on an 
old revision of the IA32 backend. All start up 
overheads (i.e. to load system libraries and perform 
translation) are removed. The results are shown in 
figure 4. 

 
Figure 4 Performance of Dynamite JVM on 
bubble-sort 

The figure of merit is calculated by dividing the 
number of native machine instructions executed per 
subject machine instruction. The Sun JDK 



 

interpreter has a figure of merit of 7.11 Pentium II 
instructions per Java bytecode. The Dynamite JVM 
without hot-region optimisations has a figure of 
merit of 6.23, where the bulk of this is due to 
translator overhead in moving between basic 
blocks. The Dynamite JVM with hot-region 
optimisations (-O) has a figure of merit of 1.86. 
With the latest code optimisations in the Dynamite 
kernel and IA32 backend it is reckoned this figure 
will be four times faster. 
Finally, the performance of a recursive benchmark 
is tested as recursion is the worst case for our 
abstract register pool optimisation scheme. A Java 
conversion of the Takeuchi benchmark was made. 
The results are shown below. 

 
Figure 5 Performance of Dynamite JVM on 
Takeuchi 

For comparison the Kaffe JIT compiler version 3 
[Wilkinson, 2001] was timed. The results show a 
figure of merit of  3.03 for the Kaffe JIT compiler. 
The Dynamite JVM with out hot-region 
optimisations has a figure of merit of 20.49 and a 
figure of merit of 5.07 with hot-region 
optimisations. These figures of merit are high due 
to the overhead of method calling. The effect of 
scheduling the basic blocks with in the group block 
can be seen on the Dynamite JVM –O line (the line 
isn’t straight but fluctuates up and down). The 
reason for this is the input parameters have caused a 
different ordering of the basic blocks run. With the 
latest kernel and backend for Dynamite, the 
Dynamite JVM with optimisations is expected to 
out perform the Kaffe JIT compiler. An example 
optimisation yet to be performed (in these results) 
is removing dead code of the form store to location 
x the value loaded from location x. By removing 
this dead code by hand, a figure of merit of around 
3 is achieved. 
6 Conclusion 
This paper has introduced the Dynamite JVM a 
complete Java virtual machine built on a dynamic 

binary translator. By allowing finer granularity 
optimisations it is expected to out perform current 
JIT compilers. It is also different from current 
dynamic Java compilers in the way it standardises 
its intermediate representation over all levels of 
optimisation. This means different register 
allocation schemes, for example, won’t be needed 
when performing optimisations such as method 
inlining. In fact the abstract register pool eliminates 
method boundaries and doesn’t require separate 
optimisation and de-optimisation passes to remove 
method call overhead. With advancements in 
optimisations in the Dynamite kernel and backend, 
the Dynamite JVM is expected to be amongst the 
fastest Java virtual machines. 
The use Sun’s Java environment has made virtual 
machines popular. Recently new virtual machines 
have been invented, notably the Microsoft .NET 
virtual machine [Microsoft, 2001a]. The techniques 
described in this paper have applications to these 
and other virtual machine environments. 
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