
Ph.D. Research undertaken at the Department of Computer Science at the University of Manchester

A DYNAMIC BINARY TRANSLATOR IN A JAVA ENVIRONMENT
Ian Rogers

Abstract
Dynamic binary translation looks to map one
computer architecture to another. Java is unusual in
that it compiles to a platform independent bytecode
that runs on a virtual machine. This paper shows a
dynamic translation and compilation environment
that can provide a Java virtual machine (JVM).
Furthermore, dynamic compilation has the ability to
perform run-time optimisations that are unavailable
to a conventional static compiler. A technique is
shown that translates Java bytecodes in sympathy
with dynamic compiler optimisations. This is done
with the aim of rivalling and surpassing static
optimisation techniques using dynamic ones. This
will enable Java to stay true to its goal of being
platform independent and yet running at
comparable speeds to statically compiled code.
Results from the Dynamite JVM, developed as part
of this research, are presented.
1 Introduction
The Java environment was developed in 1995
[Gosling, McGilton, 1995]. Features from many
programming languages and program language
libraries were combined into a system that set out to
be platform independent. The growth in Java’s
libraries and some alterations to the original
language specification have led to Java’s continual
growth as a commercial programming language and
tool. For instance, in a recent survey Java was cited
as the most in demand IT job skill [Computer,
2000].
By being so ambitious with its features, Java has
suffered from lower performance than rival
programming languages such as C++, which it was
hoped it to would replace. A key reason for the low
performance was the execution of the platform
independent bytecodes, with in a Java virtual
machine, rather than static compilation. To speed
up the execution of these bytecodes Java virtual
machines optimised the bytecodes they were
interpreting [Lindholm, Yellin, 1999]. Hardware
was also developed that could execute Java
bytecodes [O’Connor, Tremblay, 1997]. The
hardware technique has found a niche in embedded
devices where a Java environment needs to be
compact as well as fast [Cormie, 2000]. Legacy
computers and CPUs unwilling to compromise their
native instruction speed were left with
interpretation as their Java virtual machine

environment. This has led to the invention of Just-
in-Time (JIT) and dynamic Java compilers1.
Just-in-Time compilation compiles a Java class or
method the first time it is accessed. Example Just-
in-Time compilers are Symantec’s JIT compiler
that came with Microsoft Windows versions of the
Sun Java Development Kit [Symantec, 1998] up
until Java 2 version 1.3, and Microsoft’s own JVM
[Microsoft, 2001]. Just-in-Time compilation slows
the execution of the Java program, but it is hoped
by executing the compiled methods rather than
interpreting the Java bytecodes the time will be
made up. Often this approach is naïve as not all
code in a class or a method is executed within a run
of a program. Some bytecodes are only executed
once and don’t warrant compilation as
interpretation would be faster.
Dynamic compilers compile Java bytecodes when it
is appropriate. The compiled bytecodes may be a
small part of a method or they could span several
methods. The dynamic compiler may also have an
interpreter to interpret bytecodes which won’t be
executed frequently. It is appropriate to compile
bytecodes when the cost of the time spent
compiling will be more than regained by executing
the faster compiled code. This can only be known
in retrospect, so dynamic compilers rely on
profiling information to gather statistics about the
run of a program and to predict where a speed up
can be achieved. This also allows expensive
compiler optimisations, such as method inlining, to
be targeted. These optimisations may break the
Java virtual machine specification, but by placing
checks around the optimised code a safe fall back
can be used when the optimisation is unsafe. Run-
time optimisation can’t be performed by a static
compilers as they must ensure the code produce
will work in all circumstances.
Dynamic compilers are a new form of Java virtual
machine that have only appeared recently. This
paper looks at the development and optimisation of
the Dynamite JVM which falls into the dynamic
compiler category of Java virtual machine. The
Dynamite JVM is novel as it builds on work for the
Dynamite dynamic binary translator [Souloglou,

1 Static compilers for Java have also been
developed [Free, 2001]. As these are unable to load
and execute Java class files dynamically they do
not meet the Java virtual machine specification
[Lindholm, Yellin, 1999]. The author therefore
omits their discussion.

1996]. Section 2 talks about dynamic binary
translators and there recent emergence as a
commercial tool. Section 3 discusses the features of
a Java virtual machine that make it difficult to
compile and optimise for. Section 4 presents the
Dynamite JVM and how it addresses the problems
of section 3. Section 5 shows preliminary results of
using the Dynamite JVM with certain kernel
benchmarks. Finally, section 6 looks at the
continued development of the Dynamite JVM and
the Dynamite dynamic binary translator.
2 Dynamic Binary Translators
Dynamic binary translation is a technique for
recompiling code from one instruction set (the
subject instruction set) to another instruction set
(the target instruction set) whilst the program is
running. This allows legacy computer programs to
be run on new faster or lower power computer
architectures. Hardware and software techniques
are in commercial use today. The AMD K6 3D
processor performs hardware translation of an IA32
instruction to several RISC86 Ops in the instruction
decode phase of its pipeline [Shriver, Smith,1998].
Transmeta in their Crusoe product [Transmeta,
2000] perform software translation. Software
translation runs a translation program on the native
processor and caches the results in a translation
cache (typically an area of DRAM). Code from the
translation cache is then executed on the native
processor.
Optimisations in hardware translation are limited
by how long the processor can spend decoding an
instruction (long or slow pipelines reduce the
number of instructions per clock) or by the size of
the window of code the decoder is translating.
Software translation must appear transparent to a
user, meaning quick translations are often needed.
Software translation has the ability to perform
expensive code optimisation (unavailable to a
hardware translator) in idle computer time or when
profile information says it would be beneficial. A
software translator will significantly simplify an
instruction decoder in a processor pipeline. An
example of this is in the Crusoe processor pipeline
where precise exceptions aren’t available. Instead
precise exceptions can be emulated by rolling the
processor state back to before the exception and
then using differently translated code to find the
exact subject instruction that causes an exception.
The potential of dynamic optimisation has been
seen in the Dynamo dynamic binary translator. On
HP PA-RISC code Dynamo was able to translate –
O2 optimised code and execute it at –O4 speed
[Bala, Duesterwald, Banerjia, 2000].

KernelFront
End

Back
End

Subject
Software Target

Machine

Dynamite

Figure 1 The Dynamite dynamic binary
translator

Dynamite is a dynamic binary translator created at
the University of Manchester [Souloglou, 1996]. It
is now being developed by a start-up company
called Transitive Technologies [Transitive, 2001].
Dynamite provides a backend that is tailored for a
specific computer architecture. Existing backends
are for the IA32 (a CISC architecture) [Sandham,
1998], Sparc and ARM (both RISC architectures)
[Souloglou, 1996] [Linfoot, 1999], and PlayDoh (a
VLIW architecture in many ways similar to IA64)
[Howson, 1999]. The Dynamite kernel provides the
translation cache, an optimised intermediate
representation and a hot-region2 optimiser. The
Dynamite frontend drives the translator and
provides mechanisms for handling operating system
calls and/or peripheral hardware. Dynamite
frontends exist for IA32 [Sandham, 1998], 68000,
ICL 2900, PostScript, STUMP (a simple 16bit
RISC architecture based on ARM), LARD (a
hardware description language) [Rogers, 1998] and
Java.
3 Java Virtual Machine
The Java virtual machine is ambitious in the
features it makes routinely available to the
programmer. The execution model is entirely
dynamically linked making all references symbolic.
It supports virtual methods and interfaces, that
provide single inheritance and approximate
multiple inheritance. The class loader, which is
responsible for the loading of the program and
libraries, can be replaced by a user defined one that
could, for example, load parts of the program from
over the internet. The class loader also has to
support a reflective API which allows a user to load
and modify a classes behaviour. To enable the large
number of Java libraries to work, the Java virtual
machine needs to be able to call out to software
routines written for the native processor. The Java
virtual machine provides a garbage collected

2 Hot-regions are areas of code that profiling has
shown to be executed frequently. Optimising these
regions has the biggest pay off due to the 90/10 rule
[Hennessy, Patterson, 1996] that states 90% of
execution time is spent in 10% of code.

memory manager. Java also has in built support for
threading with locking and synchronisation
primitives.
Java methods contain additional information for its
exception model. The Java exception model allows
programs to be written for the default case with
exceptional cases thought of separately. The
exception model requires extra checking to be
performed by the virtual machine, as well as adding
multiple possible pathways through a program. So
as not to preference any particular underlying
register architecture, the Java virtual machine uses
a 0-address, stack based instruction set (Java
bytecodes). The stack increases the number of
instructions that a simple routine like add would
require to be performed. For example, on a RISC
architecture add would simply be add 2 registers
and store the result in a 3rd (1 instruction), with the
Java virtual machine stack this becomes push 2
values, add the top 2 values then pop the result (4
instructions).
4 Dynamite JVM
The Dynamite JVM can potentially provide all the
features of a Java virtual machine. Currently a key
set of features have been focussed on. Full support
for the native API, threading and exceptions is
being worked on. The description below describes
the eventual complete mechanisms.
The Dynamite JVM builds up intermediate
representation a basic block3 at a time. Bytecodes
are translated using a symbolic stack and with local
variables mapped in to registers. The way Java
programs are compiled means that the stack is
empty over 93% of the time on basic block
boundaries [Krall, 1998]. This means that the stack
overhead is removed in the majority of basic
blocks. The dynamite kernel performs dead code
removal and common sub-expression elimination.
Dead code is detected by watching which registers
are written to by the intermediate representation. If
a register is written to twice without the first value
being used then the intermediate representation that
generates the first value can be safely be removed.

3 A basic block is a sequence of consecutive
instructions in which flow of control enters at the
beginning and leaves at the end without halt or
possibility of branching except at the end [Aho,
Sethi, Ullman, 1986]. Basic blocks in dynamic
translators are different as they are discovered on
the fly which means not all entry points are known.
Because of this dynamic translators have to allow
basic blocks to overlap to avoid re-translation. This
isn’t true for basic blocks with in static compilers
where all entry and exit points are known in
advance.

After the intermediate representation has been
created then the backend code generates over it.
As basic blocks are executed with the Dynamite
JVM profiling statistics are created. Hot basic
blocks are detected and joined with other hot basic
blocks covering a hot-region and generating a
group block. When a group block is generated dead
code elimination is performed. Register allocation
is tuned with in a group block to prefer hot basic
blocks and thus reduce the number of register spills
(based on the assumption that basic blocks spill an
equal amount).
To maximise the amount of code that can be
optimised with in a group block we need to keep
local and stack variables visible over method
boundaries. In conventional compilers this is done
using techniques such as register colouring over
method boundaries or method inlining. Register
colouring has proven to be an NP complete
problem [Chow, Hennessy, 1990] and therefore not
suitable for use in a dynamic compiler. Method
inlining has appeared in the Sun HotSpot Java
virtual machine and is run as a separate
optimisation phase which requires de-optimisation
if assumptions later prove incorrect [Sun, 1999].
A novel approach to increasing the visibility of
variables is used in the Dynamite JVM with an
infinite abstract register pool as shown in figure 2.
Every translated method is given a portion of the
register bank to use. Parameter passing is
performed by writing the parameters straight from
the symbolic stack into the called method. When
the called method is unknown, for instance in
virtual method calls, the values are written into
registers which are then read into the symbolic
stack of the called method. Unnecessary register
copying that isn’t eliminated by the use of the
symbolic stack will be removed in the dead code
removal phase of group block creation. A memory
backup scheme is used when a method’s frame is
required to be used more than once (i.e. recursive
method calls). For typical applications studies have
shown the register pool need be little larger than
8000 registers. If a larger register pool is required
then parts can be reclaimed (by deleting the
dynamic code that uses it) or we can share sections
by noting that leaf methods can never call each
other (by definition).

Figure 2 Mapping methods to abstract register
pool

As abstract register pool registers are swapped in
and out of target machine registers an area of
memory is used for storing the backed up values.
Threading is supported by swapping the pointer to
the backed up values to those of another thread.
Currently no locking and synchronisation on
objects is available.
Exceptions are supported by mapping target
machine instructions back to Java bytecodes. The
exception handler is then found by searching
through the Java virtual machine stack. A slight
optimisation is used so that signal trapping isn’t
used to catch null pointer exceptions. Instead a null
object is created which catches reads and writes by
protecting the memory it is created in. Branches are
permitted but they go straight to the Dynamite JVM
exception handling mechanism.
Garbage collection is only performed when a
program terminates. An interface is available so
that a new garbage collector can be written.
5 Results
To determine the efficiency of the abstract register
pool the Kaffe [Wilkinson, 2001] JVM interpreter
was instrumented. When running the javac
benchmark (part of the OSG SPEC JVM98
benchmark suite [SPEC, 1998]) we recorded
information on hot-regions and local variable
usage. The model of the register allocation
algorithm allocated registers to local variables
based on their run-time contribution per local
variable. Registers required for maintaining call
stack frames and the JVM stack’s temporary
variables were ignored. The results are shown in
figure 3.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1000Local Variables

In
st

ru
ct

io
n

C
ou

nt

Figure 3 The approximate percentage of javac
execution that will fit with in a group block with
out spill code

The graph shows that pay off of having more
registers available to the register allocation
algorithm. The algorithm is able to perform well
with few registers, it gets 30% of the total
instruction count in 8 registers. This is good for
instruction sets with a small number of visible
registers such as the IA32. With an instruction set
with a more reasonable 25 registers, 54% of the
total number of instructions are covered.
The performance of the code translation with in the
Dynamite JVM was tested. A bubble-sort kernel
was written and run on the Sun JDK version 1.17
[Blackdown, 1999] as well as the Dynamite JVM
and the Dynamite JVM with hot-region
optimisation (-O). The Sun JDK was with out a JIT
compiler and the Dynamite JVM was running on an
old revision of the IA32 backend. All start up
overheads (i.e. to load system libraries and perform
translation) are removed. The results are shown in
figure 4.

Figure 4 Performance of Dynamite JVM on
bubble-sort

The figure of merit is calculated by dividing the
number of native machine instructions executed per
subject machine instruction. The Sun JDK

interpreter has a figure of merit of 7.11 Pentium II
instructions per Java bytecode. The Dynamite JVM
without hot-region optimisations has a figure of
merit of 6.23, where the bulk of this is due to
translator overhead in moving between basic
blocks. The Dynamite JVM with hot-region
optimisations (-O) has a figure of merit of 1.86.
With the latest code optimisations in the Dynamite
kernel and IA32 backend it is reckoned this figure
will be four times faster.
Finally, the performance of a recursive benchmark
is tested as recursion is the worst case for our
abstract register pool optimisation scheme. A Java
conversion of the Takeuchi benchmark was made.
The results are shown below.

Figure 5 Performance of Dynamite JVM on
Takeuchi

For comparison the Kaffe JIT compiler version 3
[Wilkinson, 2001] was timed. The results show a
figure of merit of 3.03 for the Kaffe JIT compiler.
The Dynamite JVM with out hot-region
optimisations has a figure of merit of 20.49 and a
figure of merit of 5.07 with hot-region
optimisations. These figures of merit are high due
to the overhead of method calling. The effect of
scheduling the basic blocks with in the group block
can be seen on the Dynamite JVM –O line (the line
isn’t straight but fluctuates up and down). The
reason for this is the input parameters have caused a
different ordering of the basic blocks run. With the
latest kernel and backend for Dynamite, the
Dynamite JVM with optimisations is expected to
out perform the Kaffe JIT compiler. An example
optimisation yet to be performed (in these results)
is removing dead code of the form store to location
x the value loaded from location x. By removing
this dead code by hand, a figure of merit of around
3 is achieved.
6 Conclusion
This paper has introduced the Dynamite JVM a
complete Java virtual machine built on a dynamic

binary translator. By allowing finer granularity
optimisations it is expected to out perform current
JIT compilers. It is also different from current
dynamic Java compilers in the way it standardises
its intermediate representation over all levels of
optimisation. This means different register
allocation schemes, for example, won’t be needed
when performing optimisations such as method
inlining. In fact the abstract register pool eliminates
method boundaries and doesn’t require separate
optimisation and de-optimisation passes to remove
method call overhead. With advancements in
optimisations in the Dynamite kernel and backend,
the Dynamite JVM is expected to be amongst the
fastest Java virtual machines.
The use Sun’s Java environment has made virtual
machines popular. Recently new virtual machines
have been invented, notably the Microsoft .NET
virtual machine [Microsoft, 2001a]. The techniques
described in this paper have applications to these
and other virtual machine environments.
References
[Aho, Sethi, Ullman, 1986] Alfred Aho, Ravi Sethi, Jeffrey
Ullman, “Compilers: Principles, techniques, and tools”,
Addison-Wesley, 1986.
[Bala, Duesterwald, Banerjia, 2000] Vasanth Bala, Evelyn
Duesterwald, Sanjeev Banerjia, “Dynamo: A transparent
dynamic optimization system”, Hewlett Packard labs, in the
proceedings of PLDI 2000.
[Blackdown, 1999] Blackdown, “Java linux”,
http://www.blackdown.org/, 1999.
[Chow, Hennessy, 1990] Fred C. Chow, John L. Hennessy,
“The priority-based coloring approach to register allocation”,
ACM transactions on programming languages and systems,
volume 12, issue 4, 1990.
[Computer, 2000] Computer Weekly, “ITers must become e-
people”, November, 2000.
[Cormie, 2000] David Cormie, “Jazelle ™ - ARM ®
architecture extensions for Java applications”, ARM,
November 2000.
[Free, 2001] Free Software Foundation, “GCJ: the GNU
compiler for Java”, http://www.gnu.org/software/gcc/java/,
Free Software Foundation, April 2001.
[Gosling, McGilton, 1995] James Gosling, Henry McGilton,
“The Java language environment”, technical report, Sun
Microsystems, May 1995.
[Hennessy, Patterson, 1996] J. L. Hennessy, D. A. Patterson,
“Computer architecture: a quantitative approach”, Morgan
Kaufmann, San Mateo, CA, second edition, 1996.
[Howson, 1999] Miles Howson, “PlayDoh backend for
Dynamite”, final year undergraduate project report, the
University of Manchester, 1999.
[Krall, 1998] Andreas Krall, “Efficient Java VM Just-in-Time
compilation”, in the proceedings of PACT ’98, Paris, France,
October 1998.
[Lindholm, Yellin, 1999] Tim Lindholm, Frank Yellin, “The
Java Virtual Machine Specification”, Addison-Wesley,
Reading, MA, USA, second edition, 1999.
[Linfoot, 1999] Mike Linfoot, “An ARM backend for
Dynamite”, final year undergraduate project report, the
University of Manchester, 1999.

[Microsoft, 2001] Microsoft Corporation, “Microsoft
technologies for Java”, http://www.microsoft.com/java/,
Microsoft Corporation, 2001.
[Microsoft, 2001a] Microsoft Corporation, “Microsoft .NET”,
http://www.microsoft.com/net/, Microsoft Corporation, 2001.
[O’Connor, Tremblay, 1997] J. Michael O’Connor, Marc
Tremblay, “picoJava-1: The Java virtual machine in hardware”,
IEEE Micro, 17(2), March 1997.
[Rogers, 1998] Ian Rogers, “A LARD frontend for Dynamite”,
final year undergraduate project report, the University of
Manchester, 1998.
[Rogers, Rawsthorne, Souloglou, 1999] Ian Rogers, Alasdair
Rawsthorne, Jason Souloglou, “Exploiting hardware resources:
register assignment across method boundaries”, ICCD
workshop on hardware support for objects and
microarchitectures for Java, Austin, Texas, USA, October 10,
1999.
[Sandham, 1998] John Sandham, “Dynamite frontend and
backend for x86”, final year undergraduate project report, the
University of Manchester, 1998.
[Shriver, Smith, 1998] Bruce Shriver, Bennett Smith, “The
anatomy of a high-performance microprocessor: a systems
perspective”, IEEE Computer Society, 1998.
[Souloglou, 1996] Jason Souloglou, “A Framework for
Dynamic Binary Translation”, M.Phil. Thesis, The University
of Manchester, 1996.
[SPEC, 1998] Standard Performance Evaluation Corporation,
“SPEC JVM98”, http://www.spec.org/osg/jvm98/, OSG, 1998.
[Sun, 1999] Sun Microsystems Inc, “The Java HotSpot
Performance Engine Architecture”, Sun White Paper, April
1999.
[Symantec, 1998] Symantec Corporation, “Symantec’s Just-in-
Time (JIT) Java compiler runs Java applets and applications
50% faster”, Symantec Corporation, January 1998.
[Transitive, 2001] Transitive Technologies Ltd, “Transitive
Technologies Ltd.”, http://www.transitives.com/, 2001.
[Transmeta, 2000] Transmeta Corporation, “A New World of
mobility from Transmeta”, http://www.transmeta.com/, 2000.
[Wilkinson, 2001] Tom Wilkinson, “KAFFE: A virtual
machine to run Java code”, http://www.kaffe.org/, 2001.

