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Abstract

Transactional memory proposes an alternative synchro-
nization primitive to traditional locks. Its promise is to sim-
plify the software development of multi-threaded applica-
tions while at the same time delivering the performance of
parallel applications using (complex and error prone) fine
grain locking.

This study reports our experience implementing a real-
istic application using transactional memory (TM). The ap-
plication is Lee’s routing algorithm and was selected for its
abundance of parallelism but difficulty of expressing it with
locks. Each route between a source and a destination point
in a grid can be considered a unit of parallelism. Starting
from this simple approach, we evaluate the exploitable par-
allelism of a transactional parallel implementation and ex-
plore how it can be adapted to deliver better performance.
The adaptations do not introduce locks nor alter the essence
of the implemented algorithm, but deliver up to 20 times
more parallelism. The adaptations are derived from un-
derstanding the application itself and TM. The evaluation
simulates an abstracted TM system and, thus, the results
are independent of specific software or hardware TM im-
plemented, and describe properties of the application.

1. Introduction

With the promise of large scale multi-core processors
providing significant amounts of thread level parallelism,
there has been much interest in how they might be pro-
grammed. Multi-threaded programs usually co-ordinate
their use of shared memory using traditional synchroniza-
tion primitives such as locks and/or barriers. These low
level synchronization primitives can ensure serialized ac-
cess and execution for critical sections of programs. How-
ever, serialization of parallel programs is clearly undesir-
able except where it is absolutely necessary. In complex
programs it is difficult to ensure that the use of locks or
barriers does not lead to over serialization. Worse, it can
be difficult to ensure the correctness of such programs, and

problems such as deadlock can result.
Transactional memory (TM) is a programming model

which promises to overcome these inefficiencies and dif-
ficulties. A program is expressed as a collection of par-
allel transactions which either complete and commit their
updates to global memory or fail because they observe
that other transactions have committed changes to mem-
ory which invalidate the data values on which they have
been operating. There have been proposals for support of
this model either in software only or by providing hardware
which assists the transactional processes [15].

A major claim for TM programming is that it allows par-
allel programs to be written easily to solve problems which
would otherwise be complex to implement using traditional
synchronization primitives. However, there have been few
studies of practical TM programming which examine and
verify this claim. Many TM systems have been evaluated
by modifying programs which have been written using syn-
chronization. For example, Java synchronized methods can
often be turned directly into transactions without any need
to otherwise modify the code. One limitation of this ap-
proach is that it uses programs where the parallel structuring
has already been done and therefore does not properly ex-
amine the practicality of TM programming. A further limi-
tation is that the synchronized sections in such programs are
kept deliberately short whereas the TM style may naturally
lead to long running transactions [4].

We therefore decided to look for a practical application
which should clearly be able to exploit significant paral-
lelism, but which would be complex to implement using
traditional synchronization. The intention was to gain in-
sight into the real issues in writing TM programs as well
as evaluating whether the resulting program would exhibit
worthwhile parallelism and performance.

The application that we chose was circuit routing us-
ing Lee’s algorithm [16]. This is a well known technique
which is applicable to either integrated circuit or printed
circuit board routing. In reality, industrial strength routers
use more elaborate techniques than Lee’s algorithm. Nev-
ertheless, we have developed a TM routing program which
makes a realistic job of producing a practical solution. This
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Figure 1. Phases in Lee’s algorithm.

TM program is evaluated by taking a real circuit board lay-
out. This paper presents a description of the algorithm (Sec-
tion 2), and an analysis of the difficulties of parallelizing
it using traditional synchronization (Section 3). Section 4
presents a description of a TM solution based on defining a
transaction as the process of finding a complete route. This
first attempt can be considered as the simplest paralleliza-
tion strategy and its performance evaluation (see Section 6)
shows an average exploitable parallelism of about 5 from
a theoretical maximum of 1506. All the evaluations yield
results that are TM implementation independent. Guided
by the high levels of transaction aborts, the TM program
is adapted by privatizing one data structure (see Section 4),
but this still yields a poor average exploitable parallelism of
about 7. In both TM programs, the software development
is very simple, but the performance is unsatisfactory. To
produce a TM program that improves the exploitable par-
allelism up to about 100, the defined transactions need to
reduce their exposure to abortions. The key insight is under-
standing that the solution to the routing problem is a set of
routes which do not contain any intersection points. There-
fore, the minimum exposure for a transaction that generates
a complete path between a source point and a destination
point is simply those points contained in the complete path;

no more, no less. A discussion of the proposed and im-
plemented TM programs and related work is presented in
Section 7.

2. Background - Lee’s Algorithm

Circuit routing is the process of producing an automated
interconnection of electronic components. The compo-
nents may be transistors on an integrated circuit, logic el-
ements on an FPGA or packages containing integrated cir-
cuits placed on a printed circuit board, for example a PC
motherboard.

In its simplest form, the problem can be reduced to that
of joining points on a two dimensional grid which repre-
sents the circuit layout. Lee’s algorithm guarantees to find a
shortest interconnection between two points using the tech-
nique illustrated in Figure 1. Starting at the source point, the
grid points are numbered by expanding a wavefront until the
destination is reached (see Figure 1(a)–(d)). At each stage
of the expansion any grid point in the wavefront marks its
unnumbered neighbors with an increment of its value. Once
the destination point has been reached, a route is traced back
to the source by following any decreasing sequence of num-
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Grid global;

for i in number of routes {
Expand from source to destination;

// reads and writes to global
Backtrack from destination to source;

// reads and writes to global
Reset Expansion;

}

Figure 2. Pseudo code for Lee’s algorithm.

bered grid points (see Figure 1(e)). This backtracking pro-
cess can follow any one of a number of routes and a prac-
tical implementation will impose a particular strategy. For
example, it may be desirable to follow straight lines where
possible rather than continually change direction.

A practical circuit will contain many grid interconnec-
tion points which cannot be used for routing unless they are
part of the circuit. In addition, once a route has been de-
termined, the grid points that it uses are occupied and can-
not be used by others. Expansions must therefore spread
only into free points and flow around occupied ones. Figure
1(g)–(i) shows an example of this and how the backtracking
process can nevertheless find a minimum length connection
around these obstructions. Figure 2 illustrates Lee’s algo-
rithm using pseudo code.

There are many refinements that can be made to the basic
algorithm. For example, most practical circuits have mul-
tiple routing layers and the algorithm must be extended to
three dimensions to model this. A route may need to cross
to another layer using a via to avoid hitting a dead end on
its current layer. It is also possible to mark grid points with
initial weights which are included in the numbering pro-
cess. By this means, it is possible to ensure that routes
are encouraged to prefer certain areas. This can, for ex-
ample, avoid routes crowding interconnection points unless
they are connected to them. The details of these refinements
are unimportant to comprehend the routing problem and the
TM solutions described. Nevertheless, to tackle real prac-
tical routing problems, our implemented programs do use
these techniques.

3. Parallelizing Lee’s Algorithm

A real circuit will contain orders of magnitude more
connections than the number of cores which will be avail-
able in multi-core processors for sometime to come. It is
clear that there ought to be significant opportunities for ex-
ploiting parallelism by finding multiple routes concurrently.
Given interconnections at widely separated locations in a
grid, multiple wavefront expansions and subsequent back-
tracking could occur independently in parallel. The natural
implementation, and that usually used by serial programs,

would use a single array to represent the circuit grid points.
Both the expansion and the backtracking can use this single
array, although this requires that any unused grid points are
reset after the backtracking.

A parallel version could also use a single grid array as
long as the expansions do not overlap. Assuming traditional
synchronization primitives, what are the options? We could
have a global lock for the grid so that only one expansion
can occur at once, but this would destroy the parallelism.
We could use an array of locks to serialize access to indi-
vidual grid points, but this degree of fine grain locking is
likely to need complex protocols to avoid deadlock.

A better solution would be to use a separate grid for
each parallel expansion. We would still need to access a
global shared version of the grid to determine grid point
occupation, but now the expansions can proceed indepen-
dently. However the backtracking phase is still an issue.
We must trace a route back from destination to source and,
as we do so, must record the usage of individual grid points
in the global shared grid. We cannot allow two routes to
occupy the same point and therefore any backtracking deci-
sion must be unique and global. Again, with traditional syn-
chronization, a global lock for the grid could protect each
backtracking point update. Or, we could again use an ar-
ray of locks to serialize access to individual points but, as
before, the complexity implications are serious.

Despite fine grain locking and separate expansion grids,
we may not achieve a correct solution. If two expansions
have overlapped and one backtrack has occurred then part
of the other expansion is now invalid possibly leaving no
valid backtrack. The only solution is to abandon the second
attempt and restart the expansion.

It may be possible to program a correct solution with
traditional synchronization, but it should be apparent that
this will not be easy. Suffice it to say that we have failed
to locate published versions of Lee’s algorithm which ex-
ploit parallelism at the route level. However there are some
which partition the grid among processors to parallelize
Lee’s algorithm [28].

4. Transactional Memory & Lee’s Algorithm

It is apparent that there is something naturally transac-
tional about this problem. We can treat each route as an
independent transaction. Each routing transaction can per-
form its own expansion, backtrack, and then try to commit
the route it has found. If any of the grid points used by
the route have subsequently been utilized and committed
by another route, then the transaction must be abandoned
and restarted. However, it is important to realize that, in
this case, the detection of interference, abandonment and
restarting are fundamental functionality provided by TM.
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Grid global;

forall routes {
atomic {

Expand from source to destination;
// reads and writes to global

Backtrack from destination to source;
// reads and writes to global

Reset Expansion;
}

}

Figure 3. The simplest transactional Lee’s al-
gorithm — Lee-TM.

There is no need to program it explicitly as would be re-
quired in a solution which used locking.

The important question is how easy is it to produce the
TM program? A serial version of the problem can be ex-
pressed very easily. We will assume, for the moment, that
this is the simplest of serial programs which uses a single
grid array for both expansion and backtracking (see Fig-
ure 2). Although it is not apparent from this simple for-
mulation of the algorithm, it is usual to order the routes in
ascending order of length. This ensures that longer routes,
which naturally have more alternatives, do not displace
shorter ones from their natural positions.

In a nutshell the semantics of TM are as follows. Each
transaction will have associated a set of reads and writes
that have been executed, as well as a means for rewinding
the program state. When a transaction commits it will atom-
ically validate its read set, and then ensure visibility of the
committed write set. Any transaction which fails the vali-
dation must abort and will restart. Any new read which oc-
curs will obtain the value written by the latest commit. The
natural expression of the problem did not lead us to nested
transactions [15], and thus the paper omits this issue at this
point. We have not assumed any detailed programming no-
tation other than the usual atomic programming construct
[15]. In the following examples we use simple pseudo code
to express the relevant algorithms. The simplest TM con-
version of the serial program appears in Figure 3.

All we have done is to assume that all routes are started
in parallel, and enclosed the loop body in an atomic state-
ment. In practice, the forall construct would need to
involve a work queue from which individual routes were
taken and this itself is a shared structure which would need
to be handled, possibly transactionally. However, this is of
minor importance to the main algorithm and we have there-
fore neglected this detail. Consider what will happen when
the program executes.

As a route expands, it must read each neighbor point on
the global grid to check whether it is empty. It will then

Grid global;

forall routes {
atomic {

Grid local;
Expand from source to destination;

// reads from global, writes to local
Backtrack from destination to source;

// reads from local, writes to global
// no longer needed Reset Expansion;

}
}

Figure 4. Transactional Lee’s algorithm with
privatization — Lee-TM-p.

write its expansion values to the grid points until the desti-
nation is reached. The backtracking will then read some of
the expansion values and write the points which the route
will occupy. When the backtracking has finished, the trans-
action will commit, assuming that it has passed the valida-
tion. At this point, the route points it has committed and all
the grid points it has written to in the expansion will cer-
tainly be visible by other threads.

Here we see the first problem of a simple approach to TM
parallelization. Because a single global grid was used in the
serial version for both expansion and backtracking, the ex-
pansion phase updates global shared variables. These up-
dates will be significantly more extensive than the selected
route and will cause many unnecessary aborts. In practice,
the expansion phase generates temporary information only
relevant to each route operation and making its updates ex-
ternally visible is not only unnecessary, but seriously harm-
ful.

If we modify the program to use a local grid array during
the expansion (for example as a local variable) then writes
to it from each transaction will not overlap and interfere
with others. In fact it is clear that any TM model should in-
corporate local variables whose values do not need to, and
should not, be updated on commit. This modification is
equally applicable to a serial version of the program and
removes the need for the grid reset operation, although the
temporary local grid may need initializing. Figure 4 illus-
trates the TM program with the privatization changes.

5. Further Optimization

As we will see in the evaluation, Section 6, the use of
privatization produces a modest increase in performance.
However, it is worth examining whether we have produced
an optimal TM program. To minimize the possibility of a
transaction aborting, we should try to ensure that only those
reads and writes which affect the outcome of a transaction’s
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computation can cause an abort.
During the expansion phase of the algorithm a transac-

tion will read from the global grid to check whether it can
expand into a particular grid point or whether it is blocked
either by a connection point or another route that has al-
ready been committed. However, the function of the expan-
sion is to mark all possible minimum length routes. If the
backtracking phase chooses a route which does not use a
particular grid point then it is irrelevant whether or not that
point was marked (read and written) incorrectly as usable
during the expansion. An individual routing operation takes
a snapshot of the global grid and starts its routing opera-
tion. When it has found a route and wishes to commit, the
only thing that should prevent this is another route having
committed and used a common grid point. When consider-
ing whether to abort a routing transaction, the only relevant
issue is whether another committed transaction’s route con-
tains grid points which are also part of the new route!

More formally, when detecting TM interference and the
need to abort, we can discard all grid points which are not in
the intersection of the read set, the write set, and those grid
points that constitute the route for a committing transaction.
In practice, in this algorithm, anything in the write set of
the local transaction is also in its read set, so we only need
to consider the intersection of the write sets. This clearly
is not covered by the simple semantics of the TM model
described above. We will return to this in a later discussion
(see Section 7). The TM program which uses this insight
with respect to the write set is referred to as Lee-TM-p-ws.

6. Evaluation

6.1. Description of the Experiments

The behavior of a routing algorithm can be influenced
significantly by the circuit layout. A set of connections
which are too regular will not result in the degree of con-
tention encountered on a real layout. To perform the study
on a realistic scenario, we have used a two layer printed
circuit board which contains a microcoded microprocessor.
This layout was used in a project to develop advanced rout-
ing software using a variety of algorithms [26]. Although
it is a fairly old design it contains a significant amount of
random wiring which makes the layout non-trivial.

We started by developing simple two-layer routing soft-
ware written in Java together with a program to extract the
layout and connection information from the board descrip-
tion and produce input for our router. The layout contains
over 3000 connections points and 1506 interconnections.

We wanted to keep the routing program simple, as the
study is concerned with understanding the behavior of a TM
program rather than developing sophisticated routing soft-
ware. However, it was necessary, in order to achieve suc-

Figure 5. The test circuit layout used in the
experiments.

cessful and realistic routing of the example circuit, to add
a certain amount of refinement in both the expansion and
backtracking phases of the algorithm. These are concerned
with constraining the routes in certain ways so that the lay-
out does not become a complete ‘spaghetti’ and their detail
is unimportant. They do not alter the fundamental prop-
erties or the analysis that has been presented of potential
problems and improvements.

The program reads in the connection point and routing
data, and then sorts the routes by increasing length. It then
routes them one by one until all have been completed, and
finally produces a display of the test circuit. This is pre-
sented in Figure 5 to give an indication of the nature and
complexity of the problem being solved.

It succeeds in routing all but 2 of the 1506 connec-
tions and, in the process, inserts approximately 3400 vias
to change routing layers. To achieve good routing perfor-
mance, it is generally advisable, on a 2 layer circuit, to
restrict connections to run largely in one direction on one
layer and orthogonally on the other. This might be expected
to use approximately 2 vias per route although algorithm
tuning might succeed in reducing this. We are not claim-
ing that this is industrial strength routing software, but we
believe that it is sufficiently realistic to represent a study of
a real application. The programs and data are available for
download from the website [1].

We considered using either a simulator for a hardware
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based TM system or a software TM system running on a
multiprocessor. However, either approach would have pro-
duced results which were specific to the characteristics of
the particular implementation. Instead we wanted to esti-
mate the potential for TM execution in an implementation
independent manner. The approach we adopted was to take
the serial versions of the programs and instrument them in
a way which enabled the observation of interference with-
out making assumptions about how that would be done in a
real implementation. The instrumented version of the pro-
gram runs serially and attempts the commits in the program
order, but the overall effect is as though we were running
the program transactionally with an infinite number of pro-
cessing resources. The evaluation simulates an abstracted
TM implementation and, thus, the results are independent
of specific software or hardware TM implemented, and de-
scribe properties of the application.

All the transactions were executed, and each commit ei-
ther succeeded or failed. Those that failed were then run
again, and so on until all commits had succeeded. Thus the
execution simulated a number of iterations in which each
transaction got an opportunity, and at least one commit suc-
ceeded per iteration.

Within a transaction, where the code wrote to a shared
data structure, the location and value to be written were
recorded using a Hashtable and the writing deferred.
Similarly locations where reads occurred from any shared
data structure were remembered in a Vector. At the end
of the transaction, the commit operation would check these
against modifications made by already committed transac-
tions in the same iteration. In the original transactional
model, reads from such a location would cause the commit
to fail. In the modified model, a recorded write to a location
already written caused the commit to fail. Otherwise the
commit succeeded, and the modifications were performed -
and remembered in a HashSet for future commits in this
iteration. All the transactions for which commits failed have
to restart at the beginning, but they then reread the updated
shared data structures. The instrumented version of the pro-
gram runs serially, but the overall effect is as though we
were running the program transactionally with an infinite
number of processing resources.

The effect of having only a limited number of processors
was simulated by taking a limited number of transactions
off the queue for each iteration. When some transactions
fail to commit, these jump to the front of the queue for the
next iteration. This is needed to maintain the quality of the
routing, which depends on the order.

For simplicity the simulation of TM execution batches
transactions, so that each batch starts at the same time. In
reality, transactions would start as processing resources be-
come available. We also make no attempt to notice ahead
of the commit that the transaction will need to abort. These

experiments may therefore give a pessimistic view of the
parallelism available.

6.2. Results

Three sets of results are presented: Lee-TM, Lee-TM-
p, and Lee-TM-p-ws. The first uses only a single global
grid for expansion and backtracking of all routes. Lee-TM
represents the naı̈ve TM program that we might produce if
we started from a serial program and simply enclosed the
expansion and backtracking phases in a transaction.

For Lee-TM, Lee-TM-p, and Lee-TM-p-ws, Table 1
shows, in the first row, the number of batched iterations
needed to execute the program. In the second row, the table
presents the number of routes which succeed in committing
at the first batched iteration. In the third row the total num-
ber of commits attempted is reported as an indication of the
amount of work.

For now consider only the second column labelled as
Lee-TM (see pseudo code in Figure 3). The number of ini-
tially successful routes is low; 70 out of 1506. Furthermore,
we only manage to exploit an average parallelism of about 5
(1506 routes / 305 iterations), but at the expense of nearly 60
times (89534 attempted commits / 1506 routes) the amount
of work. This is because most of the writes in the expansion
phases are interfering in the one global structure. This is not
a very encouraging performance.

Batched itera-
tions

305 227 14

Successful
commits in 1st
iteration

70 118 697

Total commits
attempted

89534 53838 3774

Lee-TM Lee-TM-p Lee-TM-p-ws

Table 1. Summary results for the Transac-
tional Lee’s Algorithm programs.

The second experiment replaces the use of a global grid
with a local one for each expansion within a transaction as
described in Figure 4. This TM program uses privatization
and is labelled as Lee-TM-p in the third column of Table
1. The results show that the privatization has made some
improvement. The average parallelism has risen to nearly
7, although the total work done is still 36 times the serial
version.

Finally, we consider the TM program which uses our in-
sight into the algorithm – the write set, which contains only
those grid points selected during backtracking, is enough
to capture all the information needed to decide whether to
abort the transaction. This version was introduced in Sec-
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Figure 6. Graph of remaining routes to be
completed as execution progresses.

tion 5 and is labelled as Lee-TM-p-ws in the fourth column
of Table 1. For Lee-TM-p-ws, the results in the table rep-
resent a dramatic increase in performance. Almost half the
routes succeed in the first batched iteration and they all suc-
ceed within 14 iterations. The average parallelism jumps
to over 100, and the number of commits attempted is only
increased by a factor of 2.5 over the sequential program.

Figure 6 is a graph showing, for each of these three TM
programs, how the numbers of routes remaining to be com-
pleted decreases as more batched iterations are executed.
The results considering fewer processors at a time are also
presented graphically in Figure 7. It shows how the number
of iterations needed decreases non-linearly with the num-
ber of processors (batch size) available. As expected with
1 processor, 1506 iterations are needed. However, the de-
scent in the number of iterations needed as the number of
processors increases is initially quite rapid. Figure 8 shows
how the amount of work done increases as more processors
are used. This is quite gradual, especially for Lee-TM-p-ws.
Together these results are very encouraging and suggest that
it is possible to exploit significant amounts of parallelism in
Lee’s algorithm without excessive overhead.

7. Discussion & Related Work

A major claim for TM programming is that it makes rela-
tively easy to parallelize programs because there is no need
to consider the operational detail of the interaction among
transactions. This enables TM programs to be composed
with other TM programs, while traditional synchronization
does not compose (see examples in [15, 18]). With TM, it
is not a correctness issue if conflicts occur. The TM sys-

Figure 7. Graph of performance with different
number of processors.

tem simply aborts all but one of the transactions involved
in the conflict and restarts them to try again. In certain sce-
narios TM programs can end up completely serialized, but
they will still produce correct results. TM program exam-
ples have been constructed which produce infinite loops due
to retrying transactions [3]. Larus and Rajwar [15] provide
a comprehensive introduction to and survey of TM.

This study has taken an algorithm which is complex to
parallelize using traditional synchronization primitives, and
has shown that a highly parallel program can be achieved
using transactions. However, the process required a little
more thought than originally anticipated and a means to
control the contents of the read and write sets for any trans-
action.

The discussion and related work are organized around
the following questions:

I What other algorithms or benchmarks have been used
in TM evaluations?

II What software design approach was followed to paral-
lelize and improve TM execution if any? How does it
compare?

III What TM constructs or mechanisms have been pro-
posed to control the contents of the read or the write
set for a given transaction?

IV What is the effect of aborts with respect to selected
routes?

Question I — In 1977 Lomet [17] first described the
concept of atomic and illustrated it with a shared Ab-
stract Data Type (ADT) – a concurrent producer-consumer
buffer. This paper did not include an implementation for
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Figure 8. Graph of the number of transac-
tions executed with different number of pro-
cessors.

atomic and, thus, no performance evaluation was pre-
sented. Herlihy and Moss [13], and Shavit and Touitou
[23] evaluated their TM implementations with benchmarks
based also on ADT by measuring the throughput as the
number of operations completed (different combinations of
reads and writes) within a fixed time period. Both of these
papers rely on simulated hardware. Herlihy et al. [12],
and Harris and Fraser [11] present the first evaluations of
TM, in this case software TM, running on real multipro-
cessors. Most of the TM papers surveyed by Larus and
Rajwar [15], and also newer ones not covered in the sur-
vey [22, 9, 4] use these ADT micro-benchmarks. A differ-
ent approach is to translate automatically already parallel
benchmarks written in Java and C into TM benchmarks;
e.g. a modified SPECjbb2000 [5, 4, 19, 7], some bench-
marks from SPLASH-2 [27, 8, 6, 21, 19, 7], others from
JavaGrande [19, 7], Linux 2.4.19 kernel and SPECjvm98
[2], and Berkeley DB [21, 8].

Chung et al. [7] present the most comprehensive
study looking at 35 different TM benchmarks covering
from mainly scientific computing (JavaGrande, SPLASH-2,
NAS, and SPEComp), to commercial workloads (DaCAPO,
and SPECjbb). These TM benchmarks were generated fol-
lowing the second evaluation approach; direct translation
from parallel benchmarks. The performance evaluation pro-
vided a wealth of data with respect to size of transactions,
read and write set sizes, nested transaction depth, and so on.
Chung et al. [7] acknowledge a limitation of their method-
ology which is not able to generate the frequency of transac-
tional aborts. Obviously our study does not have the same
breadth, but our results are TM implementation indepen-
dent, and the number of aborts is easily obtainable which

has proved indispensable to analyze the different TM im-
plementations of Lee’s algorithm. To attempt to improve
the performance of a TM program without the abort rate in-
formation eliminates one of the best indicators to identify
excessive serialization.

One common limitation for all the TM evaluations re-
ferred to so far is that they use micro-benchmarks or bench-
marks where the parallel structuring has already been done,
and therefore do not properly examine the practicality of
TM programming.

A theoretical study of using TM for the generation of
meshes conforming with the Delaunay property is our clos-
est relative [14]. Kulkarni et al. [14] describe the mesh gen-
eration algorithm and argue its suitability for TM. The mesh
generation is not completed until every element in the mesh
satisfies the Delaunay property. To those elements not con-
forming with the property, a refinement process is applied.
An important feature is that the refinement only affects the
immediate neighbors. Thus, refinements of elements far
apart in the mesh can normally proceed in parallel. Kulka-
rni et al. [14] discuss a possible issue with TM conservative
conflict detection mechanisms. The problem can be char-
acterized as some conflicts detected at the memory level in
reality may not be present at the application semantic level.
The different TM implementations of Lee’s algorithm can
be interpreted as our steps to eliminate the conflicts at the
memory level until only remain those conflicts defined at
Lee’s Algorithm level. This TM study of mesh generation
does not provide TM implementations or performance eval-
uation. Spear et al. [25], inspired by [14] but independently,
have developed a TM implementation of the Delaunay mesh
generation algorithm relying on their software TM library.
A very succinct mention reports that privatization is very
attractive since 98% of the generation time is spent on data
amenable to this optimization. Despite this favorable fea-
ture and due to the overhead of their software TM library,
the mesh generation TM application suffers normally a 2
times slowdown. To sum up, the evaluation by Spear et al.
[25] is specific to their TM implementation, the application
differ significantly with respect to levels of contention (or
aborts) and profitability from privatization, and at the mo-
ment there is not enough information to determine whether
TM programming eased the parallelization.

In the last six months, the STMBench7 [10] and STAMP
[20] benchmark suites have been proposed to evaluate TM
implementations. STMBench7 is derived from a single
threaded database benchmark, while the latest STAMP (re-
lease 0.9.4) includes three benchmarks parallelized from
scratch using coarse grain transactions. Both publications
[10, 20] evaluate specific TM implementations but do not
report insights into the parallelization process using TM
programming.

Question II — The naı̈ve TM implementation of Lee’s
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algorithm was straightforward, and involved only the iden-
tification, as a transaction, of the code which shared the grid
data structure. The changes, compared with the sequential
program, were minimal. However, the performance results
were not encouraging. A little thought revealed that some
uses of the shared grid were unnecessary, and a reduction in
conflicts (and a performance improvement) resulted from
privatization. It should be emphasized that the program
modifications were equally applicable to a serial version
and would have little or no effect on serial performance.
Had we started from that program the transformation into
a TM version would have been equally simple. Unfortu-
nately, although privatization delivered a slight improve-
ment, the performance was hardly spectacular, demonstrat-
ing only a low degree of parallelism and much wasted work.

The next step delivered a more significant performance
increase, but was less straightforward. The insight that only
conflicts among grid points which are part of tentative or
established routes are relevant to decide whether to abort
a transaction requires a clear understanding of the particu-
lar algorithm. However, the resulting performance increase
was spectacular and warrants a detailed analysis of the is-
sues.

Herlihy et al. [12] described how reducing the amount
of conflict among transactions can improve performance.
They illustrated that conflicts at the memory level, for the
implementation of an integer set using an ordered linked
list, may not conflict at the application domain level. Ac-
cordingly, they propose early release which is a mecha-
nism to remove elements from the read set associated with a
transaction. Their evaluation uses a micro-benchmark based
on the integer set and demonstrates a worthwhile perfor-
mance improvement. Skare and Kozyrakis [24] extended
the evaluation of early release to other micro-benchmarks.
But they found that unless the ADTs were linear the perfor-
mance improvements using early release were negligible.
One possible view of the described Lee-TM-p-ws imple-
mentation is that it is an extreme and extended application
of early release.

Carlstrom et al. [4], and Ni et al. [22] evaluate open
nested transactions as a means to reduce conflicts, specially
for long running transactions. Carlstrom et al. [4] exam-
ine the classes in the Java collections framework and use
the concept of semantic concurrency control to eliminate
irrelevant conflicts generated at the memory level. The im-
plementation of semantic concurrency control requires open
nested transactions. Ni et al. [22] describe a software TM
implementation with support for open nested transactions,
and the implementation is evaluated with two classes which
are part of Java collections framework.

Question III — We have not concerned ourselves with
how Lee-TM-p-ws might be expressed with TM constructs.
Early release introduces a method release() that takes

as a parameter the element to be removed from the read set
associated with a transaction. Lee-TM-p-ws can be imple-
mented by leaving intact the atomic construct around the
main loop body, but releasing every read from the global
grid during the expansion phase. During the backtracking
phase, before writing to the global we need either (1) a new
method addToReadSet() which takes as a parameter
the grid point we are about to write to, or (2) we need to
read points again from the global grid point so that these
become part of the read set.

Open nested transactions could also be used to imple-
ment Lee-TM-p-ws, although we do not favor it. Again we
leave intact the atomic construct around the main loop
body. Every single instruction in the expansion phase be-
comes an open nested transaction. In addition a new open
nested transaction is placed around the backtracking phase,
and the write operations are redirected to the local grid.
Then an extra closed nested transaction is needed. This
transaction simply reads from the global grid those points
that are tentatively part of the route. It will abort() if the
read grid point have been mark in the global grid as being
part of another committed route. Otherwise after having
read those grid points, it will write the route in the global
grid, and try to commit.

Alternatively, we would like to use only one atomic
block around the extra closed nested transaction described
above and eliminate the existing one around the main loop
body. However, on abort the execution should restart from
the beginning of the main loop body. The retry action en-
compasses more than the scope of the transaction.

The proposed usage of early release, open nested trans-
actions, and Lee-TM-p-ws make a conscious decision to
ignore the effect of certain memory operations. If we are
wrong, it will probably result in an incorrect program. This
clearly compromises a major advantage of the transactional
approach: a program can be easily parallelized using trans-
actions without affecting correctness. But, given the perfor-
mance improvements, we may well be prepared to accept
this added complexity.

Question IV — We have observed a dramatic perfor-
mance increase at the expense of a more complex transac-
tional program. There are some details of Lee’s algorithm
and its implementation which ought to be mentioned for
completeness. It was stated previously that, in a serial im-
plementation of Lee’s algorithm, routes are normally sorted
in order of increasing length. This ensures that simple short
routes are completed early and longer routes, which have
more options to find optimal connections, do not interfere
with them. In our simulation, this ordering is initially main-
tained as the routes are processed in their original sorted
order. However, any routes which fail due to conflict may
now get ‘overtaken’ by longer ones and this possibility is
clearly present in any truly parallel version. The major con-
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sequence of this is that the number of layer changes (vias)
needed for a successful overall routing increases. We will
not present the detail of this but observe that this appears as
a factor of two or three in our optimized results depending
on exact configuration. In a real implementation, it might be
necessary to address this problem by more careful schedul-
ing.

We have not attempted to generalize the finding to other
algorithms, but arguably it is likely that there are others with
similar features. In situations where there is a shared space
examined in parallel with a view to occupying or perform-
ing modifications on that space, then part of or all of the
examination may not be relevant to the final outcome. This
may occur, for example, in the areas of image processing
and planning.

8. Summary

A major claim for TM programming is that it allows par-
allel programs to be written easily to solve problems which
would otherwise be complex to implement using traditional
synchronization primitives. However, there have been few
studies of practical TM programming which examine and
verify this claim.

This study reports our experience implementing a realis-
tic application using transactional memory. Lee’s algorithm
is a well known technique which is applicable to either in-
tegrated circuit or printed circuit board routing. Without
the help of an existing parallel implementation, we have de-
veloped parallel TM routing programs which make a real-
istic job of producing practical solutions. These TM pro-
grams have been evaluated by taking a real circuit board
layout. This first TM attempt considers finding each route
as a transaction, and its performance evaluation shows an
average exploitable parallelism of about 5 from a theoretical
maximum of 1506. All the reported results are TM imple-
mentation independent. Guided by the high levels of trans-
action aborts, the TM program is adapted by privatizing one
data structure, although this still yields a poor average ex-
ploitable parallelism of about 7. In both TM programs, the
software development is very simple, but the performance is
unsatisfactory. To produce a TM program that improves the
exploitable parallelism up to about 100, the defined trans-
actions need to reduce their exposure to abortions. The key
insight is understanding that for Lee’s algorithm the mini-
mum exposure for a transaction that generates a complete
path between a source point and a destination point is sim-
ply those points contained in the complete path.
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