
, UK.
Early Output Logic using Anti-Tokens

C.F. Brej and J.D. Garside
Dept. of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL

{cb,jdg}@cs.man.ac.uk
nt
s

e is
d

al
n as
, a
wn
e
g

d
on
e

.
ts
m

-
a

ta
is

ty’
ty,
rate
h

e
rt
Abstract

Delay-insensitive dual-rail and bundled data design
methodologies are the two main approaches used for the
creation of asynchronous circuits. Bundled data allows the
creation of fast, low overhead circuits, whereas dual-rail
allows bit-level pipelining and average case performance.
This paper describes ‘Early output’ logic, which combines
the positive features of the two methods to create faster
asynchronous circuits. This method allows the creation of
circuits yielding performance faster than their
synchronous counterparts.

Early output implementations allow logic to evaluate
results before all inputs are presented. The results move to
the next stage, but the current stage stalls while waiting for
the late inputs to arrive simply to acknowledge them. This
unnecessary wait can be removed by allowing backwards
propagating ‘Anti-Tokens’ to remove the late inputs. The
use of anti-tokens and improved semi-decoupled latches
allows the removal of many stalls due to unnecessary
synchronisations, thus improving the performance of the
circuit.

1. Introduction

Self-timed logic [1] is a form of logic implementation
where the timing of operations is implicit in the logic itself.
Unlike externally timed logic – which need only evaluate a
desired function – self-timed logic must also carry encoded
timing information.

Self-timed systems have been classified according to the
number of assumptions which need to be made about the
timing within them [2]. A Delay Insensitive (DI) system
will function correctly with arbitrary delays in any logic or
interconnection element; Speed-Independent (SI) systems
assume isochronic interconnection; bundled data systems
make many more assumptions in modelling the limits of
performance and are not considered here.

Dual-rail logic [3] is often used in the creation of DI or
quasi-delay insensitive (QDI) systems – the latter having
arbitrary computation delays but assuming that a signal
fans out to all its destinations at the same time. Dual-rail

encoding carries both data and timing using differe
signals to indicate the arrival of each states. This allow
systems to adapt to run at their best speed, although ther
some overhead implicit in the detection an
acknowledgement of data elements.

In order to make the fastest possible computation
systems data must be passed to the next stage as soo
they are ready. By encoding the timing on the data wires
datapath can be split into very small segments, even do
to bit-level pipelining. This allows parts of the data to mov
to the next pipeline stage while the rest is still bein
processed.

1.1. Two-Phase Dual-Rail Logic

Two signalling protocols are possible: two phase an
four phase [1]. In two phase logic, a transition is created
one wire to transmit a ‘1’ and a transition is created on th
other wire to transmit a ‘0’ (fig. 1). This ‘transition
signalling’ minimises switching in the system
Unfortunately, logic retains the previous state of all inpu
which introduces overheads into logic gates making the
large and slow.

Level-Encoded Dual-Rail (LEDR) [4] also uses two
phase, dual-rail transmission, but encodes the data in
different manner. One of the wires always indicates the da
value and also the timing when the data changes. If there
no change in the data value a transition on the other ‘pari
wire conveys the timing. Each data token has its own pari
either odd or even, which alternates to keep tokens sepa
(fig. 2). This ‘data strobe encoding’ is also used in hig
speed communications such as IEEE 1394 (‘Firewire’).

Using LEDR it is possible to construct logic much mor
simply, by using only the ‘data’ wires to feed the logic pa

Data_0

Data_1

Ack

0 1 1 0

Figure 1:  Two-phase dual-rail signalling



as
nly

’
m

in
y

ed
ic
f

n
e

ts
re

he

te
s

is

R
ly
*).
of the circuit. The timing part will wait for all inputs to
arrive and then wait for the matched delay of the logic side
before latching the result. This method, due to the use of a
matched delay, does not yield a delay insensitive design, but
the resultant circuits match and often surpass the speed of
their synchronous counterparts. Even better results have
been achieved by outputting the result early when waiting
for a late input which was not needed to create the result [5].
This can be done, for example, when the first input arriving
at an AND gate is a logic ‘0’; it is not necessary to know the
value of later inputs before producing the correct output.

1.2. Four-Phase Dual-Rail Logic

The four-phase dual-rail [3] approach returns both wires
to zero after each transaction (fig. 3). This allows fully quasi
delay insensitive circuits to be created which do not need to
hold state. Delay-Insensitive Minterm Synthesis (DIMS) is
the approach often taken to create QDI circuits. It allows
logic to be constructed without the need for matched
delays. Unfortunately DIMS gates are large, slow and
power-hungry (fig. 4). Additionally, the four phase protocol
forces each stage to waste as much time returning to zero
as it uses to calculate the data. Although DIMS works well
in creating bit-level pipelined and average case timed
circuit the gates are too slow to compete with other design
styles.

There are four problems with DIMS which disqualify it
as a method to create fast circuits.

1) Latency: the use of C-elements (for synchronisation) is
very expensive, especially in three or more input gates.

2) Size: compared with a standard gate, the DIMS gate is
ten (or more) times the silicon area.

3) Worst case behaviour: each gate waits for all of its
inputs to arrive before creating the result. This is
enforced even if the inputs that have arrived are
sufficient to calculate the result.

4) Throughput: the return to zero (RTZ) phase takes
long as the active phase. This ensures that at most o
half the circuit is operating at one time.

In some of the following descriptions the ‘spacer
between data elements is referred to as ‘NULL’, a ter
borrowed from NCL [6]; this does not imply that this
system uses NCL gates however.

2. Early output logic

Early output logic [7] addresses some of the problems
DIMS logic to create fast circuits whilst preserving man
of its beneficial properties.

Many of the problems in the DIMS approach are caus
by the gates trying to manage the timing as well as the log
of the function. By separating the timing and logic parts o
the circuit (and losing the ‘QDI-ness’), a faster circuit ca
be created, as demonstrated with LEDR. Th
communication protocol remains QDI and timing
assumptions are only applied in local logic.

DIMS gates are large and slow due to the C-elemen
required to ensure the output only rises when all inputs a
valid and falls only when they both return to NULL. If these
restrictions are moved into separate guarding logic t
gates can be much smaller and faster.

Effectively all the gate is now required to do is to execu
the logical operation on the dual-rail inputs. Figure 4 show
an early output OR gate compared with its DIMS
counterpart. The delay through the early output gate
equal to that of a single gate stage.

Figure 5 shows the output of DIMS and early output O
gates during transitions from the NULL state. The ear
output gate outputs early in two cases (marked with a

Parity

Data

Ack

10 1 0
Figure 2: LEDR dual-rail signalling

Data_0

Data_1

Ack

N0N N1
Figure 3: Return to zero signalling

Figure 4: DIMS and early output OR gates

DIMS OR
0 N 1

0 0 N 1

N N N N

1 1 N 1

Early Output OR
0 N 1

0 0 N 1

N N N 1*

1 1 1* 1

Figure 5: DIMS vs early output transition tables



ible
of

es
4,

hat
he

nt’
r it
ed
e
ar
–

d

eir
f

ay
te

d
e
o
ut

w
to
t
uts

ts
se

le
Although this is beneficial because the result arrives at its
destination sooner it does not ensure that all inputs have
arrived.

A DIMS gate:

1) outputs NULL when all inputs are NULL.

2) executes the required logical operation.

3) only outputs a valid value when all inputs are valid.

4) only returns to NULL when all inputs are NULL

The early output only has properties 1 and 2, so some
other mechanism must be provided to ensure correct
operation.

2.1. Guarding

Property 3 (above) ensures that only when all inputs into
a stage are valid will the result become valid. In an early
output logic system this is undesirable. Instead the
requirement is merely that all the inputs must have been
asserted before they can be acknowledged.

Figure 6 shows an example of an early output pipeline
stage. The thick, grey symbols indicate the logic circuits
which carry implicit timing information; the output latches
will capture data and acknowledge the input (Ai) as soon as
it is available. The logic may produce a result ‘early’; for
example if the upper input latch sources a ‘0’, both output
latches receive ‘0’ and can acknowledge this.

Two banks of C-elements are used to guarantee
operation. The first C-elements (C1 and C2) are adjacent to
the output latches; these ‘guarding’ C-elements pass on an
acknowledgement when all the contributing input stages
have output valid data, as indicated by Vo (e.g. see fig. 9).
In the example above C1 will fire but C2 will wait for the
lower input latch to assert data. C1 and C2 reflect the fan-
in of their respective output latches.

The second bank of C-elements ensures that fan-out
constraints are met for their respective input latches. C3
therefore waits for the acknowledgement from both
outputs, whereas C4 waits only for the lower output.

The C-elements appear cumbersome but, in many cases
(such as C4 in fig. 6), they elements may be degenerate and

can be removed. In other cases optimisations are poss
(e.g. C1 and C3 can be combined making the Vo input
C1 redundant).

These C-elements also ensure that all relevant latch
achieve a NULL state between data values (property
above). There is a potential hazard introduced here in t
late-arriving (unnecessary) data will begin to traverse t
logic in parallel with its ‘valid’ signal triggering its
removal. It is therefore necessary to ensure that this ‘ru
data does not both survive and have a sufficient delay fo
to reach the output latch after the other inputs have return
to NULL. In this circumstance a false data packet could b
introduced. However the timing constraints on this appe
to be fairly easy to meet. Indeed in some logic families
such as dynamic logic – this is met automatically.

2.2. Weak condition logic

Early output logic is a member of the weak conditione
logic family [8]. All examples of this design style need to
ensure the state of the inputs before acknowledging th
source. This is commonly done by ensuring the validity o
all outputs before acknowledging, a process which m
entail the adding of extra logic in order to ensure the sta
of every input is visible at the logic output. This metho
allowssomeoutputs to become valid early and removes th
need for guarding C-elements. Unfortunately it als
synchronises all signals at the stage’s input. Early outp
logic is not only more general but later sections will sho
how to take advantage of the guarding C-elements
improve performance further. Additionally, in early outpu
logic, many stages are able to acknowledge some inp
while other parts of the stage are still processing.

2.3. Early output states

Early output gates may output a value before all inpu
are valid. This increases the speed of computation. The
early output states allow the result to move forward whi

Vo

Ao

Ai

Vo

Ao

Ai

Ri

Ri

Ro

Ro

C1

C2

C3

C4

Input
Latch

Input
Latch

Output
Latch

Output
Latch

Figure 6: Guarding example

A

B

S

Q

S

A B N 0 1

N N N N N

0 N N 0* N

1 N N 1* N

N 0 N N 0*

0 0 N 0 0

1 0 N 1 0

N 1 N N 1*

0 1 N 0 1

1 1 N 1 1

Q0=(A0.S0)+(B0.S1)
Q1=(A1.S0)+(B1.S1)

Figure 7: Early output multiplexer design



ail
te.

l is
ts

te
e
h.

es
ut

is
e
he
an

he
mi-
is

he
e
e
ss

is
d

current stage waits for all inputs to arrive before
acknowledging them. A good early output design will use
as many of these early output cases as possible. Figure 7
shows a design for a dual-rail 2:1 multiplexer along with its
truth table. Although the design is correct it does not
capture all early output states.

By rearranging logic it is often possible to create circuits
which capture more of the early output cases. Such circuits
will stop and wait for late inputs less often. Sometimes an
optimal circuit may be uneconomic, but in other cases it can
be quite straightforward. Figure 8 shows an improved
multiplexer design which includes two extra early output
cases. This circuit will be able to create a valid output if
both data inputs are equal and thus the select input is
irrelevant.

3. Semi-decoupled latches

Although gates can output results early, guarding logic
ensures that the pipeline stage waits for the late inputs
before acknowledging. During this time the data on the
output is valid and must remain so at least until the last
input arrives. This stops a subsequent stage from moving
more than half a cycle ahead; it can evaluate with the input
just fed to it but, until the stalled stage is freed, the
subsequent NULL cannot be generated.

In principle a latch between stages could generate a
NULL when its output is acknowledged, allowing the
subsequent pipeline to complete and recover. This latch
would have to wait until the input has returned to zero
before continuing to pass data. These are the properties of
a semi-decoupled latch.

Figure 9 shows the standard dual-rail latch design [9]
adapted for use in early output logic. The OR gate is used
to both provide an acknowledge backwards and a validity
forwards. Figure 10 shows a commonly used dual-rail
semi-decoupled latch [9]. In this latch the data output will
return to NULL once the acknowledge signal reaches it,
even if the input data has not entered the NULL state. The

component is more complex than the standard dual-r
latch as it requires a C-element to store some control sta
The state holding C-element fires when the output signa
acknowledged. It remains active until the data C-elemen
have returned to zero.

The semi-decoupled latch allows pipelines to opera
with fewer internal synchronisations. Unfortunately, th
cost in performance and area of the above design is hig

3.1. Early output semi-decoupled latch

A cheaper semi-decoupled latch is desirable. All latch
used by early output circuits described in this paper outp
a validity signal. The Vo (Valid out) line is connected
through C-elements to the Ao (Acknowledge out). Th
allows the data signals to return to NULL but the Ao lin
will remain active until Vo has been released. This stops t
stage from completing the acknowledge but later stages c
complete the cycle and start a new one.

Using early output logic it is safe to force data to NULL
and still ensure the stage does not complete t
acknowledge phase. Figure 11 shows a much cheaper se
decoupled latch design. The cost of the two AND gates
very low: due to the sequencing of the transitions.

Data out lines (Ro_0 and Ro_1) are driven high when t
C-elements switch high and low when the acknowledg
becomes high. The AND gate can therefore b
implemented using only two transistors: a P-type pa
transistor, to propagate the data when the acknowledge
low, and an N-type transistor to force the signal to groun
when the acknowledge is high.

A

B

S

Q

S

A B N 0 1

N N N N N

0 N N 0* N

1 N N 1* N

N 0 N N 0*

0 0 0* 0 0

1 0 N 1 0

N 1 N N 1*

0 1 N 0 1

1 1 1* 1 1

Q0=(A0+S1).(B0+S0)
Q1=(A1+S1).(B1+S0)

Figure 8: Improved early output multiplexer

Figure 9: Standard dual-rail latch

Ri_0

Ri_1

Ro_0

Ro_1

Ai Vo

Ao

Figure 10: Standard semi-decoupled latch

Ri_0

Ri_1

Ro_0

Ro_1

Ai

Ao

Vo



en
sed
ata
en
r
g

it
ch
h
to

lid
is

the
es

to

s
as
y

e
i-

s
is
n
.

ll
en
ts

ich
ive
hes
L.

a

in
lect
, it
ed
4. Anti-Tokens

With a block of logic circuit such as an OR gate, if one
input to the gate in a given operation is ‘1’, all other inputs
can be ignored when they arrive. By extension if a message
can be sent backwards, the incoming token can be
eliminatedbefore it arrives, potentially both speeding up
the operation and reducing power consumption. This leads
to the idea of counterflow pipelines, where data ‘tokens’
flow in the forward direction and ‘anti-tokens’ flow the
opposite way. An anti-token may be generated when a data
input becomes redundant and it can then travel back to
eliminate the token (and itself) closer to the data’s source.

Perhaps the best known example of an asynchronous
counterflow pipeline is the Counterflow Pipeline Processor
(CFPP) [10] which allows instructions to move one way
along a processing pipeline while results flow freely in the
opposite direction. This addresses the issue of inter-
instruction dependencies in a processor; a complex
problem in that it is unknown how many times (if any) a
result will be used in the near future. In the CFPP various
complex interactions between packets flowing in opposite
directions are possible; counterflowing packets are
synchronised if they collide within a stage so that
interactions can be managed. This requires arbitration to
guide the actions at each stage of the pipeline.

Anti-token propagation is much simpler; tokens and
anti-tokens cannot pass each other, they can only collide.
The decision making process is therefore much simpler and
– it is believed – can be satisfied by meeting a set of timing
constraints.

4.1. Protocol

In early output circuits the ‘valid out’ signal (Vo) delays
an incoming acknowledgement signal until the latch is
ready to accept it. It is asserted when the data is ready and
will both delay an early acknowledgement until data is
present and prevent the acknowledgement from being
released until the latch has returned to NULL.

A latch which is able to process anti-tokens can assert
the valid signal before outputting data. If an

acknowledgement then arrives an anti-token has be
received and can be captured. This can then be pas
backwards by asserting the input acknowledge before d
has been received. As a latch can only hold one anti-tok
it has to prevent the following stage from giving it anothe
early acknowledgement. This is done by simply not raisin
the valid line again.

A latch can raise its acknowledge signal even before
receives any data as the acknowledgement will not rea
the input latches until they all raise their valid lines. A latc
holding an anti-token can acknowledge early but has
keep the acknowledge high until all inputs assert their va
lines and the guarded acknowledge has activated. This
because the latch cannot sense if the stage moved to
reset phase by only observing the data lines. The data lin
never went high so the latch can’t wait for them to return
zero.

To allow the latch to snoop on the state of the previou
stage the guarded acknowledge line is fed into the latch
Vi. This allows the latch to send and receive earl
acknowledgments.

This type of anti-token latch can inter-operate with th
other latches described earlier. For instance a sem
decoupled latch will never assert its validity before it ha
data and will thus not accept an anti-token, even if it
offered. The responsibility of eliminating the data toke
then remains the responsibility of the downstream latch

4.2. Anti-tokens and logic

Anti-tokens can move backwards through logic as we
as FIFOs. Figure 12 shows a situation where an anti-tok
(A) has arrived at a logic stage where some of the inpu
have arrived. In such a case, if the remaining latches wh
have no output data are anti-token latches, they will rece
an early acknowledge and accept an anti-token. The latc
with data will receive an acknowledge and reset to NUL

Early output logic will generate anti-tokens
automatically. The example in figure 13 shows
multiplexer with only the data inputs valid. As shown in
section 2.3, a 2:1 multiplexer can be designed so that,
some cases, it can create a valid output before the se
signal arrives. Once the result arrives at the output latch
can then acknowledge. If the acknowledgement is allow

Figure 11: Early output semi-decoupled latch

Ri_0

Ri_1

Ro_0

Ro_1

Ai

Ao

Vo

Figure 12: Anti-token propagation through logic

0

N
A

1

N
A

N

N



are
e
en
nly
o

to
e

In
+
ss
I.)
.

ti-
ed;
ld

t is
y

st
not

n
)

is
ng
re

i-
through the guarding logic (select input is ‘valid’, i.e. able
to accept an anti-token) then latches which do not hold data
will receive anti-tokens while the latches which do will
receive a normal acknowledgement.

4.3. Anti-Token pipeline

Figure 14 shows an example of an early output circuit.
In this circuit the two data C-elements are abstracted and
are outside the latch to simplify the description. This C-
element is driven by signal S from the latch control unit.
The C-element is asymmetric because, while passing an
anti-token, the ‘S’ signal is withdrawn. This could cause the
C-element to become metastable (if data is just arriving) but
the data state will be ignored. ‘S’ forces the C-element reset
when it drops. The Ai signal is combined with Vo signal to
create the guarded acknowledge. This can then be passed to
the input latch as the Ao and to the output latch as Vi. The
latch also snoops on Ri and Ro signals. The Ri signal is
observed to ensure that the data C-elements are not re-
enabled while there is still data from the previous operation.

Figure 15 shows a Burst-mode machine description of
the latch controller. State 0 is the initial state, in which
outputs S and Vo are high while Vo and Ai are low. In state
0 the latch is waiting for the sign of a token or an anti token.
If the Ro+ transition happens first the latch will go through
states 1, 2 and 3 while passing a token. If Ao+ arrives first
then the latch will pass an anti-token by going through
states 4 and 3.

4.4. Anti-token latch behaviour

Figure 16 depicts the operation of the anti-token latch
when passing a token. In state 0 both the S and Vo signals

are high, so both the data and the guarding C-elements
ready to fire. In this example the data C-element will fir
first and raise Ro (i.e. the data signals). The latch th
passes a token as would a standard dual-rail latch. The o
difference is that removing the S signal directly forces R
to NULL, even if Ri is still valid. Instead of waiting for Ro
to drop, Ri is tested directly to check that it has returned
NULL before releasing the acknowledge. This gives th
latch a semi-decoupled behaviour.

Passing anti-tokens is simpler than token passing.
figure 17 the latch receives the Ao+ transition first. Ao
causes S to be withdrawn. (During the anti-token pa
transitions on S are not observed, so the circuit is not QD
Once S is low data trying to enter the latch will be ignored
If Ri rises just before S drops (due to accepting an an
token) a short glitch on the data output (Ro) may be caus
if S and Ri change at the same time the C-element cou
even become metastable. However, as the C-elemen
asymmetric its output is forced inactive by S. The latenc
of the logic through which this glitch could propagate mu
be shorter than the reset cycle time to ensure the data can
‘leak’ past the anti-token.

Providing this timing constraint is met, arbitration ca
be avoided as both the two initial transitions (Ro+ or Ao+
will have the same effect (Ai+). The anti-token pass
equivalent to the token pass with the exception that duri
a token pass the latch waits for the data lines to drop befo
continuing. As the data lines remain low during an ant
token pass, no stall is required.

Figure 13: Anti-token generation

0

A

N

0

N

N

A

0
N

Figure 14: Anti-token FIFO

Vo

Ao

Ai

Vi

Ri

Ai

Vi

Ro

Vo

Ao

+ +

RoS S
Ri

Anti
Token
Latch
Control

Anti
Token
Latch
Control

Figure 15: Description of the anti-token latch
Burst-mode machine

01

2 3

4

Ro+/Ai+

Ao+/S-

Ro-Vi+/Ai-Vo-

Ao-Vi-/S+Vo+

Vi+/Ai-Vo-

Ao+/Ai+S-

Figure 16: Token passing

Ro

Ai

S

Ao

Vo

Vi

State 0 1 2 3 0 1 2 3 0



le
it.

ic
5

as
nk
ve

als
s

n-
. To
up
s.
es
er-
g.
bit-
e
ns
e
ts
e

e
to
de
,
nt

ed
-
32
ith
g
us

The

ns
ey
an

ns
64

s
he
4.5. Anti-token latch schematic

Figure 18 shows a schematic of the latch, synthesized by
Minimalist [11] and then hand optimised. The circuit is
only slightly larger than the standard semi-decoupled latch
and retains the semi-decoupled property.

4.6. Anti-token/token collisions

In each other’s absence tokens and anti-tokens may flow
freely. When they collide they eliminate each other,
therefore there is no decision to make as to which reached
a latch first. An anti-token begins with an acknowledge so
the token ‘believes’ that it is being acknowledged, and vice
versa. The latch sourcing the token passes it on, but the
subsequent latch ‘perceives’ the request as an
acknowledgement of its anti-token. Timing constraints
ensure that the data payload does not survive.

Although the problem of deciding whether to pass a
token, pass an anti-token or destroy both would seem to
require an arbiter, by creating an interface in which the
behaviour is the same in all three situations no arbitration

is necessary. Either side of the latch can initiate the cyc
but both sides need to resynchronise in order to complete

5. Results

Large circuits have been created using early output log
with encouraging results. The largest example was a
stage, 32-bit microprocessor core [12]. The pipeline w
created using early output logic although the register ba
was made using matched delays. Anti-token latches ha
been tested in this circuit, but not yet used to full effect.

Because each latch must collect the acknowledge sign
from all latches it outputs to, in large designs this require
C-elements with hundreds of inputs. Large fan-in and fa
out causes the circuits to be very large and synchronised
remove the need for large C-elements the design is split
into small parts of only a few gates with pipeline latche
Pipeline latches may be latches of any of the typ
described above. Effectively the design becomes sup
pipelined. If the pipeline latches are placed vertically (e.
across carry lines in an adder) the design also becomes
pipelined. Individual bits will progress to the next stag
while others are being processed. In long series of additio
the data wave-front will become skewed allowing th
bottom bits of the adder to process the next set of inpu
while the top of the adder is processing data from th
previous instructions.

Additional pipeline latches were added to th
microprocessor design but without more information as
where to place them, only intelligent guesses could be ma
as to where they would give a positive effect. Additionally
only standard latches were added as the effect of differe
latch designs was not fully explored.

The first attempt to create the design using a synthesiz
register bank (tried initially) required 1000+ input C
elements, due to dependencies on all of the bits in the
entry, 32-bit register bank. Replacing the register bank w
a matched delay version and hand placing pipelinin
latches gave much more positive results. The synchrono
design had a worst case delay path of about 80 gates.
asynchronous version on fast instructions (e.g. r:= 0 + 0)
had cycle times of about 60 gate delays. Slow instructio
(e.g. r:= 0 - 0) could take up to 90 gate delays but as th
occur very rarely the average cycle time is much lower th
the synchronous version.

The result were measured in gate level simulatio
against a very naive synchronous design which used a
gate delay carry ripple adder.

5.1. Comparisons of latches

Figure 19 shows the gate delay count of all latche
shown. The units are measured in gate delays of t

Figure 17: Anti-token passing

Ro

Ai

S

Ao

Vo

Vi

State 0 4 3 0 4 3

Ao

Ri

Ro

Vi

Ai

Vo

S

-

+
+

+

+

Ri

Ri_0

Ri_1 Ro

Ro_0

Ro_1

S

Control

Data

Figure 18: Anti-token latch schematic



r
r to
us
ed
g
ts
e

er
e

s.

uit
-

si
c
on

e
3.

,

n

al
-

s

.
h
l.

s

e
r

optimised versions of the latches. C-elements require 2 gate
delays to switch and the optimisations remove the need to
invert the Ao line.

The early output, semi-decoupled latch gives much
improved results over the standard semi-decoupled latch.
Ao↓ to Vo↑ delay is two times smaller and the overhead
over the original design is so low that it seems beneficial to
use the early-output latches throughout most designs. The
anti-token latch is only marginally slower and, in the case
of Ao↓ to Vo↑, is actually faster than any other latch. The
only problem with using anti-token latches as standard is
their physical size.

6. Conclusions

Early output logic looks very promising when compared
with synchronous designs for speed. It is important to
remember that although the speed improvement might be
sought after, the area and power consumption costs are
high.

Early output logic is the basis of features such as
improved semi-decoupled latches and anti-token latches.
Although these latches look beneficial, further work is
needed to show where they should be placed in a design to
gain a positive effect.

Early output circuits require some timing assumptions in
the logic part of the circuits. This can be easily met if the
logic functions are fewer than four inversions deep. This
restriction requires very fine grain pipelining but this is the
intended target for these techniques. A method of finding
these timing requirements and reorganising the logic,
placing delay lines or adding extra inputs to guarding C-

elements is required to allow a more flexible designs.
Anti-token latches offer further improvements. Fo

example these could be used extensively in a processo
signal that a register forwarding path is not required, th
removing unnecessary synchronisation in a self-tim
system. Like other early output circuits certain timin
criteria must be met, but it is believed that these constrain
should not be too limiting in most circumstances. Thes
developments are being incorporated into a larg
asynchronous system where it is hoped they will giv
significant extra flexibility in future asynchronous design

7. References

[1] J. Sparsø and S. Furber, “Principles of Asynchronous Circ
Design”, Kluwer Academic Publishers, 2001, (ISBN 0
7923-7613-7)

[2] K. Van Berkel, F. Huberts and A. Peeters, “Stretching Qua
Delay Insensitivity by Means of Extended Isochroni
Forks”, Proceedings of the Second Working Conference
Asynchronous Design Methodologies, London, UK, 1995.

[3] D.E. Muller, “Asynchronous logics and application to
information processing”, Switching Theory in Spac
Technology, Stanford, University Press, Stanford, CA, 196

[4] M.E. Dean, T.E. Williams and D.L. Dill, “Efficient Self-
Timing with Level-Encoded 2-Phase Dual-Rail (LEDR)
Advanced Research in VLSI, 1991.

[5] R. B. Reese, M. A. Thornton and C. Traver, “Arithmetic
Logic Circuits using Self-timed Bit-Level Dataflow and
Early Evaluation”, Proceedings of the 2001 Conference o
Computer Design, September 2001.

[6] K.M. Fant and S.A. Brandt. “NULL conventional logic: A
complete and consistent logic for asynchronous digit
circuit synthesis”, International Conference on Application
specific Systems, Architectures, and Processors, 1996.

[7] C.F. Brej, “An automatic synchronous to asynchronou
circuit convertor”, 11th UK Asynchronous Forum, 2001.

[8] Christian D. Nielsen. “Evaluation of Function Blocks for
Asynchronous Design”, Proceedings of EURODAC, 1994

[9] S. Furber and P. Day, “Four-phase micropipeline latc
control circuits”, IEEE Transactions on VLSI Systems, vo
4, June 1996.

[10] R.F. Sproull, I.E. Sutherland and C.E. Molnar, “Counterflow
Pipe-line Processor Architecture”, Sun Microsystem
Laboratories Technical Report, April 1994.

[11] R. Fuhrer and S. Nowick, “MINIMALIST: An Environment
for the Synthesis, Verification and Testability of Burst Mod
Asynchronous Machines”, Department of Compute
Science, Columbia University Technical Report, 1999.

[12] C.F. Brej, “Third year project report”, 2001, http://
www.cs.man.ac.uk/~brejc8/yellow_star.html.

Figure 19: Transition delays

From To Original Standard
S-D

Early
output

S-D
Anti-token

Ri_?↑ Ro_?↑ 2 3 3 2

Ri_?↑ Ai↑ 3 3 3 4

Ri_?↑ Vo↑ 3 4 3 N/A

Ao↑ Ro_?↓ 2 2 2 2

Ao↑ Vo↓ 3 4 3 5

Ao↑ Ai↑ N/A N/A N/A 2

Ri_?↓ Ai↓ 3 3 3 4

Ri_?↓ Vo↓ 3 N/A 3 4

Ao↓ Ro_?↑ 2 5 3 2

Ao↓ Vo↑ 3 6 3 2

Token Pass 14 20 16 19

Anti-Token Pass N/A N/A N/A 16

Transistor count 24 42 28 41


	Early Output Logic using Anti-Tokens
	C.F. Brej and J.D. Garside
	Dept. of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
	{cb,jdg}@cs.man.ac.uk


	Abstract
	1.� Introduction
	1.1.� Two-Phase Dual-Rail Logic
	Figure 1: Two-phase dual-rail signalling
	Figure 2: LEDR dual-rail signalling

	1.2.� Four-Phase Dual-Rail Logic
	Figure 3: Return to zero signalling
	1) Latency: the use of C-elements (for synchronisation) is very expensive, especially in three or...
	2) Size: compared with a standard gate, the DIMS gate is ten (or more) times the silicon area.
	3) Worst case behaviour: each gate waits for all of its inputs to arrive before creating the resu...
	4) Throughput: the return to zero (RTZ) phase takes as long as the active phase. This ensures tha...



	2.� Early output logic
	Figure 4: DIMS and early output OR gates
	Figure 5: DIMS vs early output transition tables
	1) outputs NULL when all inputs are NULL.
	2) executes the required logical operation.
	3) only outputs a valid value when all inputs are valid.
	4) only returns to NULL when all inputs are NULL

	2.1.� Guarding
	Figure 6: Guarding example

	2.2.� Weak condition logic
	2.3.� Early output states
	Figure 7: Early output multiplexer design
	Figure 8: Improved early output multiplexer


	3.� Semi-decoupled latches
	Figure 9: Standard dual-rail latch
	Figure 10: Standard semi-decoupled latch
	3.1.� Early output semi-decoupled latch
	Figure 11: Early output semi-decoupled latch


	4.� Anti-Tokens
	4.1.� Protocol
	4.2.� Anti-tokens and logic
	Figure 12: Anti-token propagation through logic
	Figure 13: Anti-token generation

	4.3.� Anti-Token pipeline
	Figure 14: Anti-token FIFO
	Figure 15: Description of the anti-token latch Burst-mode machine

	4.4.� Anti-token latch behaviour
	Figure 16: Token passing
	Figure 17: Anti-token passing

	4.5.� Anti-token latch schematic
	Figure 18: Anti-token latch schematic

	4.6.� Anti-token/token collisions

	5.� Results
	5.1.� Comparisons of latches
	Figure 19: Transition delays


	6.� Conclusions
	7.� References
	[1] J. Sparsø and S. Furber, “Principles of Asynchronous Circuit Design”, Kluwer Academic Publish...
	[2] K. Van Berkel, F. Huberts and A. Peeters, “Stretching Quasi Delay Insensitivity by Means of E...
	[3] D.E. Muller, “Asynchronous logics and application to information processing”, Switching Theor...
	[4] M.E. Dean, T.E. Williams and D.L. Dill, “Efficient Self- Timing with Level-Encoded 2-Phase Du...
	[5] R. B. Reese, M. A. Thornton and C. Traver, “Arithmetic Logic Circuits using Self-timed Bit-Le...
	[6] K.M. Fant and S.A. Brandt. “NULL conventional logic: A complete and consistent logic for asyn...
	[7] C.F. Brej, “An automatic synchronous to asynchronous circuit convertor”, 11th UK Asynchronous...
	[8] Christian D. Nielsen. “Evaluation of Function Blocks for Asynchronous Design”, Proceedings of...
	[9] S. Furber and P. Day, “Four-phase micropipeline latch control circuits”, IEEE Transactions on...
	[10] R.F. Sproull, I.E. Sutherland and C.E. Molnar, “Counterflow Pipe-line Processor Architecture...
	[11] R. Fuhrer and S. Nowick, “MINIMALIST: An Environment for the Synthesis, Verification and Tes...
	[12] C.F. Brej, “Third year project report”, 2001, http:// www.cs.man.ac.uk/~brejc8/yellow_star.h...



