
Abstract

LARD is a hardware description language which uses
CSP-like channel communication to describe the behaviour of
asynchronous VLSI systems. This communication abstraction
makes LARD a much more productive language for this type of
modelling than conventional languages such as VHDL. LARD
simulations can be useful for debugging, for performance anal-
ysis, and for validating the behavioural model against a
corresponding gate-level schematic. The latter requires co-sim-
ulation if the model is non-deterministic. The LARD toolkit has
been implemented in a very flexible fashion and is readily
adapted to other tasks.

1. Introduction

The development of ever more complex VLSI circuits has
been underpinned by the existence of suitable simulation. Since
a whole chip must be fabricated in one go the designer must rely
entirely on simulation results while he designs, debugs, evaluates
and refines his work.

For many years mainstream VLSI design has been domi-
nated by the synchronous paradigm where the timing of the
whole system is controlled by a single global clock. This
approach has been very successful as it makes it easy to reason
about the behaviour of the system; timing can always be
described in whole numbers of clock cycles.

Unfortunately a number of factors are coming together to
make globally synchronous design less attractive in the long
term. These factors include:

• As chip sizes and clock speeds increase, signals will take
more than one clock cycle to get from one part of a chip
to another. We are already seeing chips that use several
clocks for distinct sub-blocks. The Semiconductor
Industry Association projects that chips will have over
10000 non-overlapping time zones by around 2012
(SIA 1997).

• High frequency clock signals cause significant
electromagnetic compatibility problems. This is
particularly worrying in important applications such as
mobile telephony, where it makes the goal of a single-
chip phone hard to achieve.

• In many applications low power consumption is a goal.
The global nature of a clock signal means that logic
everywhere operates continuously, using power on every
clock cycle even when there is no work to do.

As a result of these factors, asynchronous (or self-timed)
design, for many years not much more than an academic curios-
ity, has seen a resurgence of interest. In an asynchronous VLSI
system, the timing at interfaces between blocks is controlled by a
local handshaking protocol with communications occurring
when both sides are ready, rather than under the control of a
global timing signal.

The AMULET group at the University of Manchester has
made a number of contributions to the re-establishment of asyn-
chronous logic. The AMULET1 microprocessor (Woods et al.
1997), developed between 1991 and 94, runs standard ARM code
and as such was the first asynchronous implementation of a com-
mercial instruction set. AMULET2 (Furber et al. 1997) took this
proof of concept and developed a more useful chip with increased
performance. AMULET3 (Gilbert and Garside 1997) is currently
under development; this chip is a complete asynchronous embed-
ded system with an ARM compatible processor core, RAM,
ROM, a DMA controller, an on-chip bus, an external memory
interface and a synchronous peripheral subsystem. This chip has
been designed with telecommunications applications in mind and
we have hopes that it will find commercial exploitation.

Despite its apparent advantages the further development of
asynchronous logic faces several hurdles. One such hurdle is the
lack of modelling languages and related tools, and as was noted
earlier tools such as simulators are crucial for complex VLSI
designs. Many of the tools in use today have been developed by
people with a synchronous mind set, and description and simula-
tion of asynchronous systems using them can be awkward.

For the AMULET1 and AMULET2 designs we used a con-
ventional modelling language and simulator, and found progress
difficult. We identified this as a major obstacle to the progress of
the project and decided to develop a new high-level modelling
language and simulation environment for AMULET3. This paper
will describe the resulting language, which is called LARD (Lan-
guage for Asynchronous Research and Development).
Developing the initial model of AMULET3 took an order of
magnitude less time than had been the case for the earlier designs,
thanks to the more appropriate semantics of the new language;
we count this as a substantial success.

This paper starts by explaining how conventional hardware
description languages such as VHDL are inefficient for model-
ling asynchronous systems, and describes the main features of
LARD that addresses this deficiency. We then look at how
LARD simulations can help to analyse the functional correctness
and performance of the design, and how co-simulation between
the LARD simulator and a transistor level simulator can help to
validate a circuit implementation against the behavioural model.

Modelling and Simulation of Asynchronous Systems using the LARD
Hardware Description Language

Philip Endecott, Stephen Furber,
Dept. of Computer Science,
University of Manchester,

Oxford Road,
Manchester.

M13 9PL U.K.
pbe@cs.man.ac.uk

Finally we look at the way in which the LARD simulation toolkit
has been implemented, and show how the flexibility of its imple-
mentation makes it applicable to a wider range of applications
than just VLSI design.

2. Communication Abstractions in LARD

Conventional hardware description languages such as
VHDL model communications between blocks using signals.
These signals have semantics similar to shared variables.

In asynchronous systems, timing information about the
validity of data signals is provided by local timing signals, often
in the form of request and acknowledge signals. Figure1 com-
pares the synchronous timing protocol with one possible
asynchronous protocol. To model the asynchronous protocol
using VHDL’s signals we must explicitly describe the behaviour
of the data, request and acknowledge signals.

Although an explicit description of the protocol may be
appropriate later in the design process, for initial modelling we
would prefer to see the communication as an abstract atomic
action. The channel communication primitives of CSP (Hoare
1978) and occam are an ideal model and have been used in the
proprietary asynchronous hardware description language Tan-
gram from Philips (van Berkel et al. 1991). A slight variation on
this approach has been adopted in LARD. The following listings
illustrate how VHDL (left) and LARD (right) can be used to
describe a simple block that reads from its input I and sends a
function of the value read to its outputO.

Some of the complexity of the VHDL code shown here
could be hidden by writing subroutines to send and receive on a
channel. However this becomes difficult when we try to perform
two communications concurrently as the actions have to be inter-
leaved, and the fact that the request and acknowledge ports go in
opposite directions means that they cannot be grouped together
in a single record type. More fundamentally the underlying sim-

(a) Synchronous communication

(b) Asynchronous communication

Figure 1: Synchronous and Asynchronous
Communication Protocols

process begin
wait_until I_req=1;
v:=I_data;
I_ack<=1;
wait_until I_req=0;
I_ack<=0;
O_data<=f(v);
O_req<=1;
wait_until O_ack=1;
O_req<=0;
wait_until O_ack=0;

end process;

forever(
I?(
v:=?I

);
O!f(v)

)

data

clock

data

clock

data

data

req

data
req

ack
data
req

ack ack

ulation would still operate in terms of the signalling protocol
which would be visible in trace displays and so on at run time.

This communication abstraction is the main feature that
makes LARD suitable for describing asynchronous VLSI sys-
tems. In addition LARD has fine-grained concurrency, with
statements composed either sequentially with; or concurrently
with |. The other features of the language are similar to other
high level languages: subroutines, hierarchical scope, a complex
type system, libraries and so on. With the AMULET3 model
taking 10000 lines of code these structured programming fea-
tures are essential.

3. The Role of Simulation in Asynchronous
Design

The relatively abstract nature of LARD allows us to model
our designs at an earlier stage of the design process than had been
the case with other description languages. In the past, by the time
we had developed a model that could be used to give feedback
about the chosen architecture, it was almost too late to consider
changes. Now we are able to get feedback much more quickly; in
fact the AMULET3 model took an order of magnitude less time
to develop to the point where it could run ARM programs than
the AMULET2 model did. With these more abstract models,
what useful questions could we answer using simulation?

Functional correctness

The first question that the designer will ask is “does it
work?”. Much of the code in the AMULET3 model is purely
functional and uninteresting from the theoretical point of view,
but as with any design it is possible to inadvertently introduce
errors. It is therefore essential that the tools provide the designer
with an environment for debugging with at least the functionality
that a C programmer would get, for instance. Figure2 shows a
screenshot of the LARD source debugger. This offers standard
facilities such as breakpoints and single stepping.

More subtle bugs such as deadlocks are also possible in
asynchronous systems. Deadlocks can be easy to diagnose since
the simulation will stop with the source viewer indicating exactly
the state in which no more progress was possible. In contrast,
when debugging a synchronous system the simulation will often
run on for a long time after the actual error occurred, making it
much harder to track down the error.

Figure 2: Screenshot of Source View window

Unfortunately deadlocks may not manifest themselves
unless particular timing constraints are met. In general our
models are set up with estimated typical delays so that perform-
ance analysis predicts typical performance. However we expect
our designs to function correctly with any delays as they should
be delay insensitive at the block level. Others have adopted a
state-space exploration approach for determining the deadlock
freedom of a model (Visser et al. 1997), but this approach may
not be tractable for complex designs. Using LARD we are able to
run modified simulations with randomised delays which we hope
will eventually encounter any deadlock or similar problem that is
present. Although we have not formally analysed this approach,
it does quickly find all deadlocks in our test models.

Performance analysis

Having established the functional correctness of a model,
the next question that the designer asks is “how fast does it go?”.
This is normally answered by running a benchmark simulation
and measuring the time taken.

In synchronous systems, benchmark execution times are
easy to interpret. The time taken is the number of clock cycles
multiplied by the clock period. The clock period is determined by
the system’s critical path. Each block is either on the critical path
or not on the critical path; if it is on the critical path, making it
faster will reduce the clock period, and if it is not it won’t make
any difference.

In contrast the temporal behaviour of asynchronous systems
can be much more complex. In some cases, the delay in one block
may be masked by a longer delay in another block. In other cases
small changes in a delay may propagate throughout the system in
a “chain reaction”, having an almost chaotic effect on overall per-
formance. Measuring and understanding these effects is
important and the LARD toolkit provides various facilities to
help with this task.

Figure3 shows the channel activity display. Each horizontal
trace represents the activity on one communication channel over
time. The trace has two parts; the upper bars represents the activ-
ity of the sender and the lower bars represents the activity of the
receiver. Presence of the bar indicates that that end of the channel
is ready to communicate; when both are present, the transfer
takes place.

By studying this display we can see whether a channel is
being starved or blocked. A starved channel has predominantly
lower bars, indicating that an upstream block is being a bottle-
neck. The top trace has this characteristic. A blocked channel has
predominantly upper bars, indicating that a downstream block is

Figure 3: Channel Activity Display

causing a backlog. The bottom trace behaves in this way for all
but one of the communications shown.

LARD simulations can also quantify the effect on perform-
ance of delays. For example, figure4 shows how the speed of one
block influences the overall performance of the system in a com-
plex way. Predicting what influence the speed of this block will
have analytically may be very hard; simply measuring its effect
using simulation is straightforward.

Interaction with transistor-level simulation

Most of our designs have been taken from behavioural
models to gate level schematics manually rather than using auto-
matic synthesis. The reasons for this include the experience of
our designers with this approach, the fact that the synchronous
ARM is implemented largely by hand and we aim to achieve
comparable performance, and the fact that asynchronous synthe-
sis tools are not as well developed as synchronous ones.

Having developed a gate-level schematic by hand we need
some way to validate that it implements the same functionality as
the equivalent behavioural model. The standard approach to this
problem is to simulate the behavioural model in a testbench envi-
ronment and extract test vectors at the periphery. These vectors
are then used to drive the inputs to the gate level simulator and to
check its outputs.

Unfortunately this approach is difficult with our LARD
models because of the non-deterministic behaviour of some
asynchronous systems. For example, consider the system shown
in figure5. Blocks A and B share access to block C via a mutual
exclusion circuit M. (In a real system, C could be an expensive
but infrequently used resource such as a multiplier which we
don’t want to duplicate). When A and B want to access C at the
same time, M blocks one until the other has completed. Which
one M chooses first depends on the exact timing of A and B’s
requests.

Figure 4: Complex timing relationship measured using
a LARD simulation

Figure 5: Example Non-Deterministic System

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

lo
op

 e
xe

cu
tio

n
tim

e

memory delay

A

B

CM

Although the order in which A and B are granted access to
C is non-deterministic, the eventual outcome as seen from the
“outside world” is the same. So generating test vectors for the
whole of the system shown in figure5 has no special problems.
On the other hand, the non-determinism is visible if we want to
generate test vectors for the subsystem comprising A, B and M
(outlined).

In order to generate the correct vectors we need to ensure
that the non-deterministic choices made by our behavioural
model are the same as the non-deterministic choices made by the
transistor-level simulator. This suggests that we need to carry out
cosimulation between the LARD simulator and the transistor-
level simulator.

Figure6 shows the approach that we use. The transistor-
level simulator has been enhanced with the addition of code to
monitor the behaviour of the mutual exclusion circuits. This
information is transmitted to the LARD behavioural simulator to
control the abstract descriptions of the same choices. In turn, the
LARD simulator records activity at the input and output channels
to the block being validated and transmits this information to
another part of the transistor-level simulator. This translates from
the LARD atomic communications to signal transitions and
drives the inputs to the transistor-level simulator. Output signals
are checked against their expected values and discrepancies are
reported.

4. Implementation of the LARD toolkit

One of the key requirements for the LARD implementation
was flexibility. Although we started with some idea of what our
language and simulation environment needed to do, we wanted to
be able to incorporate feedback from the users to add new fea-
tures as quickly as possible.

As a result the implementation strategy that was chosen is
more like a general-purpose programming language than a spe-
cial-purpose simulation system. The organisation of the tools is
shown in figure7.

The user’s source code is compiled into bytecode for a
simple virtual machine. The interpreter for this bytecode is
embedded in an execution environment that uses the tcl language

Figure 6: Cosimulation between LARD and TimeMill

Figure 7: Organisation of the LARD toolkit

LARD simulator TimeMill
(transistor simulator)
Mutex

monitor

Test
vector
apply/
check

ModelModel

Chan-
nel

monitor

Arbiter
Mutex

Inter-
process

communi-
cation

user
model

core language
compiler

linker

bytecode
file

libraries

tcl execution
environment

bytecode
interpreter

runtime support
modules

and tk graphical user interface system (Ousterhout 1994). Recent
work has replaced the interpreter with a native code translator for
increased performance (Rogers 1998).

Much of the functionality of the language is implemented in
libraries which are linked with the user’s code. This includes the
channel communication primitives which are implemented using
shared variables by a channel communication library. In fact
even more primitive operations are implemented using libraries
to keep the core language as small as possible. In this way the lan-
guage can evolve based on users’ feedback without having to
delve inside the core language compiler each time.

Many of these libraries can communicate at runtime with tcl
modules in the execution environment. For example the channel
communication library sends information about channel activity
to the tcl module which provides the trace view display
(figure3). This approach allows us to extend the capabilities of
the execution environment without changing the bytecode
interpreter.

As an example of this flexibility, consider the power display
shown in figure8 which was not part of the original implementa-
tion. Our requirement was to monitor the activity on each channel
in terms of the total number of bits that have changed. This meas-
ure is a good estimate of the power that will be used by that
channel. Implementation of this display required only:

• Small modifications to the channel communication
library to record the activity, and store this data in
variables accessible to the tcl code: about 10 lines of
LARD.

• A tcl module to display the bar graph: about 100 lines of
tcl.

To provide a general mechanism for observing and control-
ling a simulation an animation display has been implemented.
This display provides a simple drawing program where each ele-
ment can be given a tag. Code within the LARD model can then
change the attributes of these elements based on their tags.
Attributes that can be changed include the colour of box and
arrow elements and the string shown in a text element.

Figure9 shows an animation of this type for the AMULET3
processor. Each instruction is given a colour as it enters the proc-
essor’s pipeline, and its progress down the pipeline can be
observed by following this colour. To make the display more
meaningful we can slow down the LARD simulation so that sim-
ulated time elapses at a fixed rate relative to real time.

It is also possible to control the simulation by linking sliders
and buttons on the display to LARD variables. Figure10 shows
a display where the delays in the model can be controlled by slid-
ers, and the effects on performance monitored.

Figure 8: Power display

5. Conclusions

LARD is a hardware description language based on CSP-
like channel communication which has been developed for
behavioural modelling of asynchronous VLSI systems. We have
found that the more abstract style of modelling that it provides
makes it a much more productive language for this type of mod-
elling than traditional hardware description languages.

The language is now mature and stable enough to take on
problems of significant complexity.

From the outset LARD’s implementation has been made as
flexible as possible. This flexibility has allowed us to add func-
tionality as needed without having to re-write the core system.
For example, we have combined the LARD simulator into a co-
simulation environment alongside a transistor-level simulator.
This allows us to avoid the problem of non-determinism which
occurs with asynchronous systems.

The flexibility extends to the execution environment where
our use of the tcl/tk language means that the user interface is
easily extended.

This flexibility also means that LARD can be adapted to
application domains other than its original purpose. LARD could
be used to model any system that has fine-grained concurrency,
CSP-like communication, timing, and requiring a complex run-
time user interface.

LARD is freely available along with comprehensive docu-
mentation on the web. The LARD home page is athttp://

www.cs.man.ac.uk/amulet/projects/lard

Figure 9: AMULET3 animation

6. References

van Berkel, K.; J. Kessels; M. Ronken; R. Saeijs; and F.Chalij.
1991. “The VLSI programming language Tangram and its trans-
lation into handshake circuits”. InProceedings of the European
Conference on Design Automation (Amsterdam). 384-389.

Furber, S.B.; J.D. Garside; S. Temple; and J. Liu. 1997.
“AMULET2e: An Asynchronous Embedded Controller”. InPro-
ceedings of the Third International Symposium on Advanced
Research in Asynchronous Circuits and Systems (Eindhoven,
The Netherlands, April 7-10). IEEE, Los Alamitos, CA. 290-299.

Gilbert, D.A.; and J.D. Garside. 1997. “A Result Forwarding
Mechanism for Asynchronous Pipelined Systems”. InProceed-
ings of the Third International Symposium on Advanced
Research in Asynchronous Circuits and Systems (Eindhoven,
The Netherlands, April 7-10). IEEE, Los Alamitos, CA. 2-11.

Hoare, C.A.R. 1978. “Communicating Sequential Processes”.
Communications of the ACM 21, no.8 (Aug.): 666-677.

Ousterhout, J.K. 1994.Tcl and the Tk Toolkit. Addison Wesley.
ISBN 0-201-63337-X.

Rogers, I. 1998. “A LARD front-end for Dynamite”. Project
report, Dept. of Computer Science, University of Manchester,
M13 9PL, U.K.

Semiconductor Industry Association. 1997.The National Tech-
nology Roadmap for Semiconductors. 4300 Stevens Creek
Boulevard, Suite 271, San Jose, CA95129.

Visser, W.; H. Barringer; D. Fellows; G. Gough; and
A. Williams. 1997. “Efficient CTL* Model Checking for the
Analysis of Rainbow Designs”. InProceeding of the Advanced
Research Working Conference on Correct Hardware Design and
Verification Methods (Montreal, Canada, October). Chapman &
Hall.

Woods, J.V.; P. Day; S.B. Furber; J.D. Garside; N.C. Paver; and
S. Temple. 1997. “AMULET1: An Asynchronous ARM Micro-
processor”.IEEE Transaction on Computers 46, no.4 (Apr.):
385-398.

Figure 10: Interactive pipeline simulation

