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Abstract

An architecture for a low-power asynchronous DSP has
been developed, for the target application of GSM (digital
cellphone) chipsets. A key part of this architecture is an
instruction buffer which both provides storage for
prefetched instructions and performs hardware looping.
This requires low latency and a reasonably fast cycle time,
but must also be designed for low power. A design is pre-
sented based on a word-slice FIFO structure. This avoids
the problems of input latency and power consumption
associated with linear micropipeline FIFOs, and the struc-
ture lends itself relatively easily to the required looping
behaviour. The latency, cycle time and power consumption
for this design is compared to that of a simple micropipe-
line FIFO. The cycle time for the instruction buffer is
around three times slower than the micropipeline FIFO.
However, the instruction buffer shows an energy per oper-
ation of between 48-62% of that for the (much less capa-
ble) micropipeline structure. The input to output latency
with an empty FIFO is less than the micropipeline design
by a factor of ten.

1. Introduction
The number of mobile communications devices, partic-

ularly cellphones, sold each year is increasing rapidly and
a myriad of different products from different manufacturers
exist. These devices represent a key application for low-
power VLSI design techniques, as battery size and lifetime
are among the most important criteria when differentiating
between products. Digital cellphones execute complex con-
trol and signal processing functions, performing filtering,
error correction, speech compression and decompression
and, increasingly, additional functions such as voice recog-
nition and image handling. These functions cause the dig-
ital components of these systems to consume a significant
proportion of the total power.

A common basis for such systems is a microprocessor
coupled by an on-chip bus to a digital signal processor. The

microprocessor is responsible for the control tasks, and the
DSP core handles the complex numerical calculations. An
example of part of a current GSM system is the Mitel Sem-
iconductor GEM301 baseband processor [1], which con-
tains an ARM7 microprocessor coupled to an OAK DSP
core.

A study of the literature for this product revealed that,
within the digital portion, the DSP is responsible for
approximately 65% of the total power consumption when
engaged in a call using a half-rate speech codec1. It could
be expected that this proportion of the total power con-
sumption will increase in future generations of GSM
chipsets, as the complexity of both the speech codecs and
the additional functionality increases. For this reason, we
have undertaken a design, as part of the EPSRC/MoD Pow-
erpack project, to investigate the potential of an asynchro-
nous digital signal processor to better meet the
performance, electromagnetic interference and power
requirements of this application.

Figure 1: Block Diagram of New DSP Architecture

1. CODEC: COmpresses and DECompresses digital speech data for
transmission by radio channel. Half-rate indicates the bandwidth
requirement of the encoded data stream.
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1.1. A low-power DSP architecture

It has been suggested that the next generation of GSM
chipsets will require a throughput of greater than 100MIPs
from the DSP, and an initial target of 160MIPs has been set
to meet this requirement. An asynchronous design means
that any excess speed will simply give longer idle periods
with virtually zero power consumption at the end of each
processing block.

It has been shown that energy-efficient high perform-
ance circuits can be realised by exploiting parallelism [2].
Die area (which is rapidly becoming cheaper) can be traded
for increased speed, allowing reduced energy consumption
through simpler, slower circuits and reduced supply volt-
ages. The reduced switching rate is also beneficial for
EMC, with the natural timing variations of asynchronous
design giving further benefits. A parallel structure allows
algorithmic transformations to be performed, reducing the
switching rate at each unit still further [3],[4]. A structure
with four independent functional units has been chosen for
this DSP architecture, and a block diagram of the overall
system architecture is shown in figure 1.

Memory accesses can be the dominant component of
power consumption in data-dominated applications [5], [6].
To reduce the memory bandwidth requirement, a large reg-
ister file with 2 banks of 128x16 bit words is used in the
design. Memory is transferred in bulk to the register file,
using RISC-like load and store commands, from where it is
accessed by 7-bit index registers which can be updated
more quickly and with lower power cost than the wide
address registers required in a design where data is fetched
from memory via a cache.

Having reduced the power cost associated with data
accesses, the next task is to design a method of fetching
instructions and dispatching them to the available
resources, as the fetching and decoding of instructions
makes up a significant proportion of the power consumed
by a digital signal processor [7]. DSP activity is often char-
acterized by many repetitions of a few fixed algorithms.
This means that it is possible to store very long instruction
word encodings for particular operations in advance, in
configuration memories internal to the DSP. These very
long instructions can then be recalled by a single instruction
word. Phillips have used this approach in the R.E.A.L. DSP
range [8], and a similar but somewhat more general form of
this technique has been developed for the presented DSP
architecture. A side effect of the very heavily compressed
parallel instructions is that it is possible to write fairly com-
plex DSP kernel routines which require very few instruc-
tions to be read from memory.

DSP routines are generally performed using the zero-
overhead hardware loops implemented by most DSP archi-
tectures. These are simple loops with a fixed number of iter-

ations, as opposed to conditional branches in general
purpose microprocessors which introduce possible branch
dependencies. In the instruction set for the new DSP, these
are performed by the ‘DO’ instruction. This instructs the
DSP to execute the nextm instructionsn times, wherem is
a number from 1 to 32, andn is between 1 and 65536. DO
loops can be exited prematurely by means of the condi-
tional ‘BREAK’ instruction, whereby the current loop is
exited at the end of the pass. Up to 16 DO instructions can
be nested, by using an internal stack for the loop status.

This repetition gives a clear opportunity to save energy
by means of buffering instructions fetched from memory.
On the first pass through the loop, instructions are fetched
from memory as normal. In subsequent passes, they are
supplied by the instruction buffer. A study of this technique
applied to the Hitachi HX24E DSP has shown a power
reduction of between 25 and 30% to the total power con-
sumption [9], when a 64-word buffer was added to the
architecture. This size of buffer was sufficient to store an
8x8 DCT algorithm, but was insufficient to store more com-
plex algorithms such as FFTs. Due to the compressed
instructions in the proposed architecture, it is possible to fit
an N-point FFT algorithm entirely within the 32-word limit
of the DO instruction. More complex algorithms must
either be broken down into subsections, or use the less effi-
cient branch instruction.

The combination of the large register file and loops from
within the instruction buffer can massively reduce memory
accesses. For example, it is possible to execute a 64 point
FFT algorithm with only a single pass of the program and
data memories, followed by a single write pass to output the
data.

Figure 2: Adjacent pipeline stages and interfaces
to instruction buffer
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2. Instruction buffer design

2.1. Specification

As is common with asynchronous modules, the first part
of the specification is made up by defining the interfaces
through which the instruction buffer stage communicates
with the neighbouring pipeline stages. A diagram of the
connections between the local pipeline stages is shown in
figure 2.

The fetch unit forms the previous stage in the pipeline to
the instruction buffer. During normal operation, the fetch
unit reads instructions from memory and increments the PC
value. These are passed to the instruction buffer, bundled by
4-phase request-acknowledge handshake signals [10]. The
only variation to this pattern is when a branch instruction is
executed, whereby a new value is loaded into the PC.
Branches are PC-relative, which means that the PC value
associated with each instruction must be passed with it.
Any prefetched instructions must be discarded after a
branch has been taken, and this is done through a colour tag
bit associated with the instructions. This bit is generated
within the fetch unit, and its state is inverted when a branch
is taken.

Under normal conditions, the instruction buffer simply
acts as a 32-entry asynchronous FIFO between the fetch
and decode stages. At the output of the instruction buffer,
instructions are passed along with their associated colour
and PC values to the decode unit, where the appropriate
actions are then performed depending on the instruction (or
the instruction is discarded, if the colour does not match the
current operating colour). In most cases, this forward hand-
shake between the instruction buffer and the decode stage
is all that is required, and the first three stages of the pipe-
line operate in a strictly linear fashion. However, there are
three exceptions to this: DO loop setup, BREAK instruc-
tions and branches.

For these instructions, it is necessary for the decode unit
to communicate back up the pipeline to the instruction
buffer, with a reverse handshake on a separate request/
acknowledge pair. DO loops are set up by means of the
req_do/ack_dosignals and the bundled signalsdo_len(the
number of instructions to be repeated) anddo_lc (the
number of repeats to be performed) The BREAK instruc-
tion causes the current loop to be exited at the end of the
current pass, and this is done throughreq_brk/ack_brk. For
the case of jumps and branches, it is necessary to exit any
loops that are currently in progress, so that the new instruc-
tion stream can reach the instruction decode stage. This is
done by means of thereq_flush andack_flush signals.

The basic sequence for each of these reverse handshakes
is the same, and is shown in figure 3. At some point after
having latched a DO, BREAK or BRANCH instruction and

having issued the acknowledge (aout), the decode unit
sends the appropriate reverse request signal (req_X) back to
the instruction buffer. The output stage of the instruction
buffer will be asynchronously attempting to issue the next
forward request (rout) during this time. However, this can-
not be accepted by the decode unit as it is still occupied by
the instruction that set up the reverse request. On receiving
the reverse request signal, the instruction buffer performs
the appropriate operation. It should be noted that the oper-
ation can cause the output of the instruction buffer to
change. However, this deviation from the normal data bun-
dling is acceptable as it is under the control of the reverse
handshake, and the data is made stable before the reverse
acknowledge (ack_X) issues from the instruction buffer
back to the decode unit. The decode unit can then complete
the instruction cycle, and will then accept the forward
request from the instruction buffer.

Figure 3: Signal timings for decode unit to
instruction buffer communication

2.2. Word-slice FIFO structure

A micropipeline FIFO [10], [11] has the structure shown
in figure 4. When a data item arrives at the input, it propa-
gates along the pipeline with each latch closing briefly to
store the data until the next stage has acknowledged receipt.
This design can have very good throughput, as the cycle
time can notionally be reduced to that of a single stage.
However, the input to output latency for an empty pipeline
is poor as the data needs to pass through every latch. Power
efficiency is also poor, as each latch and the associated con-
troller performs an entire cycle when the data passes
through it.

Figure 4: Micropipeline FIFO structure
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Figure 5: Word-slice FIFO structure
Many alternatives to the linear FIFO structure are possi-

ble, which can trade off complexity in the FIFO design
against the length of path through which data must travel
[12]. However, in order to easily implement the required
looping behaviour theword-slicestructure [13] was cho-
sen. This is a ring-buffer like design, but has distributed
rather than central control thus avoiding some of the prob-
lems of scalability associated with traditional ring buffer
designs [11]. The basic structure is shown in figure 5. The
key difference between the word-slice design and the
micropipeline design is that the word-slice FIFO has its
latch rows in parallel rather than in series, with the outputs
multiplexed by means of tri-state buffers. Each row of
latches has an associated control element, which controls
the write and output enables of the latches and records the
current state (full or empty) of the latch. The read and write
position is controlled by means of tokens passed around the
loop between these latch controllers. Output reads are ena-
bled by an OR of the full indications from all of the latch
rows (i.e. a read can be performed as long as there is data
to read) and input writes are disabled by ANDing the full
indications together. Stability of the AND and OR outputs
is ensured by the use of matched delays within the write and
read processes. The parallel nature of the structure means
that there is only one latch delay between input and output
when the FIFO is empty, lowering latency, and the power
dissipation associated with the data passing through all of
the latches is also eliminated [13].

Figure 6: .Standard word-slice FIFO operation

Figure 7: Looping word-slice FIFO operation
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Figure 8: Looping FIFO element

2.3. Looping FIFO design

The operation of a standard word-slice FIFO can most
easily be viewed in terms of tokens passing around a ring
(figure 6). Each position in the ring buffer has a row of
latches which are managed by a latch control unit. These
control units have write and read request inputs and an out-
put to indicate whether the stage is full or empty. Two sep-
arate overall control units communicate with all of the
individual FIFO stages, to interface with input requests and
to generate output requests.

When an input handshake occurs, the input handshake
controller causes an event on the write input to all of the
FIFO controllers. This causes the stage holding the write
token to perform a latch write, the ‘full’ state for that stage
to be set, and the write pointer to move one position for-
ward. Write events are blocked when all of the elements
hold full states.

The stage that holds the read token makes the latches’
tristate outputs active. When any stage indicates that it is
full, the output handshake controller produces read requests
which, when acknowledged, cause the ‘full’ state to be reset
and the read pointer to be moved on.

When performing a loop, it is necessary to prevent the
FIFO stages from being emptied when they are read, so that
they can be read repetitively. However, it is necessary for
stages that have been read from toappearempty to the out-

put controller to stop further output requests being gener-
ated if no new data has arrived (an error that could cause the
read token to overtake the write token). To avoid this
requires a separate ‘full’ indicator to the input controller
and ‘read request’ signal to the output controller. When per-
forming a loop, read requests from each stage are cleared
when the stage is read, without affecting the full indication.
This is shown in figure 7a, depicting a full stage with disa-
bled read request by an unshaded dot in the ‘full’ boxes.
When a pass through the loop has completed, a restart sig-
nal is issued which causes each of the FIFO stages to appear
full again for the next loop. This operation is shown in fig-
ure 7b and c. When not in loop mode, or on the final pass
through the loop, the output request behaves normally and
the stages are cleared entirely when read.

The circuit for the FIFO element that implements this
behaviour, shown in figure 8, is composed of three main
components: the edge-triggered flip-flops (dffnr) on the left
and right which store the write and read tokens respectively,
and the central handshake controller which manages the
full / empty status of the FIFO stage.

2.3.1. Write and read token passing
The write token flip-flops in all of the FIFO stages are

connected together to form a circular shift register, with the
whole clocked by thenwr_reqsignal from the input con-
troller. The write token enters from the previous stage on



wr_ptr_in, and is accepted when a write request is given to
the FIFO onnwr_req. Once the element holds the write
pointer, a further write request causes thewrite_ensignal to
go high, which opens the latches in the datapath. When the
write request signal is removed, the latches close and cap-
ture the new data. Thewrite_ensignal also indicates to the
handshake controller that the stage should become full,
which is indicated on thefull signal to the input controller
and therd_reqsignal to the output controller. As the write
is completed, the write token flip-flop is cleared and the
token passes to the next FIFO stage throughwr_ptr_out.

The flip-flops holding the read token also form a shift
register, clocked by thenrd_acksignal from the output con-
troller. However, to incorporate looping behaviour it is nec-
essary for the token to be passed out of the normal flow to
indicate the end of a loop, and for the token to be received
again at the start of a loop.

The start and end of a loop is indicated by theloop_start
andloop_endsignals to each of the FIFO elements. In nor-
mal (non-looping) operation, the read pointer enters
throughrd_ptr_in, and is multiplexed to the read token flip-
flop D input and the tristate output enable of the latch row.
However, when the end of the loop has been reached and the
token is to be returned to the start of the loop,nloop_restart
is driven low and the read token enters whichever stage has
loop_start high rather than the next stage in sequence.

Similarly, the read token is normally passed out through
the rd_ptr_outsignal. However, when on the last instruc-
tion during a loop (nloopyor nlastlow, andloop_endhigh),
it is necessary to pass the read pointer out through
nloop_pr_out, so that the loop count can be updated and the
token passed to the correct point to restart the loop.

2.3.2. Handshake controller operation and STG
The handshake controller has four main signals. Thewe

input indicates that a write is occurring, which causeswc
(going to thefull output) to signal to the input controller that
this stage is full andre (going to therd_reqoutput) to signal
to the output controller that this stage has data to be read.
The rc input signal indicates that this stage has just been
read. The actual effect ofrc depends on the loop status, as
indicated byloopy. When not in a looprc clears both thefull
andrd_req indications, thereby emptying the stage. How-
ever, when in loop mode only therd_reqsignal is cleared,
and the stage remains full. At the end of a pass through the
loop req_rstrt is asserted, which causesrd_req to return
high for the next pass through the loop. To allow for nested
loops, only the stage at the start of the loop responds to
req_rstrt (figure 7b), whereupon it signals a restart to be
passed from stage to stage around the loop through
nrstrt_in and nrstrt_out. When the restart signal reaches the
end of the loop, it is passed back out on therstfl_acksignal
to acknowledge that the restart has completed. The final

main signal,flush_req,causes any elements that have been
read as part of a loop to be emptied, as is required by the
flush operation.

The signal transition graph describing the operation of
the FIFO handshake control element operation is pictured
in figure 9. The STG uses boolean guards on certain transi-
tions, indicated by the question mark. These transitions are
enabled only when the boolean condition (after the question
mark) is met. For clarity, the placeholders and transition
enable conditions for the boolean guard signals in the STG
are omitted, as are ineffectual transitions onflush_req.

In the reset state, as shown in the figure, a write request
causes thewc signal to go high, indicating that the stage is
full, and there signal to go high, requesting an output read.
When a read request occurs at the FIFO stage, therc signal
goes high. The response to this then depends on the loop
state, as indicated by theloopy signal. If a loop is not in
progress then the output requestre is set low, after which
the full indication (wc) can return to zero and the cycle can
restart. If a loop is in progress then the full state is not reset.
Instead, theloop_rdstate variable is set which disables the
re output. From here, either the loop restarts (restart_inis
asserted) and theloop_rdvariable resets, allowing the out-
put requestre to return to the high state, orflush_reqis
asserted causingloop_rdto be reset, and the whole stage to
return to the reset (empty) state.

The finished STG specification was successfully synthe-
sised into circuits using the Petrify tool [14], and consists
of four C elements and a number of combinational logic
gates.

Figure 9: STG for FIFO handshake control
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Figure 10: Looping FIFO datapath diagram

2.4. Overall system design

In addition to the FIFO elements already described, the
instruction buffer as a whole is made up of 3 other main
parts: the input handshake generator that provides a 4-phase
input interface, the read handshake generator that provides
a 4-phase interface to the FIFO read signal, and the overall
control unit. A block diagram of the top level structure, with
the interface signals between each stage, is shown in figure
10.

At the input request interface, write requests arrive on
Rin whereupon thenwr_reqsignal is asserted to perform a
write operation and theAin signal is asserted. An internal
matched delay is used to allow the write token to move and
the full signal from the FIFO to stabilise, after which the
input cycle either completes by returningAin low or is
stalled if the FIFO is full.

The control unit is the ‘brain’ of the instruction buffer,
and interfaces the FIFO elements to the output, manages
loops, and deals with reverse handshakes from the decode
stage to set up loops or perform breaks and flushes. By han-
dling both the forward and reverse handshakes at the out-
put, it is possible to ensure that the data remains valid. The
control unit is logically divided into the control core, made
up of speed-independent logic, and the control datapath
which is responsible for storing and updating the current
loop status.

The main task of the control unit is to respond to read
requests from FIFO elements, by initiating a handshake on

rout/aout. When the decode stage acknowledges receipt of
the data, the output request interface is signalled through
nrd_nextto move the read token to the next position. The
timing for the move of the read token and the stabilisation
of the signals from the FIFO is also managed by a matched
delay, after whichnptr_moved is asserted.

If the FIFO elements indicate that a loop end has been
reached, the control unit updates the loop counter and
restarts the loop. On the final pass through the loop, the next
outermost loop (if any) is restored.

Once the new token position is known to be correct, a
final matched delay is used to mirror the delay from valid
tristate FIFO output enables to valid data at the output.

2.5. PC latch scheme

It was mentioned previously that PC relative branch
instructions require the associated value of the PC to be
passed through the FIFO. This is unfortunate, as branches
are comparatively rare instructions in this architecture and
the requirement to store the PC initially seems to require an
additional 24x32=768 latches which is a great waste of
power and area. Fortunately, the sequential nature of the PC
values means that this overhead can be greatly reduced. The
instruction buffer contains a maximum of 32 sequential PC
values, which means that, unless a carry out is generated
from bit 4 of the PC, the upper 19 bits of the PC remain con-
stant. A carry out will be reflected by a change in bit 5.
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This behaviour is altered slightly when branches are
considered: in this case, the PC can change to a random
value. However, when a branch is taken the instruction col-
our tag is changed so that the decode stage can discard
prefetched instructions in the branch shadow before any
other instructions can occur. It is therefore possible to store
only the lower 6 bits of the PC in the FIFO, and to use 4 sets
of latches to store the upper 18 bits. One of the 4 latches is
enabled for writes, based on the value of bit 5 of the input
PC and the current input colour. Similarly, only one of the
4 latches is enabled for output by bit 5 of the output PC and
the output colour. This saves a total of 504 latch elements.

2.6. Control datapath design

The control datapath, as shown diagrammatically in fig-
ure 11, is internal to the control unit and maintains the cur-
rent loop status. It is driven by the control core which
handles all of the complex interactions between the signals
from the FIFO datapath and the reverse requests from the
decode stage. The control datapath consists of a row of
latches that holds the current state (loop start and end posi-
tion, first, last, andloopystatus, and the current loop coun-
ter). When a DO loop is set up, the current position of the
read pointer from the FIFO datapath (encoded into 5-bit
binary) is added to the requested number of instructions to
make up the loop. The current read pointer and the result of
the calculation are used to set up the new loop start and end
positions. Before the new loop status is loaded, the old sta-
tus (if any) is pushed onto the 16-entry stack. When the loop
is exited, the stacked data is reloaded and the stack is
popped, thereby allowing nested loops.

Figure 11: Top-level diagram of control datapath

On each iteration of the loop, the control core requests
that the loop counter unit decrement the value of the loop
counter (although the loop counter is actually stored in
inverted form and incremented). In parallel with this, the
result is checked to see whether it will be zero, which indi-
cates the last iteration of the loop.

The loop counter uses a simple ripple-carry incrementer,
but has data-dependent matched delays to achieve good
average-case performance. The delay is selected by looking
at adjacent 4-bit groups of the value being incremented.
Should any of the bits be zero, then it is known that the carry
cannot propagate beyond that point and the delay corre-
sponding to the worst case propagation up to that group is
selected.

2.7. Control core circuit design

The operation of the control core is dependent on vari-
ous FIFO state signals (such as the loop status, the read
pointer positions, and the loop count value). The FIFO data-
path and the control datapath are designed so that the con-
trol core can treat these signals as being bundled with
handshake interfaces. Having the stable periods for these
signals defined makes it possible to produce signal transi-
tion graphs for the correct sequences of operations, depend-
ing on the state of these signals, which can then be
synthesised into speed-independent circuits using Petrify.

Signal transition graphs with large amounts of choice
proved to be very confusing to design, due to the number of
enabling arcs between state signals and different transi-
tions. In order to simplify the design process, the control
was broken up into six sections each of which is concerned
only with a limited number of the state signals. This meant
that understandable (and synthesizable!) signal transition
graphs can be produced for each section, and their outputs
combined where necessary with a certain amount of glue
logic. The structure into which the control core was split is
shown in figure 12.

The heart of the control is thehandshake controllercir-
cuit, responsible for issuing read requests to the FIFO and
producing output requests when the data has stabilised.
After each output is produced, a request is passed to the
loop controlcircuit. If the FIFO is not at the end position of
a loop then the loop controller immediately issues an
acknowledge to allow the next output cycle to proceed. If
the FIFO is at the end of a loop, then the loop counter must
be decremented and the loop restarted before the acknowl-
edge is returned. If the loop counter reaches zero, the ‘last’
flag is set, allowing the FIFO to exit the loop after the last
pass, whereupon all of the loop variables (including the
state of the ‘last’ and ‘loopy’ flags) are popped from the
stack to restore any previously nested loops.
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Figure 12: Control core structure
To simplify the design of the main handshake control

circuit (which is the critical path for the common case
instructions), requests for DO setups, breaks and flushes are
dealt with by thereverse handshake interfacewhich means
that the handshake control circuit need only deal with a sin-
gle interface. When a reverse request arrives (req_do,
req_flushor req_break), this sets up a state signal (sel_do,
sel_flushor sel_break) and issues thereq_revsignal to the
handshake controller. When the handshake controller is in
the appropriate phase of its cycle to respond, it issues a
common request to all of the DO setup, break and flush
units (req_dfb) and the unit selected by thesel_xxxxsignal
performs the appropriate operation, indicating completion
on ack_dfb. This allows the handshake controller to issue
theack_rev signal and the reverse handshake to complete.

3. Tests performed
All testing of the instruction buffer was performed on

netlists extracted from schematics, as the DSP is still under
construction and has not yet moved into the layout phase.
The initial verification of the design, during and after the
design of the circuits, was done with the instruction buffer
in situ, as part of the DSP pipeline shown in figure 2, exe-
cuting test programs under theTimeMill simulator. A selec-
tion of loops and nested loops were performed successfully.
In addition, the loop counter unit was tested with a separate
C simulation model, to set up and measure the delays for
each level of carry propagation both within the loop incre-
ment circuit itself and for the incrementer cycle time
including the time to latch the new value.

Once the functionality had been verified, a new testbed
was designed in which the instruction buffer could be tested

in isolation. This consists of a C simulation model that
feeds random instructions, using sequential PC values with
random branches, to the input of the buffer at a selectable
rate. The output from the buffer is then captured and com-
pared with the value that should be present, and the latency
from the input to the output of the buffer is measured.

As a baseline with which to compare the instruction
buffer, a 32-element 4-phase micropipeline FIFO [10] was
also designed (the 4-phase asynchronous interface making
it easily interchangeable with the instruction buffer). The
same tests were performed with the micropipeline design.

Two sets of tests were performed, using thePowerMill
simulator to compare power and performance figures. The
first set of tests fed 500 random values through each buffer
at the maximum rate at which it would accept them. The
second set of tests fed the same 500 values through each
buffer at intervals of 20ns, which was significantly slower
than the cycle time for both circuits. This models the case
of the memory being slower than the stage into which the
FIFO is feeding, and measures the latency from input to
output. In both cases, current consumption was measured
for each design.

4. Results

4.1. Loop counter performance

The delay figures for the loop count incrementer are
shown in Table 1. The delays are shown for the four differ-
ent possible groups of carry chain length.

Assuming a count from 0 to 65535, the mean delay can
be calculated from the formula:

The results that have been obtained give a mean delay of
, which is close to the minimum delay. A count

over the full range should be near to the worst case for the
mean delay: shorter counts will miss out some of the longer
carry propagate chains.
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Table 1: Incrementer delays

Max. number of
carry stages

Inc. delay
(input to output

request) / ns

Loop counter
cycle time / ns

3 0.66 2.25

7 1.41 3.13

11 2.48 4.33

15 3.12 5.04

d
15 4096 d3× 256 d7× 16 d11× 16 15⁄ d15×+ + +( )×

65536
------------------------------------------------------------------------------------------------------------------------------------=

d 2.31ns=



4.2. Throughput results

4.3. Energy consumption results

5. Discussion
The comparison between the instruction buffer and the

micropipeline FIFO shows the instruction buffer to have a
throughput that is less than that for the micropipeline
design by a factor of three (although the micropipeline
design does not have the additional circuitry required to
perform looping). However, the micropipeline FIFO exhib-
its a latency that is a factor of ten greater than the instruction
buffer. The cycle time results are acceptable, being much
less than the 25ns cycle time dictated by the DSP applica-
tion, even when added to the worst-case loop counter incre-
ment time. The low latency will ensure that instructions
pass from memory to the decode unit as quickly as possible.
Naturally, these figures will be degraded somewhat when
interconnect delays and capacitances are taken into account
but should still easily meet the specification requirements.

It was observed during testing that the bulk of the cycle
time was required for the tri-state outputs of the latches to
drive the broad output array. In a design that requires
greater throughput it would be possible to split the outputs
into two or more sections, with a controller for each section
that moves a read pointer at a rate reduced by factors of two
for each subdivision. This would allow the design to be
scaled to an arbitrary degree, with the number of gate
delays from input to output increasing only by the loga-
rithm of the number of stages.

Compared to the micropipeline FIFO, the word-slice
instruction buffer exhibited reduced energy per data value
transferred in both the test cases, giving an energy per input

of 48-62% of the energy for the micropipeline design. The
fact that the instruction buffer outperforms the much sim-
pler micropipeline FIFO is evidence that this was a good
choice of circuit structure for low power. It also illustrates
one of the key benefits of asynchronous design: while the
instruction buffer has much more circuitry than the micro-
pipeline FIFO, much of the circuitry in the instruction
buffer is inactive during normal operation, and being idle
consumes virtually no extra power. The arguments for split-
ting the tristate outputs into sections could also be applied
to power consumption, by reducing the switched capaci-
tance at the output. However, this would probably only be
of benefit for larger sizes of buffer. Later results with back-
annotated capacitances from the final layout should better
answer this question.

6. Conclusions
The design of an instruction buffer and its role in a low-

power DSP architecture has been presented. The word-slice
FIFO structure has been augmented to produce complex
looping behaviour, and yet offers a significantly lower
latency and power consumption than the much less com-
plex micropipeline FIFO.

More detailed results gained from simulations of
extracted layout and use of the circuit in its place in the DSP
pipeline should provide some useful lessons about the
design’s strengths and weaknesses. The nature of the design
is such that it could be scaled up or down relatively easily
with only slight changes to the overall structure should that
be required at a late stage in the design process.
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