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Abstract The precise exception model [1] views an exception a

ch
of
re-

tate
c-
is
tes
-

ur-
er
es-
uc-
ng

he
s
ns.
ed
ed
nly
us

tic

n-
a
r-

or
b-
ch
is-

his
to
the
ity
’
on-

to
of
re-
Although a large number of asynchronous microproces-
sors have now been designed, relatively few have
attempted to handle memory faults. Memory faults create
problems for the design of any pipelined system which are
exacerbated by the non-deterministic nature of an asyn-
chronous processor.

This paper describes these problems as encountered in
the design of asynchronous ARM processors and discusses
their specific solutions in the AMULET3 processor. Differ-
ent mechanisms were used, as expedient, to maintain
coherency for the various state-holding elements within
the processor; these include register renaming and history
buffering in addition to resource locking.

1: Introduction

Programs are normally executed in a sequential order,
and the programmer’s view of the system reflects this.
However, behind the scenes, the quest for higher perform-
ance has led to a disruption of this simple model; many
modern, high-performance microprocessors execute code
in a manner which is anything but simple or sequential.
This is largely possible because the code’s behaviour is still
predictable and speculation on instructions is relatively
successful although, occasionally, events happen which are
unpredictable and fall outside this scope.

Such events are usually classified as ‘exceptions’, a term
which can include everything from operating system (OS)
service calls to memory faults. Handling the exception
requires the processor to suspend the running program, run
an exception handling routine and, usually, restore the orig-
inal state to continue the program.

Exception handling is essential in a practical microproc-
essor. However exceptions are rare events compared with
‘conventional’ instructions. It is therefore of primary
importance that the ability to process an exception does not
detract from the processor’s overall performance.

occurring at a point exactly between two instructions su
that all preceding instructions have completed and none
the subsequent instructions has started. To implement p
cise exceptions requires the processor to save its s
immediately before the execution of one particular instru
tion and after all prior instructions have completed. This
straightforward in a processor which fetches and execu
only a single instruction at a time [2]; however, many mod
ern microprocessors process multiple instructions conc
rently either by pipelining, superscalar issue, or oth
techniques. In these systems the global state of the proc
sor (at any given point) does not represent a precise instr
tion state since more than one instruction may be bei
executed.

Most causes of exceptions are detectable early in t
execution lifetime of an instruction; for example OS call
and emulator traps are performed as dedicated instructio
Other exceptions – notably interrupts – may be insert
almost arbitrarily into the instruction stream and process
at leisure. However, a few exceptions are detectable o
after the processor has committed to seemingly innocuo
instructions; examples of this last category are arithme
errors (such as division by zero) and memory faults.

In synchronous processors the clock provides a conve
ient mechanism for predicting the state of all stages in
pipeline. The consequent predictability simplifies the dete
mination of which stages were executing instructions pri
to the exception and which were executing instructions su
sequently. This allows the separation of the state whi
must be stored for recovery and the state which must be d
carded.

In asynchronous systems there is no clock and so t
predictability is lost; other mechanisms must be provided
generate a precise state. Previous work undertaken on
FRED asynchronous processor [3] reduced the complex
of the problem by providing only a ‘functionally precise
exception mechanism: the saved state is not precise but c
tains sufficient information to allow the operating system
recover. Whilst this approach is acceptable in the design
a new processor architecture, it cannot be used for the
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implementation of an existing architecture such as the
ARM [4].

This paper describes the approaches used to process
memory faults in the AMULET3 asynchronous microproc-
essor. The focus is upon memory faults, however, the tech-
niques can easily be applied to solve other problems such
as bus errors.

Previous asynchronous solutions required the processor
to stall whilst uncertainties were resolved. The solutions,
developed for AMULET3, alleviate this requirement allow-
ing speculation on memory accesses whilst maintaining
compatibility with the ARM’s exception model. The result
is a significant improvement in performance. Three differ-
ent mechanisms are used: a reorder buffer, history buffer-
ing, and stalling. Each was employed according to a trade-
off between speed, complexity and frequency of invocation.
Although these techniques are familiar in synchronous
design it is believed that AMULET3 is the first asynchro-
nous microprocessor to exploit the first two.

2: The ARM architecture

The programmer’s model of the ARM registers is shown
in figure 1. This is organised as:

• General Purpose Registers. These contain the current
values of data items used by the program. To simplify
exception handlers each mode is provided with its own
link and stack pointer registers (banked copies of R14,
and R13, respectively) to enable it to create its own
private stack.

• Current Program Status Register (CPSR). This register
contains the condition code flags, interrupt disable bits
and processor operating mode.

• Saved Program Status Registers (SPSR). These are cop-
ies of the CPSR which are updated by the processor
whenever a relevant exception occurs.

ARM processors employ the same basic mechanism
handling all exceptions. When an exception arises t
ARM processor:

• completes the execution of all preceding instructions

• saves the return address in R14 of the new mode

• saves the CPSR in the SPSR of the new mode

• enters the appropriate privileged mode

• branches to the appropriate exception handler

On completion of the exception handler the state a
mode are restored, and execution of the original program
resumed. The CPSR is restored from the SPSR at the sa
time.

The processor state represents only part of the syst
state which also includes the state of the memory and of a
coprocessors (ARM has provision for up to sixteen copro
essors which can be included to perform extensions to
original instruction set). These, too, must be preserv
when an exception such as a page fault occurs to ensure
it can be processed successfully. The coprocessor stat
not discussed here, but the memory state is considered
later section.

The ARM architecture provides support for precis
exceptions resulting from both internal and external even
[4]. This support comprises two levels of interrupt, a sof
ware interrupt (SWI), an undefined instruction trap an
(separate) page fault mechanisms for instruction fetch a
data access; the ARM does not generate exceptions
arithmetic instructions.

The memory system alerts the processor to a mem
exception by raising the dedicated external abort pin.
simplify the task for the exception mechanism, early ARM
processors required the abort response half-way throu
the memory access cycle. This is calledearlyabort timing.
However, this requirement severely constrained the ope
tion of the memory system and so recent processors all
the memory system to flag the abort response at the end
the memory access cycle. This is calledlateabort timing.

The ARM model differentiates memory faults which
occur when accessing instructions, calledprefetch aborts,
from memory faults which occur when accessing dat
calleddata aborts. Although they share the ‘abort’ mode o
operation different exception processing routines are cal
for each form of exception. More significantly, a prefetc
abort occurs as the processor fetches an instruction to e
cute later. Only when (and if) the instruction reaches th
execute stage of the pipeline is the prefetch abort except
taken. A data abort occursduring the execution of a load or
store instruction which may already have started to chan
the processor’s state.

In both cases the processor needs to determine the m
ory address which faulted in order to restart the abort

user mode
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- private work registers for fast interrupt
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Figure 1: ARM register organization
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instruction. In the ARM, data access memory addresses are
generated by adding or subtracting an immediate or regis-
ter-based offset to or from a base-register. The restart oper-
ation is complex as the value in the base register may be
auto-indexed or overwritten. An implementation can elect
to supply either the original base register value or the auto-
indexed value to the exception handler, but it must provide
a value which has not been overwritten. Early ARM proc-
essors (up to and including the ARM7) adopt thebase
updatedapproach, and supply the handler with a base reg-
ister with any modifications to the value it contained due to
auto-indexing allowed to complete. This simplifies the
hardware implementation and allows faster exception
entry, but requires additional software in the exception han-
dler to restore the original value. Later ARM processors
adopt thebase restoredapproach, where the exception han-
dler is presented with a preserved and unmodified base reg-
ister value.

The ARM architecture specifies an integrated system for
dealing with exceptions which conforms to the precise
model. Detailed high level requirements are given, but
designers are given a large degree of flexibility in how to
implement these.

3: Existing mechanisms for state management

To support precise exceptions it is necessary to provide
mechanisms to manage the system state. These mecha-
nisms typically operate by preventing speculative state
changes or providing temporary storage for either the orig-
inal state so that it can be restored or the speculative state
so that it can be discarded [5].

Locking mechanisms are designed to prevent specula-
tive state changes, a variety have been proposed whose
common aim is to delay the execution of instructions until
their status has been determined.

The ‘history buffer’ is a mechanism which stores the
original values held in registers before speculative changes
are made. As each instruction is issued an entry in the his-
tory buffer is allocated. If an exception occurs the entries in
the history buffer are used to restore the original state.

A ‘reorder buffer’ provides a temporary store for specu-
lative results. Results from the reorder buffer are used to
update the register bank in instruction issue order, only
when the instructions are known to have completed suc-
cessfully. When an exception occurs all outstanding
instructions are allowed to complete and the results in the
reorder buffer prior to the failed instruction are written to
the register bank, while those after the exception are dis-
carded. The reorder buffer causes a delayed write back of
results which increases the latency for result availability. To
counteract this problem forwarding is allowed from the

reorder buffer enabling instructions to use these specula
results.

While the storage and recovery of results is a major p
of exception handling there are other issues which pro
straightforward for synchronous designers and more ch
lenging in the asynchronous world. The key simplificatio
found in synchronous design is the global coordination f
exception recovery provided by the clock. This is not po
sible in an asynchronous design as the designer canno
sure that the recovery mechanisms will be examining a g
bal signal at the required time. Traditionally this ha
restricted asynchronous designers to implement prec
exceptions using only the most primitive mechanisms, su
as locking techniques.

4: AMULET1 and AMULET2

The AMULET1 [6] and AMULET2 [7] processors rep-
resent the first and second generation, respectively, of as
chronous ARMs. They are object code compatible with th
ARM6, (although no support is provided for coprocess
instructions). Internally the processors are construct
from functional units which operate independently an
concurrently. They are architecturally similar and, for con
venience, only AMULET2 will be discussed. Before
describing the exception mechanisms it is necessary
review some features of these earlier implementations.

4.1: PC tracking

The ARM architecture requires that instructions mu
have access to their correct PC value prior to execution
case it is needed as an operand (R15). This requiremen
implemented in the AMULET2 processor by matchin
each instruction as it is returned from memory with its ass
ciated PC value (see figure 2). The PC values are store
a FIFO which tracks the instruction flow. This also enable

Figure 2: PC and instruction synchronization
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the processor to provide the return address from the excep-
tion handler simply by collecting the PC value associated
with the aborted instruction in the execution stage.

4.2: Branches and instruction ‘colouring’

In a synchronous processor the depth of instruction
prefetch can be controlled, or at least measured, quite easily
by counting clock cycles. Knowing the depth of prefetch
makes discarding erroneously prefetched instructions
straightforward. In an asynchronous architecture, because
the prefetch and execution units are de-synchronised, con-
trolling or measuring the depth of prefetch is not easy, and
so determining which instructions to discard in the advent
of a branch proves a complex task.

One approach is to specify the depth of instruction
prefetch by means of a fixed set of ‘tokens’ (e.g. as used in
ASPRO-216 [8]). A penalty is that this exact number of
instructions must either be discarded or executed as delay
slots following a branch instruction. An alternative that has
used in all the AMULET processors to date, is to tag each
instruction fetch with an identifying ‘colour’ [6]. A branch
causes the execution stage to interrupt the prefetch unit (via
an arbiter and therefore at a non-deterministic position in
the instruction stream) and causes it to start fetching from
a new address in a new colour. Instructions in the branch
‘shadow’, i.e. fetched speculatively beyond the branch, will
be in the old colour; they are detected and discarded by the
execution stage.

In AMULET2 only two colours (represented by a single
colour bit) are required because a second branch cannot be
taken until the new instruction stream arrives.

4.3: Prefetch aborts

Prefetch aborts are detected by the processor before
instruction issue when the aborted instruction reaches the
primary decoder. This enables the exception mechanism to
operate during the decode stage as it does for software
interrupts (SWIs), undefined instructions and external
interrupts.

When a prefetch abort occurs the memory returns an
(invalid) data word marked by an abort flag. On entry to the
decoder the prefetch abort flag causes the op-code to be
ignored and an exception entry substituted. This ensures a
clean entry to the exception handler; following instructions
– which also may be potential aborts – lie in the shadow of
the first and so are discarded by the colour mechanism in
the same manner as instructions following a branch opera-
tion.

4.4: Data aborts

The implementation of an exception mechanism for data

aborts is more complex as the offending instruction
already in the execution unit, actively engaged in changi
the processor’s state when the exception occurs.

AMULET2 adopts the simplest available strategy; n
speculation. For every memory access the processor che
with the memory management unit (MMU) to ensure th
it will complete successfully before the next instruction
started. Conceptually this brings the MMU into the exec
tion pipeline, although it is still a physically separate uni
figure 3 illustrates the arrangement. The cycle time must
stretched to accommodate this, resulting in a slower ‘ex
cution’ cycle.

The memory timing is divided into two sequentia
stages: exception detection and data access. During
exception detection stage the MMU is presented with t
required operation. It must respond with a fault/no-fau
result indicating whether or not that operation caused
exception. If no exception occurred the execute unit pr
ceeds to the data access stage where the transfer of da
performed. If the response is a data abort then the proces
needs to save sufficient information to restart the instru
tion and then it enters the exception handler.

Entry to the exception handler causes a change
instruction stream; this is handled identically to any oth
branch operation, changing the ‘colour’ of the instructio
fetches and discarding any erroneously fetched instru
tions.

To restart the aborted instruction the processor needs
obtain the memory address which faulted (contained in t
base register) and the return address from the except
The return address is obtained by piping the PC to the e
cution unit for any instruction whichmaycause a data abort
(i.e. any data transfer). The piped PC value is normally d
carded when the MMU signals that the cycle is to procee
but it can be salvaged in the case of an abort. To simpl
the design the ‘base updated’ approach is used for base
ister preservation, with the consequence that the mem
address has to be recalculated by the abort handler. A fi
complication is that a load multiple (LDM) instruction may
still overwrite the base register before aborting on a lat
cycle. To allow recovery in such cases the base address

MMU

Exec

Figure 3: Incorporation of MMU into the
execute stage
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LDMs is preserved in a special register until after the last
cycle of the operation, when it is discarded or restored in an
additional final operation.

Whilst this scheme is successful it has several draw-
backs. Firstly it is slow because the execution stage always
waits for an external response for every address issued. Fur-
thermore (unless an extreme penalty is paid) the memory
system supports only early aborts: the page fault can be sig-
nalled only at the start of the memory cycle, disallowing bus
errors and timeouts. Finally the mechanism for recovery
from aborted LDMs is complex, requiring extra cycles and
thus, again, sacrificing performance even when no abort
occurs.

5: AMULET3

AMULET3 is the third generation asynchronous ARM
processor and is aimed at a significantly higher perform-
ance than its predecessors. Achieving this performance
required a redesign of the data abort exception mechanism
to overcome the inherent limitations found in the design for
AMULET2. In AMULET3 performance is increased by
allowing each memory cycle to complete before signalling
its abort response, removing the MMU from the execute
stage (and the critical path), and, most importantly, allow-
ing speculation on memory accesses. The reorganization of
the execute stage is shown in figure 4. This arrangement
allows AMULET3 to support complex memory manage-
ment hardware without penalty and permits it to support
late aborts: a page fault can be signalled at the end of the
memory cycle, allowing bus errors and timeouts.

The rationale for this new approach is that, because data
aborts occur only infrequently, it is more productive to
speculate on the memory cycle completing sucessfully and
only consider data aborts if and when they occur, even if a
performance penalty is paid in this circumstance. This
requires a mechanism which allows instructions subse-
quent to a memory access to ‘complete’, but permits the
recovery of the system state, at the point of a memory
access, if that memory access is later found to have aborted.
To achieve an efficient implementation for the AMULET3
abort exception mechanism it was found that several differ-

ent techniques for preserving state were required. The f
lowing sections detail the selection and operation of t
various state preserving mechanisms.

5.1: Reorder buffer

An asynchronous reorder buffer [9, 10] protects the re
isters’ state in AMULET3. The reorder buffer allows inter
nal operations to be speculated upon whilst memory cyc
proceed. It provides a temporary store for results from spe
ulatively executed instructions, allowing these store
results to be forwarded to following speculative instruc
tions, and controls the updating of the register bank sta

The position of the reorder buffer within AMULET3 is
shown in figure 5. As prefetched instructions pass throu
the decoder, storage locations in the reorder buffer, cal
‘slots’, are assigned for their results. When an instructio
has been issued it must therefore continue until its result
reach the reorder buffer. Note that, in addition to arithme
results and loaded data, a slot is provided for the tok
returned by a store operation; this is necessary both to k
the loads and stores in order and to provide a space in
buffer for the return address in case a store operation abo

Results arrive, at the reorder buffer, both from the da
interface as it returns values from memory and from arit
metic operations performed in the execute unit. These t
streams are un-synchronized and so the results may ar
out-of-order.

MMU
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Figure 4: Removal of MMU from execute
stage
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Figure 5: AMULET3 core organisation.
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To safeguard the state of the register bank it is not
updated until all preceding operations have completed cor-
rectly; the results are written back to the register bankin
issue order. Register update is controlled by the writeback
process which ensures that only valid results are written
back, invalid ones being discarded. A result may be invali-
dated if its instruction fails its condition code test, or falls
in the shadow of a branch or a data abort. The validity status
is passed with the result to the reorder buffer by each unit.
If a data abortdoesoccur any contents of the reorder buffer
subsequent to this point are abandoned and the processor
registers’ state may be recovered from the register bank.

5.2: Extending the colour mechanism

The AMULET2 processor required only a single colour
bit to manage its instruction streams. This is not sufficient
for a processor which can support speculation on memory
accesses. The shortcomings can be demonstrated by con-
sidering the execution of the following code fragment:

LDR R1, [bad_address]
BNE somewhere
ADD R2, R3, R4

Internal operations tend to be completed faster than
external memory accesses, so the branch operation could be
performed before the memory system can return the abort
response. Consequently the entry to the abort exception
handler may occur before the instructions from the branch
target arrive. In these circumstances there will be three
streams of instructions:

• the original stream containing the load and branch

• the stream from the branch target

• the stream from the exception handler

Both the original stream and that fetched from the
branch target need to be discarded as they lie in the abort
shadow. As there are three instruction streams at least three
colours are needed. The simplest solution is to use two
independent colour bits: the ‘branch colour’ bit used in
AMULET2 is retained, and a new ‘abort colour’ bit is
added. The abort bit toggles on the occurrence of a data
abort and the branch bit toggles, as before, on the occur-
rence of branches and exceptions other than data aborts.
Only when both colour bits match at the execute stage is the
instruction performed.

This is adequate to protect the registers’ state but it is
insufficient to protect the state of the memory itself. Con-
sider the following code fragment:

LDR R1, [bad address]
STR R2, [good address]

If the memory is pipelined it is possible that the seem
ingly valid store operation is issued before the process
realises that its predecessor has aborted. It is important
the store operation does not change the system’s state. T
cannot be directly enforced by the processor because b
operations could have been dispatched to memory bef
the first fault is discovered. The memory system must the
fore be responsible for managing its own state and must
able to distinguish operations occurring before, during, a
after the abort shadow. This is accomplished by passing
abort colour to the MMU (figure 6).

The MMU initiates the abort and so is able to recogniz
the start of the abort shadow. It reacts by recording the c
rent abort colour and suppressing any state changes (ma
store operations) until the new instruction sequence arriv
Execution resumes when operations arrive with a m
matched colour, which indicates that the instruction strea
has changed. This algorithm is summarised in figure

Figure 6: The flow of colour information
through the core
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Note that, because only the abort colour bit is used, an inde-
terminate number of branches may be accommodated in the
interim; this is important because not all instructions com-
municate with the memory subsystem.

A similar mechanism is used within the processor to
ensure that only one abort is taken at a time; values returned
from memory are checked and marked as invalid by the data
interface if they are within the abort shadow.

5.3: Invalidating results

To maintain the register state following a data abort the
processor must discard speculative results stored in the
reorder buffer and those which may arrive subsequently.
This could be done by passing the abort colour through the
reorder buffer to the register writeback process and discard-
ing results by means of the method outlined in section 5.2,
but this has a number of significant drawbacks. Firstly, it
would be necessary to perform an additional test (a colour
match) on every result before it can be used to update the
register bank, slowing down the writeback process. Sec-
ondly, the reorder buffer must be extended to allow storage
of the abort colour information. Finally, the processor has
to wait for the aborting result to be written to its reorder
buffer slot, and then for the writeback process to reach this
slot, before abort exception entry is initiated. This results in
a high latency for abort entry.

A more convenient method exploits the existing
“invalid” flag used for tagging operations which fail their
condition test. Loaded values following the abort will be
invalidated by the data interface (described in section 5.2).
Internally generated results will also arrive marked as
invalid after the arrival of a data abort ‘interrupts’ the exe-
cution unit and changes the colour. Thus only results from
instructions which were presentbefore the abort arrived
may have the incorrect validity.

The reorder buffer is allowed to drain naturally until
writeback reaches the aborted value, after which the
remaining results in the reorder buffer are invalidated by
broadcasting a global invalidation signal. The global inval-
idation is realised as a simple clear of a set of latches and
was chosen for its implementation simplicity. However it
also presents a danger.

In an asynchronous system the forwarding process may
attempt to read the value of the validity flag simultaneously
with the clear operation. This is not a logical problem since
any forwarded data will be discarded later anyway, but
could cause implementational problems by introducing
metastability in later latches, possibly impairing the correct
operation of the control circuitry.

To avoid this hazard, two validity flags are stored, one
for each of the two possible abort colours (a flag is provided
for current stream colour and a separate flag for the future

exception handler colour). Both of these are written to
parallel and both must be valid in order for writeback t
return a value to the register bank, but only one is need
to forward data. The global invalidation process on
affects the flagnotread by the current (potentially forward-
ing) process, hence the validity flag used by the forwardi
process is not changed and potential problems with meta
ability are avoided.

The global invalidation mechanism locks the instructio
decoder preventing entry by prefetched instructions fro
the exception handler until the invalidation process is com
plete and the reorder buffer is stable. This solves two pro
lems. Firstly, it prevents speculative results invalidated
the abort from being forwarded to instructions from th
exception handler. Secondly, it ensures that the valid resu
produced by the execution of instructions from the exce
tion handler are not accidentally invalidated by the glob
invalidation.

5.4: PC recovery

To allow the program to restart a return address from t
data abort handler is required. AMULET3, in similar fash
ion to the earlier AMULET processors, matches eac
instruction with its PC value (see section 4.1), however, f
loads and stores the PC value must now be retained until
memory transfer is complete. When a data transfer instru
tion begins execution the associated PC value is copied i
a history buffer (referred to as the exception pipeline
Xpipe) as shown in figure 8.

When a transfer completes successfully the Xpipe en
is discarded. If, however, an abort occurs the PC is cop
into the reorder buffer, ‘hijacking’ the slot originally
assigned for the results from the memory access. As t
slot will have been previously assigned to another regis
for its results, the ‘hijacking’ is invisible to the forwarding

data
transfer

Figure 8: PC & CPSR history buffer
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process which will still be allowed to read this value as if
the load had been successful; this allows any forwarding to
proceed and, although the wrong value will be used, this
presents no problem because it will be discarded later.

Note that the multiple data transfer (LDM/STM)
instructions use multiple slots but only require a single PC
value. Although, in theory, it would be possible for STM to
allocate only a single reorder buffer slot this complicates
the implementation to little advantage.

As can be seen from figure 8 the PC is accompanied in
the history buffer by the CPSR; this is described and justi-
fied in section 5.6.

5.5: Base register restoration

AMULET3 provides thebase restoredvalue to the
exception handler. In the ARM programmer’s model some
instructions, such as single register load from memory with
writeback, produce more than one result. In this case two
results are produced: the loaded data from memory and the
updated base register value. Generally, the updated base
register value will be available before the data is returned
from memory and so is traditionally written to the register
bank first.

The reorder buffer allocation implies a specific ordering
to the writeback. Swapping the order of writeback enables
AMULET3 to return the updated base-register valueafter
the data loaded from memory; forwarding removes any
dependency stalls from this process. If a data abort occurs
the reorder buffer will thus prevent the updated base regis-
ter value from being written back, removing the need for
restoration work which would have previously been
required to enable the instruction to be re-run.

Whilst adequate for single register loads this mechanism
is insufficient to preserve the base register if an abort occurs
during a multiple register load (LDM) instruction. Such an
instruction can load any set of the currently available regis-
ters (permitting the base register to be overwritten), and
may abort on any of the memory cycles.

In principle the reorder buffer could be used as a tempo-
rary store for these values but this would require the reorder
buffer to accommodate up to sixteen values which is
impractical for this unlikely circumstance.

An alternative, low-cost solution is to use another his-
tory buffer. This is used to save the original value of the
base register, allowing it to be restored (and so the state to
be rolled-back) on the occurrence of an exception. A copy
of the unmodified base register value together with a tag
identifying the register is transferred by the execute unit
into a special FIFO called thebase-restore pipe(BR-pipe)
whenever the processor is required to perform a LDM
instruction (see figure 9). If the LDM completes success-
fully, the corresponding values in the pipe can be discarded.

In the event of an abort, the original value can be recover
from the BR-pipe and written back to the source registe

The writeback process requires the insertion of a writ
back cycle, from the reorder buffer to the register ban
which is not accommodated by the reorder buffer. This c
be performed without hazard, because it will be the la
valid operation before the exception handler is entered,
long as it is completed before the registers are read in
exception handler. The asynchronous nature of the proc
sor allows the writeback cycle to be ‘stretched’ in this cas
The value written back will be the unmodified base regist
value, which is consistent with the base restored model

5.6: CPSR preservation

The mechanisms described thus far preserve or reco
the memory state and the processor’s register state in
event of a data abort. There is some remaining state in
ARM architecture which is not stored in the register ban
but which must be preserved.

This remaining state divides into the Current Progra
Status Register (CPSR) and the bank of Saved Program
tus Registers (SPSRs). The CPSR contains the flag regis
current operating mode (user, supervisor, etc.), and int
rupt enable flags. As it contains the processor’s flags it
altered frequently. It is usually changed just before it
used; for example:

CMP R1, #29 ; CPSR update
BGT somewhere_else ; condition test

Using a reorder buffer to resolve such dependencies
these few bits is expensive and, potentially, sacrifices p
formance. Instead the CPSR is changed immediately
each instruction and a separate mechanism (figure 8
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Execute

load data

Figure 9: Base restore pipe.
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used to restore the correct state in the rare event of a data
abort.

Every memory reference dispatched records the state of
the CPSR (this can be compressed into 10 bits) which is
placed, with the PC of the operation, in the X-pipe. When
the memory reference completes successfully this is dis-
carded, but if an abort occurs the CPSR may be restored,
whilst the PC is sent to the reorder buffer to form the link
value.

5.7: SPSR preservation

The Saved Program Status Registers (SPSRs) are copies
of the CPSR which are used to preserve status information
when a different mode is entered (such as on interrupt
entry). There are five SPSRs – each of 10 bits – which
change very rarely, although in theory any or all could be
written to just after a data transfer is dispatched. In practice
they are generally changed on entry to a new operating
mode. For example:

LDR R1, [bad address]
SWI something ; software interrupt

From user mode the SWI (software interrupt) instruction
could switch into supervisor mode and copy the user mode
CPSR into its SPSR before the memory reports the abort.
The exception mechanism for the subsequent data abort
must ensure that both the user mode CPSR and the super-
visor mode SPSR are correctly restored.

Two possible methods of history buffering could be
applied: the first is to buffer all the SPSR bits for every
instruction; the second is to buffer each former SPSR value
as it is overwritten. The first method is very expensive in
hardware, the second is exceedingly complex to recover
from.

Instead it was decided that it is adequate to delay any
alterations to the SPSRs until it is known that no potential
aborts are outstanding. This has almost no performance
impact [9] and is cheap in circuit terms. It is implemented
using an asynchronous semaphore circuit based on the
locking mechanism designed for the register bank on
AMULET1 [11]. This is a dataless FIFO which is incre-
mented to signal that a data transfer operation has started
and decremented when it is complete; a Boolean output
indicates whether the FIFO is empty or not (figure 10).
SPSR changes are delayed until this semaphore is empty.
Despite the asynchronous operation of the increment, dec-
rement and read processes the only potential danger could
occur if the semaphore was incremented into a ‘not-empty’
state whilst being sampled. In practice, this cannot happen
because no ARM instruction can cause both a memory
transferandmodify the SPSR. Thus in the above code frag-

ment the SWI operation could despatch its target addr
but would not change the operating mode and allow furth
instructions to flow until and unless the LDR complete
successfully.

6.  Conclusions

Whilst inconvenient, exception support is essential in
commercial processor architecture. Most exceptions can
treated as instructions and thus are relatively simple
process. However late occurring exceptions such as ar
metic and memory faults need special treatment.

This paper has described the treatment of memory fau
in AMULET3 as an example of how such late occurrin
exceptions may be handled to preserve or recover the s
tem state in a high performance asynchronous architectu
The three mechanisms used are:

• a reorder buffer for the large number of general registe

• history buffering for state with many dependencies

• semaphore locking for infrequently changed state

The combination of these methods represents
advance on previous schemes, where only the last was u
The ability to mix and match these as appropriate has p
vided opportunities to significantly streamline the memo
interface.

The methods described here are generic, with wid
applications. One good example is the support of the AR
debug architecture, which allows the setting of breakpoin
and watchpoints on the memory buses. Breakpoints ca
a form of exception when a certain address or data patt
occurs during an instruction fetch; a watchpoint perform
the same service during a data read or write. By requiring
comparison on any returned data the watchpoint can
begin to signal the exception until both the read and t
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Figure 10: SPSR lock semaphore
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comparision are complete. The read will not complete until
very late in the memory cycle and then the comparison will
require additional time. The solution to this in ARM7 was
to allow an extra half cycle for the return of this informa-
tion; in AMULET3 the reorder buffer write can be started -
allowing the data to be forwarded - whilst stretching the
existing cycle if a comparison is required. The watchpoint
exception can then be guaranteed to occur at precisely the
correct point. Such a ‘late abort’ would be impossible with
the mechanism used in AMULET2.

Techniques similar to the reorder buffer may be used in
a future asynchronous cache/memory interface. In this
application it is possible that write operations to a slow
external memory could be queued and overtaken by more
urgent data reads. The write buffer would need to ensure
memory consistency in the event of page faults etc. and
would need to forward values to any read requests attempt-
ing to pre-empt access to relevant locations. These ideas
form the basis for ongoing studies.

Mechanisms of this type are already widely used in
high-performance synchronous processors. This work has
shown that, despite the lack of global synchronisation,
these techniques can be adapted equally well to the asyn-
chronous world.
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