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Abstract. Distributing a high-speed clock in a large synchronous sys-
tem is both difficult and power hungry. It has been suggested for some
time that asynchronous processors may therefore prove advantageous
for low power applications. An analysis of the reasons for this is given,
together with a direct comparison showing that the AMULET3 asyn-
chronous ARM processor is at least as energy efficient as its contempo-
rary, synchronous counterpart. Moreover micro-architecture techniques
utilising the asynchronous design style that can further improve the
power efficiency, are presented.

1 Introduction

Low power consumption has been one of the arguments advanced for the renewed
interest in asynchronous design. The chief argument is that an asynchronous (or
‘self-timed’) system only performs processing ‘on demand’. Thus a processor with
no work to do can, and will, halt. In a low-leakage CMOS technology halted logic
uses very little power.

This argument can be extended to any functional block, so that a part of the
processor which is not required will not be operating and wasting energy. An
example of this would be multiplication hardware in a general purpose processor,
which is infrequently invoked. This argument is sufficiently compelling that many
low-power synchronous processors now use clock gating on their subcircuits.

A more subtle influence is that self-timed circuits can be designed to allow
for variation in operating speed for extreme circumstances. This avoids the need
to introduce specialised hardware to speed up rare, worst-case behaviour to fit
into a fixed clock cycle. An arithmetic operation provides a good example where
an operation can always take one cycle, but the cycle may be longer for a (rare)
multiplication than for a (common) addition or data movement.

AMULETS3i [1], an asynchronous ARM-compatible processor system is used
here to demonstrate that asynchronous processors are now commercially viable
in both performance and power consumption. The energy consumption of the
AMULETS3 [2] microprocessor (in MIPS/W) is the same as its contemporary
synchronous counterpart, ARM9, in the same design rules even when running
at full speed. This represents significant progress as ARM is a market leader in
32-bit low power processors.



In addition the asynchronous system can halt (and restart) within a sin-
gle processor ‘cycle’, a facility not available in the clocked ARM. When halted
AMULET3’s power consumption is almost zero.

This paper describes some of the low power design features of the processor,
presents a power breakdown of the system and analyses the major power ineffi-
ciencies. A comparison with synchronous systems, especially with the equivalent
processor, is presented next. Finally, the paper concludes with some suggestions
of how asynchronous techniques could further improve energy efficiency in the
future.

2 Asynchronous Design for Low-Power

Several features of the current AMULET3 implementation were designed for low
power, some of which are applicable to synchronous devices too. Some features
which exploit the asynchronous nature of the processor are described below.

AMULETS3 implements the ARM version 4T architecture [3], including the
16-bit compressed Thumb instruction set. This compressed subset of the 32-
bit instruction set is converted into ‘standard’ 32-bit operations internally. The
primary motivation for Thumb was to compress code; a program compiled into
Thumb instructions occupies about 70% of the memory of the same program
compiled into ARM instructions. Of course this represents 40% more instructions
and is therefore not, in itself, a low power feature in the processor, although the
30% reduction in instruction bandwidth yields a significant power saving in the
memory system.

Normally synchronous ARMs proceed at one clock per instruction. This
means that, when executing Thumb code, only sixteen bit quantities are fetched
so as to maintain the instruction pipeline balance. AMULET3 always fetches 32
bit quantities, halving the number of instruction fetch cycles. If these are to be
decoded as Thumb operations they are split at the decoder which produces two
output cycles for a single input cycle. The difference in the number of cycles is
accommodated by the delaying of subsequent memory cycles and the reduction
in bus operations (hence power consumption) is an automatic consequence.

A complementary technique is possible for other operations. For example a
comparison, which does not write back to the main register bank, can ‘evaporate’
from the pipeline once the flags are set; there is no need to propagate a NOP to
fill spare pipeline spaces.

Some other features, introduced primarily to increase performance, also have
a beneficial effect on the power consumption. One notable example is the branch
target buffer[4]. This is a relatively simple branch predictor which nevertheless
increases performance by up to 22%, depending on the application. In many
processors the branch predictor burns more power than it saves by avoiding
erroneous speculative instruction fetches. Here, however this is not the case, pri-
marily because of the small, relatively simple, mechanism used, and the system
power consumption is reduced by up to 20%. This is assisted by an asynchronous,
two-stage address comparison which exploits the largely sequential nature of the



instruction stream; comparisons are only performed with a few of the least sig-
nificant bits unless there is a reason for a slow, full address comparison. Another
feature is that a predicted branch is retained internally and so does not require
an instruction fetch memory cycle, a reduction of about 10% in fetch cycles.

3 Power Analysis

A detailed power analysis of the processor was undertaken (before silicon was
available) to provide a basis for further improvement. The analysis is based on
simulations because there is no other way to get a power breakdown of the
processor at an arbitrary level. The simulator used was Powermill which is a
well known tool used widely for estimating power consumption.

The measured results for the processor were somewhat different from the
simulation results, the actual processor being slower and consuming less power
than expected. Unfortunately no data on the particular fabrication run have
been obtained which might explain this. Nevertheless the simulation results are
still useful for the relative contribution to the power consumption by the various
parts. As all the processor parts are similarly designed, the simulation error
should be spread fairly evenly across the subcircuits.

The power consumed by a processor depends on the operations it performs.
Unfortunately there is no de-facto benchmark used to measure processor power
as there is for performance (e.g. SPEC). Many published results are based on
Dhrystone [5], which is a synthetic benchmark that claims to have a dynamic mix
of instructions similar to ‘typical’ application programs. For easy comparison
with other processors, the results of using Dhrystone will be most used here.
Other programs used in this analysis were DES encryption/decryption and a
short term synthesis filter from an implementation of GSM. All the benchmarks
are written in the C language and were compiled for speed using the ARM
toolkit version 2.51. Simulation time and the small memory size (8 Kbytes) in the
AMULETSi were the greatest limiting factors in the selection of the benchmarks.
Full transistor level simulation was chosen to obtain the most accurate results
possible. The resulting long simulation time limits the number of instructions
that can be simulated in reasonable time.

The top-level system power breakdown for Dhrystone is shown in Fig. 1.
The core is the major consumer responsible for around 60% of the power for
Dhrystone and more for the other benchmarks (up to 73%). The 8 Kbyte RAM
consumes from 20% (filter) to 30% (Dhrystone). The remaining portion, which
is less than 10%, is consumed mostly by the system bus, as the asynchronous
peripherals were not active in the benchmarks.

The power breakdown within the AMULET3 core running Dhrystone is pre-
sented in Fig. 2. In this simulation all performance enhancing options were en-
abled, including the branch prediction hardware. The biggest consumers were
found to be the execution and register blocks, followed by the prefetch unit,
when branch prediction is enabled, and the decode block.



The percentage used by the prefetch unit drops to 13% when branch predic-
tion is turned off and the core’s power consumption is 6% lower. The execution
time increases only a little (1%), because the branch prediction method used
does not work well for Dhrystone. The situation is reversed when running the
GSM filter benchmark, where branch prediction works very well, removing many
wrong instruction fetches and increasing performance by 8%.

The block called ‘Registers’ contains the register file and the reorder buffer
and its power consumption is similar to that of the execution unit in all the
benchmarks except for the GSM filter, where the heavy use of the multiplier
makes the execution unit the major consumer.

3.1 Inefficiencies

The detailed power analysis revealed some inefficiencies in the design which were
not identified before manufacture. The most serious problem was in the multi-
plier circuit. The proportion of energy expended in this unit seemed too high
considering that it is used infrequently in the benchmarks. Further study showed
that a significant part of the multiplier is always active evaluating whatever data
happen to be on the multiplier inputs; these buses are shared with some other
functions, notably the data output to memory, and so switch moderately fre-
quently.

This problem, which would be quite easy to fix at a very small cost with
input gating, shows the importance of carrying out power analysis as early as
possible in the design phase. The improvement in power by fixing this depends
heavily on the specific data carried by the buses and the instructions executed.
For the DES benchmark, for example, 5.5% of the core’s power would be saved.

About 15% of the execution unit power is spent by the ALU output drivers
and the result bus drivers. The ALU output is one of the two possible sources of
the result bus and it is also connected to the data interface block for calculated
addresses (pre-indexed addressing). To make the usual case fast, the result bus
is driven by the ALU output by default. A significant proportion of ALU results
(around 30% in the set of benchmarks used) are not stored, either because they
are memory addresses or because they are the result of comparisons. Moreover
the ALU output appears to be quite ‘glitchy’, especially during subtractions,
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Fig. 1. Processor power breakdown (Dhrystone).
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because of races in the carry circuitry. These glitches propagate onto the result
bus, thus wasting significant energy. All of these problems could be solved by
appropriate circuit techniques (gating or latching), but this may increase the
power spent in the control part of the processor, so it is not clear yet which is
the best solution.

AMULETS3 uses a three read port register file so that all of the operands
an instruction might require can be fetched simultaneously. Most instructions
require fewer than three operands. Analysis on the frequency of the use of each
register file port showed that one port is used very frequently, the second is less
than half as often and the third even less frequently. Each register read port is a
dynamic precharge/discharge bus. Although these buses are not activated when
not required, the precharge is a broadcast signal. Because the register ports have
significant capacitance the precharge transistors are large and the signal driving
them is heavily loaded. Thus using a unified precharge signal is not efficient in
terms of power. An estimated 12% of the register file power (1% of core) would
be saved simply by using the separate requests for each port as their respective
precharge signals.

4 Comparison with Synchronous Systems

In a synchronous processor a large proportion of the power is attributed to the
clock. Tiwari et al. [6] state that about 40% of CPU power is spent on the clock,
including the generator, drivers, distribution tree and loading. StrongARM [7],



with a similar architecture to AMULETS, is reported to use 26% of its power in
the clock, including the PLL. Other processors state similar results.

It would be interesting to estimate the equivalent of this power in AMULET?3.
As there is no simple way to determine which circuits should be considered
equivalent to the clock, the choice is somewhat arbitrary. The closest equivalent
is the set of latch controllers of the pipeline latches between the submodules of
the core; these include the drivers for the large latch enable loads. In addition
some precharge signal drivers which are controlled by handshake signals were
also included in this group. The contribution of all those circuits to the power
consumption was found to be 10.5% of the core while running Dhrystone 2.1.
Comparing this with the proportion of the power taken by a clock shows that
asynchronous techniques can significantly reduce power consumption.

Naturally the benefits of the asynchronous design style come at a cost. As the
different stages in the pipeline are not synchronised, state information between
pipeline stages is difficult to exchange. This leads to duplication of information
in several places in the pipeline. For example, in AMULET3 each pipeline stage
holds the address of the instruction being processed there because of the difficulty
in accessing a central PC. This is not a significant power overhead, because only
few of the PC’s bits switch each time. In addition to duplicating information,
the fine grain control of circuits leads to the existence of more state/sequencing
information compared to a synchronous processor. This translates to an increase
in control power for the processor, proportionately about 40% of the processor
core power in AMULET3. This is quite high compared to other published results,
although this includes most of the “clock” power stated above. It has to be
noted though that the control circuits are implemented using standard cells,
automatically placed and routed by CAD tools, whereas the datapaths are full-
custom. Thus the wire capacitances tend to be higher and there is less control
over the driving strength of the gates. As synchronous low-power processors are
increasingly using extensive clock gating and functional unit guarding techniques
their control units tend to be as complicated as their asynchronous counterparts.
Moreover, the ARM architecture is quite complex for a RISC machine which
makes the control logic inherently more difficult and power consuming. ARM7
[8], which implements the previous version of the ARM architecture, is stated to
consume 40% of its power in the control part, although the definition of control
circuits may be different.

4.1 Comparison with ARM9

ARMITDMI is the synchronous implementation closest to AMULETS3; both
execute the same instruction set and have been implemented on identical tech-
nology, occupying the same silicon area (about 4mm?). On this 0.35 um process
ARMO [9] operates at up to 120 MHz having a performance of 1.1 MIPS/MHz
and consuming 1.8 mW /MHz. This gives an energy per instruction metric of 610
MIPS/W. Unfortunately a power breakdown has not been given.

The measured results from AMULET3i show a power consumption of 221
mW at a performance of 85 Dhrystone MIPS. According to the simulation re-



sults, the core consumes 62% of the power (137 mW). This gives an energy per
instruction figure of 620 MIPS/W, effectively the same as that of ARM9.

The performance is slower than anticipated from simulation, which predicted
a speed of about 100 MIPS for the system (it is not known how ’typical’ the
silicon run was.) Furthermore this was limited by the (unoptimised) memory
system; the core alone runs at about 130 MIPS in simulation. Thus, it is safe
to assume a speed of over 100 MIPS for the processor on silicon, without the
limitations of the memory.

5 Power Improvement for Asynchronous Processors

The power consumption of an asynchronous system depends on the same factors
as a synchronous one, if the throughput is considered to be the average execution
frequency. Thus the greatest benefits come from scaling down the supply voltage.
Taking this a step further, dynamically adjusting the voltage level to match the
required performance gives excellent results [10], [11].

Although not explicit in AMULET processors this technique is easy to im-
plement in an asynchronous framework and may provide more opportunities for
power saving when exploiting data dependencies [12]. Since there is no clock,
there is no need to adjust the clock frequency to match the supply voltage. Pro-
viding that the matched delays scale to the different voltages, the system will
be working at its maximum possible speed for this voltage.

Crusoe [13] is a synchronous processor supporting dynamic voltage scaling.
When it switches to a lower supply voltage it stops execution (deep sleep mode)
for 20 us, and restarts at a lower frequency before ramping down the supply
voltage. It takes 300 us to drop from 1.6 to 1.1V. ‘IpARM’ [14] takes 26 us
to ramp the voltage from 3.3V to 1.1V although this processor can continue
operating while the voltage is changing due to careful circuit design. There is
an energy penalty for changing the supply voltage which even with a 90-80%
efficient DC-DC converter can be up to 4 pJ [15].

For minimum area and power consumption AMULETS3i is implemented using
bundled data techniques [16]. Because this depends on matched delays it is not
guaranteed that the circuits will continue to work at different supply voltages
without extensive simulation. However, in practice, almost all the circuits used
for delay elements are close analogues of the circuits they model and the pro-
cessor can work over a wide range of voltage supplies[14]. Other asynchronous
techniques, such as delay insensitive circuits, are guaranteed to work under all
conditions; the disadvantage of such circuits is that both the circuit size and the
switching activity will approximately double, thus rendering them less suitable
for low power systems.

Although scaling the supply voltage gives significant power benefits there
are cases where either the supply voltage is a fixed design parameter or there
is a need for even lower power consumption after the supply voltage has been
set to its minimum practical value. Moreover, dynamic voltage scaling requires
DC to DC converters which expend some power themselves. For these reasons



micro-architecture techniques utilising the asynchronous design style are being
investigated to reduce energy expenditure even further.

5.1 Dynamic Pipeline Occupancy/Depth

The idea here is to eliminate energy spent on speculative operations. One ex-
treme is to remove all pipelining from the processor. An instruction will only
be fetched after the current one has executed, so no instructions will be fetched
speculatively. In order to save as much power as possible, all blocks that are
not going to be used should be turned off. The most important of these are the
branch prediction hardware and the reorder buffer.

Rather than removing the pipeline latches, the same effect can be achieved
by adjusting the pipeline occupancy. Using appropriate circuits the occupancy
can be varied from one (unpipelined) to the maximum (fully pipelined), trading
performance for power. A straightforward implementation could use a token
FTIFO with as many spaces as pipeline stages between prefetching and execution
(Fig. 3). Prefetch would remove a token before trying to fetch an instruction and
execute would insert one for each executed instruction. The number of tokens in
the system will determine the pipeline occupancy at any time. External circuits
could be added to insert or remove tokens to change the pipeline occupancy
dynamically.

In all but the fully pipelined case some energy will be saved, because fewer
speculative operations will be wasted, but at the same time performance will
be degraded. The effect is software dependent but in the AMULET3 model it
has been shown to be possible to reduce the energy requirement of Dhrystone
by 12%, albeit at a 70% performance reduction (16%, 74% respectively when
switching branch prediction off). Although the energy-delay product in the less
occupied pipeline does not compare favourably to that of the full pipeline there
are circumstances where this would be an acceptable trade-off. As the control
can be dynamic, the occupancy can always be increased when required.
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Fig. 3. Simple pipeline occupancy control.



The FIFO control is a simple retro-fit to an existing asynchronous processor.
It gains its benefit from reducing speculation but still suffers from the disadvan-
tage that all the pipeline latches are still switching. A similar technique to reduce
pipeline occupancy can be implemented by ‘collapsing’ pipeline stages so that
adjacent stages are combined with the latch between them continuously trans-
parent. For example when ARM code is being executed the Thumb stage (see
Fig. 2) is merely a FIFO buffer. If this stage is subsumed into the decode stage
the branch penalty will be less severe and fewer circuits need to switch on every
cycle. As the latch controllers are responsible for 10% of the processor’s energy
budget this should prove a significant economy. Again it is possible to adjust the
controllers to change the asynchronous pipeline structure dynamically.

5.2 Conditional Stalls

All ARM 32-bit instructions can be predicated. While this removes some branches,
in order to keep the performance as high as possible, conditional instructions are
usually decoded and their operands are fetched before the condition on which
they depend is evaluated. Segars [9] states that 10% of the instructions are
skipped, thus the energy these instructions consume decoding and reading their
operands could be saved.

Depending on the status of a configuration signal (enabling this feature), the
decoder, when receiving a conditional instruction, could request the latest flags
from the execution unit before continuing decoding. If the instruction currently
being executed is going to change the flags the decoding must wait until the flags
are set, thus no work will be done speculatively. This can be implemented with
a separate handshake channel between the two stages. The increase in decode
time is accommodated by the asynchronous pipeline.

6 Conclusions

The recently built AMULET3 processor proves that the asynchronous design
style is suitable for low power processors. It equals the leading 32-bit embedded
processor in energy efficiency when fabricated in identical 0.35 pum technologies,
operating at the same supply voltage and running the same code.

A detailed power analysis showed that the equivalent of clock power is only
about 10% in AMULETS, significantly less than synchronous processors. The
same analysis also showed that, with simple circuit modifications, the power
consumed by AMULETS3 could be reduced by another 8%.

Further improvement in power consumption is possible. The dynamic voltage
scaling techniques used in synchronous processors can be applied easily because
there is no need to adjust the clock frequency. Other microarchitectural tech-
niques based on asynchronous design have also been presented; these can control
the speculative operations in the processor by controlling the pipeline occupancy
or conditionally stalling the pipeline. Preliminary results on these techniques in-
dicate that up to 12% more can be cut from the energy budget.



AMULETS3 has shown that asynchronous microprocessors can have compet-
itive energy efficiency with the best clocked designs. The architectural flexibility
of asynchronous design offers the prospect of significant further savings, with a
dynamic power/performance trade-off, in future implementations.
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