
A Comparison of Power Consumption in Some
CMOS Adder Circuits

D.J. Kinniment*, J.D. Garside+, and B. Gao*

*Electrical and Electronic Engineering Department,
The University, Newcastle upon Tyne, NE1 7RU, UK

+Department Of Computer Science,
The University, Oxford Road, Manchester, M13 9PL, UK

Abstract
Addition is representative of many arithmetic processing operations that
must be carried out in portable digital systems, and the speed and power
consumption trade-offs in adder hardware are of interest to portable digital
system designers.

In this paper we compare static and dynamic circuits, and synchronous and
asynchronous architectures for speed, power per add, and transistor count.
Three adder circuits chosen for the comparison are: a synchronous static
ripple carry adder, a static Manchester carry adder, and an asynchronous
dynamic adder. The analysis and simulation results show that both the
lowest power and best time-energy product per addition are given by the
simple synchronous static adder based on the Manchester carry path.

Introduction
Addition is an operation common in circuits designed for portable
equipment, and is typical of the digital processing carried out in computer
systems. With the current interest in obtaining high performance together
with long battery life, it is useful to compare the energy consumption per
addition and the speed of operation of the adder designs commonly in use
today.

In CMOS circuits most of the energy consumed is due to switching activity,
with the number of nodes in the circuit, the stored energy per node, and the
number of switching operations per second all contributing to the total power
consumption. Techniques to improve addition speed, such as carry look
ahead, increase both the number of nodes in the circuit and the number of
transitions per node, and hence increase the energy dissipated. On the other
hand asynchronous design techniques may reduce the number of unnecessary
switching actions because an operation is requested only when it is required,
and because the number of transitions per node can be limited when the

2

operation takes place. At the same time, a completion signal is generated
which allows an operation to terminate when the correct result has been
obtained, and, on average, can produce a high speed from a relatively simple
circuit.

This paper will compare the speed, and power consumption of three basic
adder circuits:

1. A dynamic asynchronous circuit [Gars93].
2. A simple static ripple carry adder.
3. A static circuit based on the Manchester ATLAS adder [Kilb59].

Whilst the asynchronous circuit shows a good performance on average, its
energy dissipation per addition is inferior to the other two circuits, and in
terms of a combined energy and speed measure, the synchronous static adder
based on the Manchester carry path is best. The reasons for this will be
discussed.

Low Power
In a CMOS circuit the majority of the energy dissipation is determined by:

Energy
N

C V No of Transitions= × × ×∑ 1
2

2 _ _

In this equation there are four factors that can be reduced to achieve low
energy per addition, and these are: the total number of nodes, the nodal
capacitance, the power supply voltage and the number of transitions on each
node.

In this paper we will assume that the process and power supply voltage are
fixed, since the circuits compared all have a maximum of three transistors in
series with the power rails, and respond in a similar way to power supply
variation. We will therefore compare adders only on the basis of the circuit
and architectural design factors which affect the power consumption.

Static and Dynamic Logic
In a static CMOS logic design each logical function is implemented twice,
once in the n transistor stack, and once in the p transistor stack. Dynamic
logic reduces the total number of transistors, and can improve the overall
speed by eliminating the p stack and replacing it by a timed precharge
transistor. Disadvantages include additional timing complexity introduced by
the need to precharge every dynamic node, and frequency management to
ensure that nodes are refreshed regularly.

3

In comparing the low power properties of static and dynamic logic,
Chandrakasan et al [Chan92] highlighted a number of areas for
consideration. These include:

Spurious transitions: In static logic spurious transitions due to different
delay paths in the circuit occur when the function is evaluated, sometimes
giving rise to many different values on the nodes during that time. These
hazards can contribute to between 9% and 38% of the power consumption of
the circuit according to Benini et al. [Beni94]. On the other hand the output
nodes in a dynamic circuit may be discharged once and precharged once, or
not at all during one evaluation. While the probability of a change in node
value can never be greater than one, the number of transistions per node
during evaluation is potentially unlimited. If the probability of a change in
the final value of all the output nodes in a circuit between one evaluation and
the next is 0.5, we might expect the static version to dissipate an average of
between 0.545 and 0.69 units of energy per node because of the additional
spurious transitions, but the dynamic version will require an average of 1 unit
since there may be either zero or two transitions per node. It is likely,
however, that the energy per node will be less in the dynamic circuit, and the
number of spurious transitions on some output nodes of the adder (for
example in the sum outputs) will be significantly greater than 38%.

Of particular interest in this analysis is the number of transitions on carry
and sum nodes in a static adder whose inputs are fed by random operands,
i.e. where the probability of an input change is 0.5. In this case the
probability of a net change on the sum and the carry is also 0.5 at the
conclusion of an addition. Unfortunately during the addition a carry may be
forced to a 0 (inputs both 0) or a 1 (inputs both 1) or equal to the previous
carry. In the last case, a transition from the previous carry will be propagated.
An analysis of the number of transitions leads to a maximum of 0.75 on any
carry and 1.25 on any sum node.

Input Capacitance: The duplication of the logic function in static logic
represents a significant extra load on each output node.

Precharge: The major disadvantage of dynamic logic is the cost in energy
dissipation of the precharge phase. All output nodes discharged in the
previous evaluation must be precharged, an average of 50%, and then during
evaluation, 50% of the precharged output nodes are discharged.

Clock gating and clock frequency management: Power consumption in
synchronous systems can be reduced by disabling the clock to idle circuits
and thereby preventing changes. In static circuits this has no effect on the
functionality, since the output nodes are driven statically from the inputs.

4

Dynamic circuits on the other hand rely on timed signals such as clock to
precharge the output nodes.

Synchronous and Asynchronous Circuits
Asynchronous circuit design can reduce power consumption because there is
no conventional clock signal distributed to all parts of a system, individual
functions are simply invoked when necessary, and a completion signal
generated which indicates the availability of the correct data. Thus if there is
no need for an operation, in some technologies, e.g. CMOS, the hardware
needs to dissipate little energy, and if the operation is required, it can take the
minimum time needed rather than a full clock period. There are potential
advantages here in both power consumption and performance, but any
comparison must include the effects of:

The spacer: To make use of the self timing property of an asynchronous
circuit, a completion signal must be derived from data which distinguish
between a valid output and an invalid output. At the beginning of the
operation the input nodes to the completion circuit are set to values which
cannot occur with valid output data. Typically, two rail logic can be used in
which both true and complementary outputs represent the slowest signals. If
both are set to 0 initially, and then allowed to take up their final
complementary values when one rail of every pair becomes 1, the output is
complete. This initial state can be called a 'spacer' between two evaluations.
The spacer requires that there be some redundancy in the circuit nodes to
allow for non-valid outputs as well as all possible valid outputs, that there be
more transitions than strictly necessary to move between spacer and valid
output, and then back again, and that some time be spent in setting up the
spacer before evaluation.

Clock management in a synchronous circuit: Many of the advantages of
asynchronous circuits can also be obtained in a synchronous system, for
example, clock gating can be used to prevent the clock signal being
distributed to functional units where operations are not required, thus
eliminating one source of redundant energy dissipation. Additionally,
systems can be selected for operation at different clock speeds, allowing for
the effects of slow or fast silicon.

The addition time in a system: In an asynchronous system which includes
addition as one of its operations, the average time for an addition may not be
the same as a typical addition time performed in a system for two reasons.
Firstly, the input data may not be random in nature. Garside [Gars93], has
shown that the additions performed in the AMULET processor designed by

5

Furber et al. [Furb93] using micropipelining concepts described by
Sutherland [Suth89], had an average maximum carry propagate path almost
twice as long as that expected from purely random input data, leading to a
longer than expected asynchronous addition time. Secondly, additions which
take a long time in a micropipelined stage will cause the following stages to
be held up, and similarly additions which require only a short time will be
held up waiting for the following stages to become free. The addition time in
a system with more than one micropipelined stage will therefore be greater
than the average asynchronous addition time for the adder in isolation, and
can only approach it if the addition stage is itself a bottleneck.

Fortunately, the requirements for a spacer in an asynchronous system largely
coincide with the characteristics of the precharge phase in a dynamic system,
allowing a good dynamic logic implementation of an asynchronous adder.

Adder circuits
We have analysed the performance of four different adder circuits in a 2µm
CMOS process to show how the factors given above might affect the speed,
energy per addition, and circuit area in a system. In each case the circuits
have been optimised for speed by using p transistors wider than n transistors
where necessary. Alternative designs optimised for power consumption at a
given speed may give slightly different results but are unlikely to affect the
comparison between circuit configurations. The circuits are:
1. A synchronous 32 bit static ripple carry adder (RCA) whose basic 1-bit
design is shown in Figure 1.

Figure 1. 1-bit RCA adder
This circuit has 9 statically driven nodes per bit including the inputs A and B
which also contribute to the power dissipation, and computes complementary
carry signals in a worst case situation of one gate delay per bit. An analysis
of the number of transitions required for a particular set of 1000 32 bit

6

additions with randomly chosen operands and using a pure delay with
infinitely fast edges to model the gates, shows that with the A and B inputs
changing 0.5 times per addition, the carry changed on average 0.72 times,
and the sum 1.21 times. This agrees with the analysis given earlier. In
practice many of these transitions would merge together because of the finite
rise time of the gate outputs, and the energy dissipation associated with them
is therefore limited. Nevertheless, the result of the analysis shows that the
number of energy dissipating hazards can be very high in some parts of the
32 bit version of this circuit and the overall average at 0.66 is similar to that
quoted by Benini [Beni94]. On the other hand, because the average
maximum carry path using operands collected from actual computations is
significantly longer than that for random data, it is necessary to look at real
data when computing energy per addition. Therefore, we have also
constructed a list of 1000 32 bit additions with the distribution of average
maximum carry paths adjusted to reflect the statistics gathered by Garside
[Gars93], and the results from this show the sum changing 1.75 times per
addition, and the carry 1.29 times, bringing the overall average up to more
than 0.9. Again, in practice this 50% increase in transitions is unlikely to be
reflected in a 50% increase in power consumption because of the limited rise
times of the circuits, but a significant increase might well be expected.

2. An asynchronous dynamic adder (ADA) based on the design described by
Garside [Gars93] is shown in Figure 2. The schematic on the left is the
design of the 1-bit adder.

Figure 2. 1-bit ADA adder and a 4-input dynamic AND tree
This asynchronous dynamic adder relies on dual rail propagation of the carry
signal. The addition begins when the add signal goes high and the precharge
released allowing the sum and carry values to be evaluated. The sum

7

generator applies both XOR and XNOR functions to A and B, then
conditionally raises Sum when the dual rail carry signal (C1out and C0out)
arrives. Dual rail carry out signals are generated dynamically by either
propagating the carry in, or A, subject to whether A and B are equal. The
Cvalid signal for every 4 stages of the adder is generated by feeding the
logical OR of the dual rail carry out signal into a 4-input dynamic AND gate
as shown above on the right hand side in figure 2. Then 8 Cvalid signals are
ANDed to signal the completion of a 32 bit addition. The precharge buffer
tree is not shown in the figure. The precharge phase and the "spacer" which
resets the dual rail carry signals after each addition are overlapped under the
control of one add signal.

There are total of 7 dynamically charged and 7 statically driven nodes per bit
in the circuit. If the probability of A and B inputs changing is 0.5 times per
addition, the number of transitions on 5 of these dynamic nodes is 1 because
there may be either zero or two transitions per node. However for each
addition, there are always two transitions on the input node to all the
precharge p and n devices and the dynamic nodes in the Cvalid AND gate.
These can bring the overall average up to 1.29 per node. All the nodes in the
precharge buffer tree also have two transitions in each addition.

3. A synchronous dynamic adder (SDA), which is modified from ADA, is
shown in Figure 3.

Figure 3. 1-bit SDA adder
A proportion of the energy dissipated in the asynchronous dynamic adder
described above is used in generating some functionally redundant signals
required to indicate completion. These include half of the dual rail carry path,
and the Cvalid signal. If the dynamic asynchronous design is modified as
shown in figure 3, to retain the dynamic nature of the circuit, but to delay the
discharge of the Sum node until all the carries have propagated, the resulting

8

circuit will now have 5 dynamic nodes, and hence a reduced power
dissipation. The penalty is that the addition time is now fixed because the add
signal cannot be raised until after the worst case carry propagation time.
Because two transitions on the nodes in the precharge buffer tree and the
input node to the precharge transistors are still required for each addition, the
power dissipated in each addition can well be expected higher than the static
ripple carry adder. However, the speed of this dynamic adder will be
improved over the static ripple carry adder.

4. A synchronous 32 bit static adder (ATLAS) based on the Manchester
ATLAS adder [Kilb59] is shown in Figure 4. The schematic on the left is an
1-bit carry generation and propagation path, the sum design is on the right.

Figure 4. ATLAS: carry path and 1-bit adder schematic
Carry propagation is achieved in this circuit by a CMOS pass transistor
switch which is enabled by the condition A XOR B , and the carry path is
forced to a 1 by A AND B, or a 0 by A OR B. It is entirely static, and so does
not require either a spacer, or an energy intensive precharge, but suffers from
the disadvantages of spurious transitions in the same way as other static
adder circuits. In the original design, the pass transistors were symmetrical
bipolar germanium devices with a very low on resistance, and hence carry
propagation was fast. CMOS devices do not have this characteristic, and
therefore it is necessary to restandardize the carry signal with an inverter
made from double strength transistors every two carry stages with inverse
logic used for the subsequent two stages in the carry path, in order to provide
an adequate drive. There are 9 statically driven nodes per bit in this circuit,
but the circuit complexity is lower than the static ripple carry adder (less
load) and the carry propagation speed is faster than the ripple carry adder.
Because of its simplicity, and relatively fast carry path, its power dissipation
characteristics are relatively good.

9

Power Consumption Estimation
With random input operands, we analysed the probability of transition on
each node in 1-bit circuit for each of the four adders to obtain an overall
average number of transitions per node per addition. To simplify the analysis,
the total node capacitance including input/gate and output/diffusion, is
associated with inputs only. One n device and one p device load are then
normalized to 1 unit and 2 units of load respectively. Other simulations we
have done with Hspice(93A) on a MIETEC 2µm double poly, double metal,
n-well CMOS process suggest a typical power dissipation of 0.08pJ per load
unit per transition so that we compute a theoretical figure for power
dissipation. Table 1 lists for comparison the total number of nodes per bit,
the average number of transitions per node per addition and the estimated
power consumption per 32 bit addition for the four adders. The estimated
power is calculated by adding the products of the average node transition and
the corresponding normalized load units in 1-bit circuit which is then
multiplied by 0.08 and 32 for 32 bit versions of each of the four adders.

Table 1
Adder Circuit

Analysis
Total Nodes

per bit
Average transitions
per node per add

Estimated energy
per 32bit add(pJ)

1. RCA 9 0.68 90.24
2. ADA 14 1.29 179.2
3. SDA 12 1.2 151.04
4. ATLAS 9 0.53 55.68

Simulation Results
32 bit versions of each of the four adder circuits were simulated with two
lists of operands, one generated form an unbiased random number generator,
and one consisting of operands chosen to give the same A inputs as the
previous list, but with B inputs selected to match the statistics quoted by
Garside in [Gars93]. Measurements were also based on Hspice(93A)
simulations of the same MIETEC 2µm CMOS process using typical
parameters at 5V. In Table 2, the average energy dissipated per addition for 4
different 32 bit adders is given, and it can be seen that the longer average
carry paths expected from the biased data gives a slightly greater energy
consumption in the static adders as expected because of the larger number of
transitions in the carry path, and the sum outputs. In the dynamic circuits, the
difference between random and biased input lists is less marked, but still
exists because there are more transitions on the XOR node for the biased set.
In the dynamic adders, we estimate that the precharge fan out drivers and the

10

charge/discharge of the gate capacitance associated with precharge transistors
account for approximately 40% of the total energy of the self timed adder.

Table 2
Energy per 32bit addition

(pJ)
Random

Operands
Biased

Operands
Transistors

per bit
1. RCA 75.05 77.13 44

2. ADA 205.70 207.42 45

3. SDA 158.70 161.14 34

4. ATLAS 65.50 66.54 34

The simulated power dissipations per addition for the four adder circuits are
in line with the estimated power consumptions given in Table 1 except that
the static ripple carry adder does not consume as much power as we
estimated from probability of transitions. This is because the hazards in the
static ripple carry adder might not contribute to energy dissipation in
proportion to their numbers in the actual circuit.

The maximum addition time has been measured from Hspice simulation
results as the time taken from presentation of the A and B operands to the
time of arrival of C32 in the worst case. For the self timed adder, a typical
addition time has also been calculated by taking the average completion time
for the biased set of operands. For the modified dynamic adder, we assume
that the add signal is raised at the earliest possible time after evaluation of all
the carries.

Table 3
Time per 32
bit addition

Max. Addition
Time(nS)

Average Typical
Addition Time(nS)

Cycle Time
(nS)

Energy×Time

1. RCA 23.08 23.08 30.004 2314.12

2. ADA 16.85 8.076 9.826 2038.14

3. SDA 15.1 15.1 21.38 3445.17

4. ATLAS 16.97 16.97 22.061 1468.02

In a system, it would be necessary to allow some tolerance on the addition
time in order to obtain reliable operation over a range of temperatures and
supply voltages, though variations in the process parameters could to some
extent be accommodated by selecting circuits for different clock speeds. We
have therefore added 30% to the add times for the synchronous adders, to
obtain a notional cycle time. It will also be necessary to add the precharge
time of 1.75 nS to the dynamic adders since this must also be fitted within the
cycle time. The results are presented in Table 3.

11

Finally, there are several measures which could be used to compare the
circuits in a low power application. These include the number of operations
obtained from a single battery charge, in which case only the energy per add
is important, or some measure which also includes speed or silicon area and
regularity may be used. We have chosen to compare adder circuits which are
comparatively simple and regular in layout. If performance is the only
objective, it is fairly easy to show that more complex adders, such as the
conditional sum adder described by Sklansky [Skla60], can deliver a faster
result, but consume more energy, since more nodes are required in the
circuit, with at least the same number of total transitions as the ripple carry
adder. Here we have chosen to give the energy - time product as a measure
since it reflects the desire to maintain performance together with low energy
consumption.

Conclusions
The analysis and simulation results clearly show that the precharge phase of
dynamic logic consumes a considerable amount of energy, and that the
advantages of eliminating transition hazards gained by the dynamic, self
timed adder are outweighed by the increase in the number of transitions per
node from an average of about 0.6 to 1.29. In fact, it is likely that the hazards
do not contribute to energy dissipation in proportion to their numbers, since
many of them will be comparable to the circuit rise times, and hence may
never reach the threshold voltage of input gates. In the simulation results, the
dynamic self-timed adder is clearly the fastest, and since addition power is
often a very small proportion of the total system power, may well be chosen
on those grounds alone. The modified dynamic version is of interest,
because it shows that a synchronous version using dynamic logic can also be
produced with an adequate performance and reduced power dissipation, but
in terms of absolute energy consumption per addition, area, and regularity,
the ATLAS adder would be the best choice which also offers an adequate
clock speed, and the best speed - power compromise.

References
[Beni94] Benini, L., Favalli, M., and Ricco, B., "Analysis of Hazard
Contributions to Power Dissipation in CMOS ICs." 1994 International
Workshop on Low Power Design, NAPA Valley, April 1994
[Chan92] Chandrakasan, A.P., Sheng, S., and Broderson, R.W.,
"Low Power CMOS Digital Design." IEEE Journal of Solid State Circuits,
Vol 27-4 April 1992.

12

[Farn94] Farnsworth, C., Edwards, D.A., and Sikand, S.S.,
"Utilising Dynamic Logic for Low Power Consumption in Asynchronous
Circuits." Proceedings, Symposium on Advanced Research in Asynchronous
Ciruits and Systems", Salt Lake City, pp 186 - 194, Nov 1994
[Furb94] Furber, S.B, Day, P, Garside, J.D, Paver, N.C, and Woods,
J.V, "AMULET1: A Micropipelined ARM", IEEE CompCon 94, San
Francisco, March 1994.
[Gars93] Garside, J.D, "A CMOS VLSI Implementation of an
Asynchronous ALU." Proceedings of the IFIP Conference on Asynchronous
Design Methodologies, Manchester, UK, 1993.
[Kilb59] Kilburn, T., Edwards, D.B.G., and Aspinall, D., "Parallel
addition in Digital Computers: A New Fast "Carry" Circuit" IEE Proc 106, Pt
B 464-466
[Skla60] Sklansky, J, "Conditional-Sum Addition Logic.", IRE
Trans on Electronic Computers, EC-9; pp 226-231.
[Suth89] Sutherland, I.E, "Micropipelines", Communications of the
ACM, 32(6): pp720-738, January 1989.

