
A RISC Hardware Platform for Low Power Java

Paul Capewell and Ian Watson
School of Computer Science, The University of Manchester

Oxford Road, Manchester, M13 9PL, UK
{paul.capewell, iwatson}@cs.man.ac.uk

Abstract

Java is increasingly being used as a language and bi-
nary format for low power, embedded systems. Current soft-
ware only approaches to Java execution do not always suit
the type of resources available in many embedded systems.
Hardware support for Java is a potential solution, reduc-
ing memory and power requirements while increasing exe-
cution speed. This paper presents a prototype architecture
for hardware Java support within a RISC processor core,
along with a synthesised asynchronous implementation. A
breakdown of gate and silicon level simulation results quan-
tifies where performance increases are achieved, providing
a template for future work.

1. Introduction

Java [10] is a general purpose, object orientated pro-
gramming language introduced by Sun Microsystems. Java
programs are usually compiled down to 8 bit instructions
(byte-codes), targeting a standard stack based virtual ma-
chine. Executables therefore have a very high code density
[8, 3]. Resulting binary files can be interpreted on any plat-
form which has a Java Virtual Machine (JVM) implementa-
tion. In terms of embedded systems, Java provides an ideal
common binary distribution mechanism between a rapidly
evolving set of target devices. Modern mobile phones are a
successful example of the application of embedded Java.

The high memory requirements of a Java virtual ma-
chine, and associated performance penalty forms a stum-
bling block for embedded devices. Performance of JVM’s
also tends to get worse with lower memory implementa-
tions. Cut down embedded JIT (Just In Time) compilers ex-
ist, but still require more memory than is suitable for many
devices. Simplified interpreter only virtual machines are far
too slow when running on embedded architectures, such as
ARM [4] or MIPS [6]. A hardware solution could provide
the answer, and many have been designed. ARM’s Jazelle
[1] is an example of an efficient design. Jazelle integrates

tightly with the RISC processor’s execution pipeline and is
transparent to the surrounding hardware in a device. Exter-
nal Java co-processors or even independent processors exist
such as PicoJava [8, 11] but these are not necessarily com-
patible with the low-power and low component count re-
quirements essential in the mobile/wireless appliance mar-
ket.

The Java solution presented here has a similar structure
to the ARM Jazelle architecture, in that the JVM is as-
sisted by a Java byte-code to RISC instruction translator
module. The module exists as a stage in an asynchronous
processor pipeline. When in Java mode it interprets simple
byte-codes directly in hardware with negligible interpreta-
tion time penalty, at the cost of extra logic gates. The im-
plementation was designed to support the development of
more advanced on-chip binary translation mechanisms, as
well as exploring effective elastic pipelines.

Balsa [2], an asynchronous synthesis system, developed
at The University of Manchester, has been employed to pro-
vide a route to silicon via handshake circuits [12]. An elas-
tic asynchronous pipeline allows for common byte-code ex-
ecution to be optimised, while allowing longer decoding cy-
cles in more complex or infrequent cases.

2. A Java Aware Processor

Key aims in designing the Java processor architecture
were: low power consumption, low gate count, efficiency
and implementability. All but the last of these features are
key to making such hardware both economical and suit-
able for use in embedded Java systems. Implementability
is purely to allow progression of research into more novel
translation schemes and future architectural improvement.
Power is saved through the reduction of high power CPU
cycles by generating efficient translated RISC code and
reducing memory accesses, with minimal extra decoding
logic.

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

2.1. Java Decoder Design

The Java hardware presented here fits into an ARM com-
patible processor and translates a subset of the Java binary
instruction set (byte-codes) into native RISC code for exe-
cution further down the pipeline. Simple arithmetic instruc-
tions, operand stack and address calculations are translated
entirely in hardware, while remaining byte-codes are han-
dled by software handlers. The operand stack is cached in
registers to allow execution on a load/store RISC architec-
ture. The main Java interpretation loop, operates exclusively
in hardware, reducing further the overhead of decoding and
processing even un-handled byte-codes, compared to a soft-
ware interpreter loop.

To make hardware for Java acceleration efficient and
small it was decided to embed a Java unit into an existing
asynchronous ARM compatible RISC processor, under de-
velopment within the APT group in Manchester [9]. The
unit acts as an extra pipeline stage in the processors oper-
ation when in Java mode, otherwise its existence is trans-
parent, adding no latching or processing latency. The nec-
essary instructions for jumping to a section of Java code and
changing mode are defined by ARM for the Jazelle [1] fam-
ily of cores.

2.2. Architecture

The Java decoder architecture is shown in Figure 1. This
unit fits into the processor pipeline between the fetch and
decode stages. The decoder takes single words fetched from
memory as input and outputs RISC instructions for execu-
tion by the existing pipeline.

Fetch Buffer

S
ta

ck
 +

 R
eg

is
te

r
C

on
tr

ol

A
R

M
 O

pc
od

e
G

en
er

at
or

O
p

O
p

O
p

Fetch ControlIndex

A
R

M
 In

st
ru

ct
io

ns

Byte

Address

Mispredict

Branch Control

Bytecode Decode

Instruction

M
U

X

Figure 1. The Java Decoder Block.

Architecturally the Java unit inherits an asynchronous
distributed control model, suiting simple integration with
different asynchronous host cores, assuming that necessary
information can be sourced. The unit needs a fetched mem-
ory address, to allow relative branch generation, along with
the associated Java byte-code(s).

Once the processor has switched to Java mode (after
a bxj instruction). Individual bytes are dispatched from
a word buffer, filled by the processor’s fetch unit, to the
Java decode block. Often byte-codes require further argu-
ments, the decode block requests bytes as needed. Each
byte interpreted is treated as part of a Java binary stream.
As byte-codes are recognised, appropriate RISC instruc-
tions are generated to perform the desired function. ARM
instruction opcodes are then generated at the opcode gen-
erator, feeding the main processors execute unit. The com-
ponent parts of the architecture are described in detail be-
low:

2.2.1. Fetch Buffer The fetch buffer is present to latch a
word from the fetch unit when in Java mode, and then dis-
patch individual byte-codes to the decode unit. The fetch
buffer hides the complexities of instruction fetch from the
rest of the Java decoder, such as the fact that multi-byte Java
byte-codes may run over word boundaries. The other main
job this unit does is to keep track of where in a word byte-
codes were initially fetched from, allowing for branches and
software calls. A software byte-code handler must be passed
a valid return address. As byte-codes are (pre) fetched word
at a time, more efficient use is made of the 32 bit memory
bus.

2.2.2. Stack and Register Control Unit To implement
efficient allocation of operand stack data to registers, a cir-
cular buffer strategy is used. This will be referred to as the
stack cache. The state of the stack cache is maintained in
this unit and is supplied to the instruction issuing units to
provide correct register allocation. State is updated accord-
ingly when a stack operation is requested by the decode or
branch unit.

2.2.3. Byte-code Decoder This unit performs the task of
an interpreter loop. It takes bytes in a Java instruction stream
from the fetch buffer, and identifies instruction groups. If an
instruction is not handled by the hardware, then a branch is
taken to an appropriate software handler, otherwise an in-
struction sequence is generated to for execution by the host
processor.

Once the byte has been classified the appropriate instruc-
tion sequence is generated, communication with the stack
and register control unit allows for correct register indexes
to be issued, correlating with the current stack cache state.
Stack cache spill or fill operations may be required at this
time, invoking appropriate memory load or store instruc-
tions.

2.2.4. Branch Control Unit The branch control unit is re-
quired to deal with the effects of pipelining around branch
instructions. If a conditional branch is issued by the decoder
unit then, depending on result, subsequent byte-codes may
be executed in error. In the Java decoder, each (pre-fetched)

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

word can contain up to 4 byte-codes. Currently the stack
cache is flushed when a conditional branch is issued, there-
fore when a branch is detected the stack cache is flushed
correcting the state of the unit. Incorrectly issued instruc-
tions will be ignored by the execute unit. In the current ar-
chitecture this is achieved through instruction colouring [5].

2.2.5. ARM Opcode Generator This unit translates from
the internal opcode format to ARM instruction opcodes.
When the instructions are dispatched, necessary extra data
fields such as instruction colour are added and sent to the
RISC processor units for decode and execution. Other RISC
instruction sets could be targeted by redesigning this unit.

2.3. Register Allocation

R0−R3
R4
R5
R6
R7
R8

Register(s)

R9 − R11
R12
R13
R14
R15

Usage
Stack Cache

Points to handler routines

Points to Java constants

Points to Java Stack
Points to Java variables

Points to ARM stack
Java link register
Java program counter

Local Variable 0

For software JVM use
For hardware JVM use

Figure 2. ARM Register Allocation.

RISC instructions output by the decoder assume the
ARM user mode register space and register allocation is
based on the technique specified in the Jazelle white paper
[1]. A allocation table is shown in Figure 2. The most im-
portant feature of this mapping is the four entry stack cache
(R0 to R3). This system allows for single register to regis-
ter RISC operations to replace single data processing Java
byte-codes when when the operand(s) are cached (usually
just one or two stack items are needed).

2.4. Integration into SPA

Figure 3 shows the Java aware processor archi-
tecture, known as JASPA (Java Aware Synthesisable
Portable AMULET). SPA is a low speed synthesised asyn-
chronous ARM core, developed in Manchester [9] for
secure smart-card applications. The Java decoder mod-
ule is shown taking the output of the fetch stage in the
pipeline. The result gathered here is either forwarded di-
rectly to the RISC decode stage or latched for process-
ing by the Java decoder, if the processor is in Java mode.
Direct forwarding of instructions reduces branch la-
tency (through pre-fetch depth) when executing RISC
code, this is significant as the SPA does not currently per-
form any branch prediction.

B
ra

nc
h

D
at

a

B
ra

nc
h

C
on

tr
ol

Decode

Steer

Address Instruction

T
hu

m
b

A
R

M

C
op

ro
 C

on
tr

ol
C

op
ro

 In
st

ru
ct

io
n

In
st

ru
ct

io
n

A
dd

re
ss

Merge

Decoded InstructionAddress

Execute Copro Control

Copro Data

Address Data

FIQ

IRQ
Fetch

Address Instructions

Java Decode

Steer

Merge

Fetch Control

Java Unit
Address Instruction

Figure 3. JASPA System Level Diagram.

The decoder is placed as an extra decode stage in the
pipeline in order to leave a clean interface at the input and
output. If the decoder was placed in parallel with the ARM
and THUMB decoders shown, there would be less latency
but the decoder would have then been sensitive to changes
made within the SPA, which was in development concur-
rently with this design. This approach is also portable, as it
has an easily customisable instruction interface at it’s out-
put. Asynchronous design with distributed control and uni-
form signalling protocols makes the integration task trivial.
A synchronous version would have inherited timing con-
straints from other parts of the design, principally the max-
imum cycle time.

3. Prototype Implementation

Implementability was a key aim in the planning and de-
sign of the architecture. The realisation to silicon level for
detailed simulation was the ultimate goal, fabrication would
be too expensive for a proof of concept design. The use of
Balsa enabled a rapid development cycle, helped by the SPA
core being developed within the same design flow. Although
the design is a simple prototype, with naive byte-code trans-
lation, it paves the way for future work and is open to ex-
pansion with new translation techniques.

The Balsa implementation of the Java decoder archi-
tecture was mainly a problem of organising communica-

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

tion and storage within the unit’s different components.
Asynchronous communication between blocks of hardware
working in parallel must be explicitly synchronised through
handshaking channels. In a clocked design all synchronisa-
tion takes place on the clock edge. Arbitration of shared re-
sources must therefore be implemented carefully in a self-
timed design as there is no globally shared timing reference.
The only place in the JASPA design where this occurs is in
the SPA fetch unit, when deciding if a branch/interrupt has
taken place. A mutual exclusion element must be used at the
arbitration point, and has several unfortunate timing proper-
ties [7]. This will not pose a problem in our core, due to our
mutex design and the probabilities involved.

The design was partitioned as in the architectural de-
scription (Figure 1). Balsa allows, and almost forces one
to think in a very modular manner facilitating decomposi-
tion of a design through communicating concurrent proce-
dures. Re-use and future modification is natural, supported
by well defined interfaces and abstract data types. Clarity
and functional testability also result from this approach. Al-
though channels can have abstract types in a Balsa descrip-
tion, underlying circuit styles and protocols can be changed
at the synthesis stage.

3.1. Simulation and Functional Verification

To test the Java decoder implementation, functional level
simulation was used. Balsa is extensible in that it allows
for many circuit styles to be generated as output. All cir-
cuit types are derived from a graph of handshake compo-
nents. This is a control and data-flow graph describing the
high level functionality of a design, independent of how
values are represented in a circuit. This behavioural level
of representation is also ideal for rapid high-level simula-
tion and functional verification. Issues such as deadlock and
problems with concurrency were tackled using the simula-
tor which is now part of the Balsa tool-set. Simulation at
this level is around 6-10 times faster than un-extracted gate
level verilog simulation.

JASPA was synthesised as a secure dual-rail circuit, as
this was the technology used for the SPA chip. Dual-rail cir-
cuits are resistant to changes in wire delays, as each data bit
signals its own arrival, hence automatic layout can be used.
Balsa generates a gate-level verilog netlist for simulation,
this was successfully utilised to verify the design. Although
gate-level simulations do not give an accurate picture of sil-
icon performance, they can be used to find problem areas in
the design such as long critical paths of logic. Common ver-
ilog simulators provide a satisfactory level of performance,
even when simulating benchmarks on the whole processor.

As far as circuit area is concerned the current design syn-
thesises to 45,000 transistors in single-rail technology, and
around 90,000 using a dual-rail technology mapping. These

results are with a cell library developed within the APT
group in Manchester targeting a ST Microelectronics 0.18
micron process technology.

3.2. Generating Silicon

In order to generate silicon, or a silicon level layout suit-
able for accurate power and timing simulation as well as
hand off to a fabrication facility, a cell library and technol-
ogy design kit are needed. Along with a front to back lay-
out tool such as Cadence it is possible to achieve the nec-
essary standard cell layout, placement, routing and extrac-
tion in order to generate and verify the design implementa-
tion. The only problems we encountered were with obtain-
ing cell library details from the foundry, needed for accu-
rate silicon layout level simulation.

The first issue to arise, when generating layout, is the
efficiency of the generated circuits. Silicon area costs and
speed of operation need to be determined. Typical elements
used in the construction of most asynchronous circuits are
mutexes and Muller-C elements, these are not present in
commercial standard cell libraries. Although these elements
can be constructed from standard gates, it is much better to
add extra custom cells to increase performance, and reduce
silicon area. The problem we faced was a limited cell li-
brary, without cell internals - needed to extract resistance
and capacitance of circuit nodes. Good RC extraction is
essential for realistic asynchronous circuit simulations in
packages such as Nanosim or Spice. This level of simula-
tion is needed for accurate power and speed estimations,
this is not normally required for synchronous ASIC design
as static timing analysis is usually sufficient. A full cell li-
brary was designed, within the APT group, for use with the
0.18 micron ST process.

4. Results

The following section presents a breakdown of where
performance increases are achieved by the hardware,
in comparison to a minimal threaded software inter-
preter. Such an embedded interpreter has similar memory
requirements to the hardware solution, but with addi-
tional handler code for each byte-code handled in hardware
by JASPA. This analysis is broken down into two sec-
tions: one dealing with a reduction in RISC execution cy-
cles, and the second looking at benefits gained through the
use of an elastic, self-timed, pipeline.

4.1. Behavioural Level

The following results, show the benefit of handling sim-
ple byte-codes entirely in hardware. Gains over software are

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

made in dispatching the correct handler routine for a byte-
code and in stack/register management.

4.1.1. Handler Dispatch When interpreting Java, handler
routines must be dispatched. In software, a lookup table
would be used to find the appropriate function for a given
byte-code. In hardware the same action occurs, but only
when the byte-code is not handled by the hardware decoder.

Interpreter Code

branch to handler routine
load handler address from table [mem]

update bytecode address
calculate handler lookup table index

load bytecode [mem]

2

JASPA Code

1
1

3 branch to handler routine
load handler address from table [mem]
calculate handler lookup table index
copy bytecode address to register
store stack cache state to register

2

3

4

Figure 4. Handler Dispatch Comparison.

Figure 4 shows that when unhandled bytes are decoded
in hardware, a similar penalty is payed in comparison to
a software interpreter. The numbers at the left show how
many RISC instruction cycles are needed in each case. In
hardware, one memory access is saved at the expense of a
constant store to a register, transferring stack cache state to
the handler. Code sent from the hardware Java decoder by-
passes instruction fetch, reducing congestion on the mem-
ory bus for the table lookup. Power will also be saved
through this reduced activity in the self-timed design.

4.1.2. RISC Code Generation When executing byte-
codes in hardware stack management is handled inter-
nally. A software interpreter must either manage such
a cache with extra state maintaining code, or use a
stack stored in memory. Further to this, RISC code dis-
patched by the Java decoder does not have to be fetched
from memory, hence will not pollute the cache and re-
duces memory traffic.

Figure 5, shows comparative performance in terms of the
number of RISC executions needed for a selection of byte-
codes, ranging from the most efficient, to the most prob-
lematic (goto). The software routines use main memory for
the operand stack, removing problems with state manage-
ment. Instruction counts shown in black are for best case
timings, while the grey bars indicate the worst case timing.
The hardware timings often have poor worst case timings as
there is the possibility of stack cache spill and fill. The only
case where this is worse than software is for goto, when
the stack cache must be flushed, this involves four mem-
ory stores.

In reality, worst case timings are very rarely in-
curred. Importantly, the Sun Java compiler tends to min-
imise operand stack depth for a given expression. In com-
mon examples this will fit in the stack cache of four reg-
isters, or will require few extra memory operations. As

far as the goto byte-code is concerned, using Sun’s com-
piler we have never experienced the need for a stack
cache flush as it has always been emptied by preced-
ing code.

8
7
6
5
4
3
2
1
0

ba c d e

R
IS

C
 In

st
ru

ct
io

ns
 Is

su
ed

a=iconst_x b=istore c=integer_op (add...) d=iinc e=goto

s/
w

h/
w

s/
w

h/
w

s/
w

h/
w

s/
w

h/
w

s/
w

h/
w

Figure 5. Code Generation Comparison.

A summary of overall performance, for the previ-
ous byte-codes, including the handler dispatch overhead is
shown in Figure 6. In practise instruction sequences gen-
erated while executing simple arithmetic benchmarks
resulted in typically a factor of 4 speed increase over inter-
pretation. Including the effects of memory accesses a fac-
tor 7 improvement has been observed with some Java
code.

8
7
6
5
4
3
2
1
0

ba c d e

R
IS

C
 In

st
ru

ct
io

ns
 Is

su
ed

a=iconst_x b=istore c=integer_op (add...) d=iinc e=goto

9
10

s/
w

h/
w

s/
w

h/
w

s/
w

h/
w

s/
w

h/
w

s/
w

h/
w

Figure 6. Cumulative Difference.

4.2. Asynchronous Pipeline

The elastic pipeline latency inherent in our self-timed de-
sign allows simple operations to complete faster than more
complex ones. When little processing is required to trans-
late a byte-code then the time taken to produce the as-
sociated RISC instructions will be reduced. The main ex-
ample observed during simulation was the difference be-
tween operations requiring many operand stack operations

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

and those which do not. A difference is also experienced
between when word buffer fetches occur, and when bytes
are already available. Average case performance is achieved
overall, as the best possible timing for each byte-code is
achieved. Even with this simple scheme there is a big dif-
ference between fast and slow translations, this would make
a synchronous design either more complicated or globally
slower.

Simulation results for the self-timed Java decoder were
run using Nanosim, on a Spice netlist extracted from lay-
out data. The Java decoder was simulated in isolation to re-
move bottlenecks present in SPA and discover the absolute
performance of the unit.

Averaged timings over 100 byte-code sequences showed
a variation in latency between 30ns and 99ns per issued
RISC instruction. Timing is apparently mainly dependant
on the stack management requirements of a byte-code.
Fetch latency seemingly has little impact, but was hard to
test in isolation, and may have more effect when simulated
with the SPA design. When RISC output was part of a se-
quence, latency hit the lower bound of 30ns, along with
byte-codes such as iconst_x (34ns). Surprisingly, sim-
ple byte-codes such as iadd took up to 99ns as usually a
single RISC operation was issued, but after 3 internal stack
cache checks.

Unfortunately the Java decoder unit’s absolute perfor-
mance was very slow, considering the 0.18 micron process
used. However, it is faster than the SPA execute unit, and
would suit usage in a secure smart card environment. Part
of the performance problem is related to the balanced se-
cure circuit style used, and mostly down to the wholly non-
hierarchical one pass place and route flow. No time was af-
forded for gate/layout level timing optimisation. Balsa also
has much scope for circuit synthesis improvements. Impor-
tantly it was shown that with the self-timed Java decoder,
simple byte-codes could produce RISC output 3 times faster
than in more demanding cases.

5. Conclusion

This paper has presented a framework for a self-timed
Java co-processor, designed to work with a RISC based host
processor. An implementation has been described in terms
of its main functional blocks and communications mech-
anisms, all the way down implementation in silicon using
the freely available Balsa tool and commercial layout and
simulation software. The conceptual simplicity of the struc-
ture has been highlighted as a key feature, and allows for
future extensions (an optimising translation system) in the
main byte-code decoder engine without requiring changes
to the framework. The simplicity implies efficiency in terms
of hardware and is complemented by flexibility of imple-

mentation style, as different self-timed circuit styles can be
generated at synthesis time.

Performance has been shown to be around four times
that of a software interpreter, with relatively small hardware
costs. Problems with the implementation have been high-
lighted in terms of absolute speed, although important fea-
tures of the architecture and design style have been demon-
strated. Power benefits have been shown in terms of execu-
tion cycle reduction, although increased redundancy of the
fetch unit and cache would contribute further to this sav-
ing. Recent work has since focused on the development of
more efficient translation algorithms, simulated at the archi-
tectural level providing a further reduction in RISC execu-
tion cycles, through byte-code folding and more intelligent
register allocation. It is expected that the elastic properties
of the asynchronous decoder pipeline will yield further im-
provements when using more complex approaches.

Acknowledgements

The work presented here was funded through an EPSRC
Ph.D studentship. This support is gratefully appreciated.

References

[1] ARM ltd. Accelerating to Meet The Challenges of Embed-
ded Java, 2002.

[2] A. Bardsley. Balsa: An asynchronous circuit synthesis sys-
tem. Master’s thesis, Department of Computer Science, The
University of Manchester, 1999.

[3] A. El-Mahdy, I. Watson, and G. Wright. Java virtual machine
and integrated circuit architecture (JAMAICA) - choosing
the instruction set. In V. Narayanan and M. L. Wolczko, ed-
itors, Java Microarchitectures. Kluwer, 2002.

[4] S. B. Furber. ARM System-on-Chip Architecture. Addison
Wesley Longman, 2000.

[5] J. Gurd, C. Kirkham, and I. Watson. The manchester proto-
type dataflow computing system. In Communications of the
ACM, volume 28, pages 34–52, Janurary 1985.

[6] G. Kane. MIPS RISC architecture. Prentice-Hall, Inc., 1988.
[7] D. Kinniment and J. Woods. Synchronisation and arbitra-

tion circuits in digital systems. Proc. IEE, 123(10):961–966,
October 1976.

[8] H. McGhan and M. O’Connor. PicoJava: A direct execution
engine for Java bytecode. IEEE Computer, 31(10):22–30,
Oct. 1998.

[9] L. A. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley,
J. D. Garside, and S. Temple. Spa-a synthesisable Amulet
core for smartcard applications. In Eighth International Sym-
posium on Asynchronous Circuits and Systems, pages 201–
210, 2002.

[10] Sun Microsystems Computer Corporation. The Java Lan-
guage Specification, 1995.

[11] A. Systems. Ajile web site. http://www.ajile.com/, 2002.
[12] K. van Berkel. Handshake Circuits: An Asynchronous Archi-

tecture for VLSI Systems. Cambridge University Press, 1994.

Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (VLSID’05)

1063-9667/05 $20.00 © 2005 IEEE

