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Abstract

The development of robust synthesis techniques and
tools is important if asynchronous design is to gain more
widespread acceptance. Handshake circuits are a method
of constructing asynchronous circuits from a set of modular
components connected by handshake channels. They offer a
level of abstraction above a particular target technology or
implementation style. The Balsa system employs the hand-
shake circuit approach and has demonstrated that it can be
used to rapidly generate large, robust circuits.

This speed and flexibility is currently achieved at the cost
of performance. This paper examines the problem of con-
trol overhead in handshake circuits and proposes new hand-
shake component specifications and implementations that
significantly reduce this overhead.

These changes are incorporated into the Balsa synthesis
system and are shown to produce a doubling of the perfor-
mance of a 32-bit processor without making any changes to
the original description.

1. Introduction

Balsa [2] is a synthesis system that generates purely
asynchronous macromodular circuits. It was used in the
development of the SPA processor [7]. SPA is a fully syn-
thesised, 100% ARM-compatible processor core and was
originally designed for a prototype smart card. Both QDI
dual-rail and four-phase bundled data implementations were
synthesised by the Balsa system from the same source lan-
guage description. SPA is the largest and most complex
design undertaken using the Balsa system to date and will
be used as an example in this paper. For the smart card
application, performance was not a significant requirement
but nevertheless the performance of SPA was significantly
lower than expected. There is no single reason for the poor
performance of the SPA processor but a contributing factor
is overheads due to the nature of the handshake circuit syn-
thesis method. This paper addresses the handshake circuit

overheads and proposes improved components that improve
the performance of SPA significantly.

Originally proposed by Van Berkel [8] for use with
the Tangram [8, 5] language (upon which Balsa is heav-
ily based), handshake circuits offer an attractive paradigm
for circuit synthesis. Complex descriptions written in the
source language can be translated into a circuit implemen-
tation consisting of instances of components taken from a
relatively small set of different handshake components that
in isolation are straightforward to implement. The first stage
of Balsa synthesis involves compiling descriptions written
in the Balsa language into handshake circuits. The transla-
tion approach from language to handshake circuits is that of
syntax-directed translation. This approach gives a ‘trans-
parent’ compilation; there is a one-to-one mapping from
language constructs to the handshake component network
that implements it. This gives the designer flexibility at the
language level to optimise the resulting circuit in terms of
performance, area or power. Small changes at the language
level result in predictable changes in the implementation.

A drawback of this approach is that of the overhead
imposed on the circuits by the control-driven approach to
translation. A handshake circuit can be considered as a
large monolithic tree of control components that direct the
movement of data through datapath components. The data
and control are frequently synchronised and often the con-
trol is slower than the data reducing the performance of the
circuit as the data flow is stalled while the control catches
up. Previous work on improving the control overhead has
concentrated on ‘control re-synthesis’ [1, 3]. The main fo-
cus of this paper is several replacement handshake compo-
nents designed to reduce the latency of control structures
and improve overall performance. These new components
are complementary to the control re-synthesis techniques
and both can be used with the re-synthesis being applied to
the new components.

A handshake circuit is constructed from a small set of
handshake components that are composed in a macromod-
ular style. Each circuit consists of a network of instances
of these components connected by channels. Each chan-



nel connects an active port on one component to a passive
port on another. The sense of the port (active or passive)
indicates the direction of the handshake. An active port ini-
tiates a handshake (sends the request) and the passive port
acknowledges requests. Channels can carry data and this
can flow in either the same direction as the handshake (a
push channel) or in the opposite direction (a pull channel).
Channels that carry no data are known as sync channels or
frequently as activation channels as they are used to start
the operation of many components when connected to an
activation port.
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Figure 1. Control Handshake Components.

Handshake components are commonly represented dia-
grammatically as labelled circles, where the label identifies
the operation of the component. Ports are represented as
smaller circles; closed circles are used for active ports and
open circles for passive ports. Active ports are connected
to passive ports by arcs that represent channels, with an ar-
row used to indicate the direction of data flow. Figure 1
gives an example of this notation for two common compo-
nents, Concur and Sequence. These two components have
a significant impact on the performance of handshake cir-
cuits. Optimisations to these components are discussed in
sections 2.1 and 2.2.

2. Handshake Circuit Control

This section examines four different control structures
commonly generated by Balsa. For each structure, the con-
ventional approach is described followed by a description of
the proposed improvement and the new component required
to implement it.

The Balsa compiler has been modified to automatically
sythesise circuits using these improved components where
appropriate.

The basic commands supported by Balsa are operations
such as reading and writing from channels, arithmetic and
logic operations, and synchronise on a sync channel. Com-
plex commands are formed by composing commands in
parallel or sequentially. These are implemented using the
Concur and Sequence components (figure 1). The compo-
nents are parameterisable in respect of the number of com-
posed commands.

2.1. Parallel Control

The operation of the Concur component is shown in fig-
ure 2. The component will wait for a request on the acti-
vation channel and will trigger the two commands (C1 and
C2) concurrently. As shown in the STG, the component
will go through the complete four-phase handshakes on the
activations of both commands before acknowledging the ac-
tivation channel.
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Figure 2. Conventional Concur Behaviour.

Figure 3 shows the conventional implementation of the
Concur component. The component uses two S-elements
to control the execution of the two commands. In the pa-
rameterised component, an S-element will be used for each
command being controlled.

C S

S

ACTa

C2a
C2r

C1a
C1rACTr

Figure 3. Original Concur Implementation.

The behaviour of the S-element is presented in fig-
ure 4(a). The figure shows that the output port will go
through the complete four-phase handshake before the S-
element acknowledges on the input channel.

The use of S-elements in the Concur component re-
sults in a simple implementation but introduces unneces-
sary overhead. Figure 2 highlights the return-to-zero (RTZ)
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Figure 4. Alternative Sequencing Behaviours.

phases of the three commands connected to the component.
The correct operation of the circuit requires that the pro-
cessing phase of the controlling command, connected to the
activate port, is executed before the processing phases of
the controlled commands. However, the RTZ phases can
execute concurrently since, in both environments, the data
is returning to the spacer state. This observation allows the
opportunity for performance improvements wherever Con-
cur is used.
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Figure 5. New Concur Behaviour.

Figure 5 introduces a replacement Concur component
with more concurrent behaviour. In this case, the control-
ling command start its RTZ phase as soon as the processing
phases of the controlled commands are finished, allowing
all the RTZ phases to execute concurrently. This optimi-
sation technique, that reorders the handshake events of a
specified behaviour to obtain greater concurrency, is some-
times called reshuffling [4] and has been used successfully

in other asynchronous design methods.
The new Concur behaviour cannot be implemented using

S-elements. Instead, an alternative sequencing component,
the T-element, is used. The operation of the T-element is
shown in figure 4(b). The T-element will acknowledge on
the input port as soon as the output port has completed the
processing phase, allowing the two RTZ phases to execute
concurrently.
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Figure 6. T-Element Implementation.

The implementation of the T-element is shown in fig-
ure 6. The T-element allows a more concurrent operation
and is also smaller and faster than the S-element. The
new Concur component is implemented by replacing the S-
elements shown in figure 3 with T-elements.
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Figure 7. Conventional Sequence Behaviour.

2.2. Sequential Control

The operation of the Sequence component is shown in
figure 7. On receipt of an activation, the component will
trigger the two commands (C1 and C2) in sequence. As
shown in the STG, the component will go through the com-



plete four-phase handshake in the first command before ac-
tivating the second one.

Figure 8 shows the conventional implementation of the
Sequence component. The component uses an S-element to
control the execution of the first command. The acknowl-
edge on the input port of the S-element is used to trigger
the second command. In the parameterised component, S-
elements are used to control the first n − 1 commands.

As with the Concur component, the behaviour of the Se-
quence component introduces unnecessary overhead. The
correct operation of the circuit requires that the processing
phases of all the commands be executed in sequence. This
requirement does not apply to the RTZ phases.
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Figure 8. Original Sequence Implementation.

Figure 9 shows an alternative behaviour for the Sequence
component. In this case, the controlling command start the
processing phase of the second command as soon as the pro-
cessing phase of the first one is finished, reducing latency
and allowing the concurrent execution of RTZ phases.

The new Sequence component is implemented by replac-
ing the S-element in figure 8 with a T-element. In contrast
with the Concur component, care must be taken when us-
ing the new Sequence component: the new behaviour intro-
duces the possibility of data hazards.

In QDI circuits such as those generated by Balsa, the
correct operation of the circuit cannot rely on timing as-
sumptions. This requirement may not be met if the new Se-
quence component is used and the same variable or channel
is accessed by the two sequenced commands. In particular,
the new component may introduce write-after-read (WAR)
or write-after-write (WAW) hazards.

The WAR hazard is caused by the RTZ phase of the first
command trying to close the variable read port concurrently
with the second command trying to write new data. If the
new data arrives first it will appear at the output of the read
port before it closes, potentially altering the result of the
first command.

A WAW hazard is related to the multiplexing of different
writes to the same channel or variable. If the first command
is executing the RTZ phase concurrently with the processing
phase of the second command, the multiplexer may not be
allowed to complete the four-phase handshake protocol on
the output, leading to incorrect operation of the circuit.
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Figure 9. New Sequence Behaviour.

These hazards could be avoided by using interlock mech-
anisms, as shown in [6] but these were not used. Instead, the
Balsa compiler was modified to identify potential WAR and
WAW hazards and use the conventional sequence compo-
nent in hazardous cases.

2.3. Passive Input Control

Handshake circuits are composed of fully asynchronous
modules that communicate with each other. Each module
operates at its own speed and can produce data at any time,
independently of the speed of the module that consumes that
data. This introduces the need for input control: a module
that receives data must be able to decide when to accept it,
how long the data should be kept valid and when to release
it. Figure 10 shows how passive inputs are implemented in
a module. Clearly, different input channels can originate
from various independent source modules.
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Figure 10. Passive Input Control.

A FalseVariable (FV) handshake component is used in
every input to detect the arrival of new data, report it to



the control unit and allow the datapath to access the data as
many times and for as long as needed. From the point of
view of the module, the FalseVariable operates similarly to
variable, i.e., the module can read the data many times.

Passive inputs are usually used when the environment
has a choice as to which module input is activated. A simple
example of the use of passive input control is an unbuffered
multiplexer which accepts one, and only one, of several in-
puts and transfers it to its output.

The FalseVariable component, shown in figure 11, re-
sembles a normal handshake Variable with one passive
write port WD and a number of passive read ports RDi.
It differs, however, in the presence of an active ‘probe’ port
S and in that it does not store data.
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Figure 11. FalseVariable Component.

The behaviour of the FV component can be described as
follows: A writer produces data that is pushed on channel
WD. One or more readers consume data by pulling it on
channels RDi. The readers must wait until valid data has
arrived on WD before reading. Channel S is used by FV
to indicate the arrival of valid data on channel WD. Since
FV does not store data, the writer is allowed to take the data
away only after all the readers have consumed it.
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Figure 12. Conventional FV Behaviour.

Figure 12 shows the behaviour of the FV component.
For simplicity, the STG shows a single reader. The STG
has been annotated indicating when data is valid on the
WD and RD channels. Clearly, the specified behaviour is
safe since data-validity on WD completely encloses data-
validity on RD.

The figure highlights the processing and return-to-zero
(RTZ) phases of the writer and the reader. It is clear from
the figure that these four phases are sequenced. Safe oper-
ation requires that the two processing phases be sequenced:
the writer must produce data before readers can consume it.
However, the RTZ phases can execute concurrently since, in
both environments, the data is returning to the spacer state.
Clearly, there is room for improved performance.

In a dual-rail implementation, further performance im-
provements are possible by modifying the way completion
detection (CD) is done in FV. The readers must do CD in
both the processing and RTZ phases to guarantee DI oper-
ation. In general, reader data CD would make writer data
CD redundant. However, as indicated earlier, the readers
are not required to consume data or they may do so condi-
tionally. To guarantee DI operation in all cases, FV must do
CD on writer data.
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Figure 13. Original FV Implementation.

Figure 12 also shows how data is checked for completion
in the dual-rail implementation: writer data is checked in
the FV component after both processing and RTZ phases
while reader data CD is carried out by the reader. It is clear
in the STG that CD is done sequentially and is always in the
critical path. If the data is wide, CD can be very expensive
both in time and area.

Figure 13 shows the current implementation of FV. This
implementation uses an S-element to achieve the sequential
interleaving of events in the WD and S channels.

Figure 14 shows a new, more concurrent behaviour for
FV. In this case, the writer is allowed to withdraw its data
after the reader has closed the read port [RDr−]. This
behaviour is safe and allows the two RTZ phases to execute
concurrently.

The new behaviour also improves the way CD is carried
out: Firstly, the two RTZ phases are executed concurrently,
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Figure 14. New FV Concurrent Behaviour.

which will result in concurrent CD on these phases. Sec-
ondly, the new behaviour allows concurrent CD also on the
processing phases. A single writer data bit is used to trigger
the events in Sr, allowing the reader to start its operation.
Completion detection is carried out in FV while the reader
is processing it. This new design is based on the Reverse
Path Completion technique used successfully to implement
QnDI combinational logic in Balsa.
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Figure 15. New FV Implementation.

The new FV implementation is shown in figure 15. The
figure shows that the correct operation of the new imple-
mentation requires an isochronic fork (identified by =). This
is a very reasonable assumption since the branch of the fork
that has to ‘win’ the race is a local wire while the other
branch corresponds to a signal that goes out to the writer

and returns after the execution of its RTZ phase.

2.4. Active Input Control

Balsa allows the specification of active input control
when there is no choice, i.e., when the command module
has a single input channel or a set of input channels which
are activated concurrently. Figure 16 shows how active in-
put control is implemented as a handshake circuit, for a sin-
gle input channel.
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Figure 16. Active Input Control.

A FalseVariable component is also used to implement ac-
tive input control. The Transferrer component (T) actively
fetches data from its input channel and pushes it on its out-
put channel. Clearly, this type of input control can also ben-
efit from the improved FV design presented in the previous
section. However, the absence of input choice introduces
new possibilities for improving performance.
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Figure 17. ALU Input Control.

Figure 17 shows a small section of the ALU of the SPA
processor. A is one of the data input channels and, depend-
ing on the value of the invert signal, either A or its comple-
ment, provided by the not component, is passed to the next
stage.

The operation of the circuit is as follows: the activate
signal starts the operation by requesting the invert input.
When this signal arrives, FV1 will trigger the transferrer
that pulls A. When this signal arrives FV2 will send the
value of the invert signal to the Case component, denoted
by @, to decide if A is complemented or not. Unfortunately,



although the invert signal arrived earlier, the circuit has to
wait until A arrives to decide which path to take.

Clearly, there is unnecessary synchronisation between
control and data signals that reduces the performance of the
circuit. The FV component triggers the command only after
data has arrived. In the absence of choice, there is a single
command to be activated in the datapath and there is no
need to wait for data to arrive to identify it. The command
can be activated as soon as possible and it will wait until
valid data arrives before processing it. In the ALU example
above, the arrival of the invert signal should be enough to
trigger the Case component so that the path to be followed
by A is selected as soon as possible, reducing the control
overhead.
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Figure 18. Eager FalseVariable Behaviour.

There are several possible ways to eliminate the unnec-
essary synchronisation detected in the handshake circuit
above. A simple and efficient one is to modify the behaviour
of the FV component, allowing it to trigger the command
without waiting for the data to arrive.

Figure 18 shows the behaviour of this eager FalseVari-
able component. The behaviour shown in the figure is simi-
lar to that in figure 14, allowing the concurrent RTZ phases
and implementing reverse path completion detection, with
a significant difference: the command is triggered, denoted
by Sr+, as soon as the previous input operation has com-
pleted. Basically, the command gets a head start by not hav-
ing to wait for the data to initiate the control operations.

Figure 19 shows the implementation of the Eager FV
component. It is very similar to the implementation shown

in figure 15 and has the same isochronic fork requirement.
The difference is that the input data is not used to trigger
the T-element. Instead, the T-element is triggered as soon
as the previous operation is completed.
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Figure 19. Eager FV Implementation.

Unfortunately, the eager FV component may, in some
cases, trigger the command too soon. If the command is
‘shared’, i.e., activated by more than one section of the cir-
cuit, several sections could try to activate it concurrently,
resulting in incorrect operation. To guarantee correct opera-
tion, the command should not be triggered before the arrival
of the activate signal (shown in figure 16).
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Figure 20. New Active Input Control.

Figure 20 presents a new handshake circuit implementa-
tion of the active input control that allows the safe use of
the Eager FV component. The control unit must synchro-
nise the FalseVariable component signal with the activate
signal, making sure that the command is triggered as early
as possible but not too early.

3. Simulation Results

Table 1 shows the results of simulating the execution
of a benchmark program in different implementations of
the SPA processor, generated by selectively introducing the
new handshake component implementations presented ear-
lier. It should be noted that all the processor implementa-
tions used the original Balsa code. The performance of the
original SPA is set as the reference.



Relative
Processor Performance

SPA 1.00
SPA1 1.51
(SPA + new Concur and FV)
SPA2 1.69
(SPA1 + Eager FV)
SPA3 2.06
(SPA2 + new Sequence)

Table 1. Simulation Results.

SPA1, which incorporates the new Concur and FV com-
ponents, obtains a very significant 51% improvement in per-
formance. These two replacement components can be sub-
stituted for the originals without restriction.

SPA2, which incorporates the use of Eager FVs into
SPA1, obtains an even more significant 69% performance
improvement. This component can be used by the Balsa
compiler wherever active inputs or passive inputs without
choice are specified by the designer. In SPA, 420 FV com-
ponents are used and 378 could be replaced by the eager
version.

Finally, SPA3 obtains an impressive 106% performance
improvement, doubling the performance of the original SPA
processor. SPA3 incorporates the use of the new Sequence
component in addition to the previous changes. As men-
tioned in the text, this component must be used selectively
to avoid introducing hazards. SPA contains 82 Sequence
components (66 are 2-step, 12 are 3-step and 4 are 4-step
sequencers) and only 2 of them cannot be replaced with the
improved design. These two sequencers are used to send
data sequentially through the same channel and would in-
troduce WAW hazards.

4. Conclusions

Balsa has demonstrated that it is capable of dealing with
the complexity of a full-featured, 32-bit processor, requiring
only 25% of the design effort of equivalent non-synthesised
processors. Unfortunately, the price of this rapid develop-
ment is reduced performance.

The work presented in this paper shows that careful spec-
ification and design of a set of control handshake compo-
nents can have a large impact on the performance of Balsa-
synthesised circuits. In particular, the introduction of new
Concur, Sequence and FalseVariable components, used to
implement parallel, sequential and input control, results in
a processor implementation with twice the performance of
the original one.
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